

Andrzej Kasperski

**MODULAR APPROXIMATION BY A FILTERED FAMILY
OF THE HAMMERSTEIN OPERATORS**

1. Introduction

In this paper we introduce the notion of boundedness of a filtered family (T_v) of Hammerstein operators in a modular space. This notion is used to get a theorem on modular convergence of $T_v x$.

Let X be a real vector space. A function $\varrho : X \rightarrow [0, \infty]$ is called a modular on X , if $\varrho(x) = 0$ iff $x = 0$, $\varrho(-x) = \varrho(x)$ and $\varrho(ax+by) \leq \varrho(x) + \varrho(y)$ for $a, b \geq 0$, $a+b = 1$, $x, y \in X$. If $\varrho(ax+by) \leq a\varrho(x) + b\varrho(y)$ for $a, b \geq 0$, $a+b = 1$, then ϱ is called convex modular on X . The modular space X_ϱ generated by ϱ is defined as

$$X_\varrho = \{x \in X : \varrho(ax) \rightarrow 0 \text{ as } a \rightarrow 0\}.$$

We define in X a modular convergence (ϱ -convergence) $x_n \xrightarrow{\varrho} 0$ by the condition: there exists an $a > 0$ such that $\varrho(ax_n) \rightarrow 0$ as $n \rightarrow \infty$. The ϱ -closure of a set $S \subset X_\varrho$ is defined as the set of all elements $x \in X_\varrho$ such that $x_n - x \xrightarrow{\varrho} 0$ for a sequence of $x_n \in S$. In the case of convex ϱ , $\|x\|_\varrho = \inf \{u > 0 : \varrho\left(\frac{x}{u}\right) \leq 1\}$ defines a norm in X_ϱ . Convergence $x_n \rightarrow 0$ in norm in X_ϱ is equivalent to the condition $\varrho(ax_n) \rightarrow 0$ as $n \rightarrow \infty$ for every $a > 0$. Obviously, norm convergence implies ϱ -convergence but not conversely.

Let (Ω, Σ, μ) be a measure space, such that $\Omega = [0, b]$, $0 < b < \infty$, μ = Lebesgue measure in the σ -algebra Σ of all Lebesgue measurable subsets of $[0, b]$. Let X be the space of all extended real-valued, Σ -measurable functions $x = x(\cdot)$ over $[0, b]$, finite μ -almost everywhere, two functions equal μ - a.e. will be treated as the same element of X .

Let U be a nonempty set.

Let $\varrho_u: [0, b] \times \mathbb{R} \rightarrow [0, \infty]$, $u \in U$, be a family of functions such that for every $u \in U$:

- (1) $\varrho_u(t, r)$ is a continuous function of r , equal to zero iff $r = 0$, $\varrho_u(t, -r) = \varrho_u(t, r)$ for every $r \in \mathbb{R}$, and non-decreasing for $r > 0$, for every $t \in [0, b]$,
- (2) $\varrho_u(t, r)$ is a measurable function of $t \in [0, b]$ for every $r \in \mathbb{R}$.

Now, taking

$$(3) \quad \varrho_s(x) = \sup_{u \in U} \int_0^b \varrho_u(t, x(t)) dt,$$

we see that ϱ_s is a modular on X . Let X_{ϱ_s} be the respective modular space. Throughout this paper we assume (1)-(3).

The results of this paper extends the results of [1] from linear operators to the Hammerstein operators.

2. A General Theorem

Let V be a nonempty set and let \mathcal{V} be a filter of subsets of V .

D e f i n i t i o n 1. A function $g: V \rightarrow \mathbb{R}$ tends to zero with respect to \mathcal{V} , $g(v) \xrightarrow{\mathcal{V}} 0$, if for every $\varepsilon > 0$ there is a set $V_0 \in \mathcal{V}$ such that $|g(v)| < \varepsilon$ for all $v \in V_0$.

D e f i n i t i o n 2. A family $T = (T_v)_{v \in V}$ of operators $T_v: X_{\varrho_s} \rightarrow X_{\varrho_s}$ will be called \mathcal{V} -bounded if there exists positive numbers k_1, k_2 and a function $g: V \rightarrow \mathbb{R}_+$ such that $g(v) \xrightarrow{\mathcal{V}} 0$ and for all $x, y \in X_{\varrho_s}$ there is a set $V_{x, y} \in \mathcal{V}$ for which

$$(4) \quad \varrho_s(a(T_v x - T_v y)) \leq k_1 \varrho_s(ak_2(x-y)) + g(v)$$

for every $v \in V_{x,y}$ and every $a > 0$.

Let us remark that if ϱ_s is convex, then the constant k_1 may be always taken equal 1.

Definition 3. An operator $\tau_v: X \rightarrow X$ such that $\tau_v x(t) = x(t+v)$, where x is extended to the whole \mathbb{R} b-periodically will be called the translation operator.

Let us extend the functions $\varrho_u(t, r)$ b-periodically with respect to the variable $t \in [0, b]$ to the whole \mathbb{R} , i.e., $\varrho_u(t, r) = \varrho_u(t+b, r)$ for $t, r \in \mathbb{R}$, $u \in U$.

Definition 4. We shall say that the family of functions $(\varrho_u)_{u \in U}$ is τ -bounded, if there exist positive constants n_1, n_2 such that

$$(5) \quad \varrho_u(t-v, r) \leq n_1 \varrho_u(t, n_2 r) + f_u(t, v) \quad \text{for } r, t, v \in \mathbb{R}, u \in U,$$

where the functions $f_u: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_+$ are measurable and b-periodic with respect to the first variable and such that if

$$h(v) = \sup_{u \in U} \int_0^b f_u(t, v) dt \quad \text{for every } v \in \mathbb{R},$$

then

$$H = \sup_{v \in \mathbb{R}} h(v) < \infty \quad \text{and} \quad h(v) \rightarrow 0 \text{ as } v \rightarrow 0 \text{ or } v \rightarrow b.$$

Let us remark that if $\varrho_u(t, r)$ are convex as functions of r for every $u \in U$, then we may take in the above definition $n_1 = 1$.

Now let $V = \mathbb{R}$ and let \mathcal{V} be the filter of all neighbourhoods of zero in \mathbb{R} .

Theorem 1. If the family $(\varrho_u)_{u \in U}$ is τ -bounded and if for every $c > 0$ $c \in X_{\varrho_s}$ and

$$(6) \quad \int_0^b \sup_{u \in U} \varrho_u(t, c) dt < \infty$$

then the family τ of translation operators is W -bounded and for every $x \in X_{\varrho_S}$ there is $c > 0$ such that

$$\omega_\tau(cx, \delta) = \\ = \sup_{|v| \leq \delta} \sup_{u \in U} \int_0^b \varrho_u(t, c(x(t+v) - x(t))) dt \rightarrow 0 \text{ as } \delta \rightarrow 0^+.$$

Theorem 1 is a slight modification of Theorem 3 from [1], so the proof of that theorem will be omitted.

3. On convergence of the integral Hammerstein operators

Let W be a nonempty set and let W be a filter in W .

Let $K_w: [0, b] \rightarrow R_+$ for $w \in W$ be integrable in $[0, b]$ and let

$$(7) \quad \sigma(w) = \int_0^b K_w(t) dt \xrightarrow{W} 1, \quad \sigma = \sup_{w \in W} \int_0^b K_w(t) dt < \infty,$$

$$\sigma_\delta(w) = \int_{\delta}^{b-\delta} K_w(t) dt \xrightarrow{W} 0 \text{ for every } 0 < \delta < \frac{b}{2}.$$

Let us extend K_w b -periodically to the whole R .

Let $F: [0, b] \times R \rightarrow R$ be measurable and let us extend F b -periodically to the whole R . Let

$$(8) \quad T_w x(s) = \int_0^b K_w(t-s) F(t, x(t)) dt \text{ for every } w \in W.$$

We prove first

Proposition 1. Let the family $(\varrho_u)_{u \in U}$ be τ -bounded and for every $t \in [0, b]$ let $\varrho_u(t, r)$ be a convex function of r for every $u \in U$. Let the assumptions (7) hold and let $F(t, 0) = 0$ for every $t \in [0, b]$. If there exists $L > 0$ such that $|F(t, r) - F(t, v)| \leq L|r-v|$ for every $t \in [0, b]$ and $r, v \in R$, then $T_w: X_{\varrho_S} \rightarrow X_{\varrho_S}$ for every $w \in W$ and $T = (T_w)_{w \in W}$ is W -bounded, where T_w are given by (8).

Proof. It is sufficient to prove that T is W -bounded and $W_{x,y} = W$ for all $x,y \in X_{\varrho_s}$. In fact, if T is W -bounded and $W_{x,y} = W$ for all $x,y \in X_{\varrho_s}$, then (see (4)) there exist positive numbers k_1, k_2 and a function $g: W \rightarrow \mathbb{R}_+$, $g(w) \xrightarrow{W} 0$, such that for all $x,y \in X_{\varrho_s}$ and every $a > 0$

$$\varrho_s(a(T_w x - T_w y)) \leq k_1 \varrho_s(ak_2(x-y)) + g(w)$$

for every $w \in W$. In particular, if $y = 0$ we have

$$\varrho_s(aT_w x) \leq k_1 \varrho_s(ak_2 x) + g(w).$$

From this we obtain that $T_w: X_{\varrho_s} \rightarrow X_{\varrho_s}$. By the b -periodicity of $\varrho_u(\cdot, r)$, $x(\cdot)$, $F(\cdot, r)$, Jensen's inequality and τ -boundedness of $(\varrho_u)_{u \in U}$ with $n_1 = 1$, $n_2 = n > 1$ we obtain for $x, y \in X_{\varrho_s}$, $a > 0$, $w \in W$:

$$\begin{aligned} \varrho_s(a(T_w x - T_w y)) &= \sup_{u \in U} \int_0^b \varrho_u \left(s, \frac{a}{\sigma(w)} \int_0^b K_w(t) \delta(w)(F(t+s, x(t+s)) - \right. \\ &\quad \left. - F(t+s, y(t+s))) dt \right) ds \leq \\ &\leq \frac{1}{\sigma(w)} \sup_{u \in U} \int_0^b \int_0^b K_w(t) \varrho_u \left(s, a \delta \left(F(t+s, x(t+s)) - F(t+s, y(t+s)) \right) \right) dt ds = \\ &= \frac{1}{\sigma(w)} \sup_{u \in U} \int_0^b K_w(t) \int_0^b \varrho_u \left(r-t, a \delta \left(F(r, x(r)) - F(r, y(r)) \right) \right) dr dt \leq \\ &\leq \varrho_s(na \delta L(x-y)) + \frac{1}{\sigma(w)} \int_0^b K_w(t) h(t) dt = \varrho_s(na \delta L(x-y)) + g(w), \end{aligned}$$

where $g(w) = \frac{1}{\sigma(w)} \int_0^b K_w(t) h(t) dt$.

It is easy to prove that $g(w) \xrightarrow{W} 0$ (see [1]). From this we obtain that $T = (T_w)_{w \in W}$ is W -bounded.

Now, we are able to prove the following theorem.

Theorem 2. Let the assumptions of Proposition 1 and Theorem 1 hold. If there exists $f \in X$ such that

$$(9) \quad |f(t)| \leq L \quad \text{for every } t \in R,$$

$$(10) \quad |F(t, r) - F(s, r)| \leq |f(t-s)| r \quad \text{for all } r, t, s \in R,$$

$$(11) \quad \int_0^b K_w(t) |f(t)| dt \xrightarrow{W} 0,$$

then for every $x \in X_{\varrho_s}$ there exists $a > 0$ such that

$$\varrho_s(a(T_w x - Fx)) \xrightarrow{W} 0,$$

where F is given by the formula

$$(12) \quad Fx(s) = F(s, x(s)) \quad \text{for } x \in X_{\varrho_s} \quad \text{and } s \in [0, b].$$

Proof. By Proposition 1, we have $T_w x \in X_{\varrho_s}$. From Theorem 1 we infer that $\omega_\gamma(cx, \delta) \rightarrow 0$ as $\delta \rightarrow 0^+$ for sufficiently small $c > 0$. For $x \in X_{\varrho_s}$ and $a > 0$, we have

$$(13) \quad \begin{aligned} & \varrho_s(a(T_w x - Fx)) = \\ & = \sup_{u \in U} \int_0^b \varrho_u \left(s, \frac{1}{\delta(w)} \int_0^b K_w(t) a \delta(w) F(s+t, x(s+t)) dt - a F(s, x(s)) \right) ds \leq \\ & \leq \frac{1}{2} \sup_{u \in U} \int_0^b \varrho_u \left(s, \frac{1}{\delta(w)} \int_0^b K_w(t) 2a \delta(w) (F(s+t, x(s+t)) - \right. \\ & \quad \left. - F(s, x(s))) \right) dt ds + \frac{1}{2} \sup_{u \in U} \int_0^b \varrho_u \left(s, 2a(\delta(w)-1) F(s, x(s)) \right) ds \leq \end{aligned}$$

$$\leq \frac{1}{2\delta(w)} \sup_{u \in U} \int_0^b K_w(t) \int_0^b \varrho_u(2a\delta(F(s+t, x(s+t)) - F(s, x(s)))) ds dt + \\ + \frac{1}{2} \sup_{u \in U} \int_0^b \varrho_u(s, 2aL(\delta(w)-1)x(s)) ds.$$

From (10) and (13) we have

$$(14) \quad \varrho_s(a(T_w x - Fx)) \leq \\ \leq \frac{1}{4\delta(w)} \sup_{u \in U} \int_0^b K_w(t) \int_0^b \varrho_u(s, 4a\delta f(t)x(s+t)) ds dt + \\ + \frac{1}{4\delta(w)} \sup_{u \in U} \int_0^b K_w(t) \int_0^b \varrho_u(s, 4aL\delta(x(s+t) - x(s))) ds dt + \\ + \frac{1}{2} \sup_{u \in U} \int_0^b \varrho_u(s, 2aL(\delta(w)-1)x(s)) ds.$$

Now, we split the second integral on the right-hand side of this inequality into three integrals over intervals $[0, \delta]$, $[\delta, b-\delta]$, $[b-\delta, b]$, where $0 < \delta < \frac{b}{2}$ is arbitrary. The first integral is estimated as follows

$$(15) \quad \sup_{u \in U} \int_0^\delta K_w(t) \int_0^b \varrho_u(s, 4aL\delta(x(s+t) - x(s))) ds dt \leq \\ \leq \int_0^\delta K_w(t) \varrho_s(4aL\delta(x(s+t) - x(s))) dt \leq \delta(w) \omega_\tau(4aL\delta x, \delta)$$

and the third one, by substitution $t = b-u$,

$$(16) \quad \sup_{u \in U} \int_{b-\delta}^b K_w(t) \int_0^b \varrho_u(s, 4aL\delta(x(s+t) - x(s))) ds dt \leq \\ \leq \delta(w) \omega_\tau(4aL\delta x, \delta).$$

Finally, for the second integral (see [1]) we have

$$\begin{aligned}
 (17) \quad & \sup_{u \in U} \int_{\delta}^{b-\delta} K_w(t) \int_0^b \varrho_u(s, 4aL(x(s+t) - x(s))) ds dt \leq \\
 & \leq \frac{1}{2} \int_{\delta}^{b-\delta} K_w(t) (\varrho_s(8anL\delta x) + h(t) + \varrho_s(8anL\delta x)) dt \leq \\
 & \leq (\varrho_s(8anL\delta x) + \frac{1}{2} H) \int_{\delta}^{b-\delta} K_w(t) dt.
 \end{aligned}$$

The first integral on the right-hand side of the inequality (14) is estimated as follows

$$\begin{aligned}
 (18) \quad & \sup_{u \in U} \int_0^b K_w(t) \int_0^b \varrho_u(s, 4a\delta f(t)x(s+t)) ds dt \leq \\
 & \leq \frac{1}{L} \sup_{u \in U} \int_0^b K_w(t) |f(t)| \int_0^b \varrho_u(s, 4aL\delta x(s+t)) ds dt \leq \\
 & \leq \frac{1}{L} (\varrho_s(4anL\delta x) + H) \int_0^b K_w(t) |f(t)| dt.
 \end{aligned}$$

From (7), (14), (15), (16), (17), (18) for sufficiently small $a > 0$ we obtain that

$$\varrho_s(a(T_w x - Fx)) \xrightarrow{w} 0.$$

Now let g_1 and F_1 be such that: $g_1: [0, b] \rightarrow \mathbb{R}$, $F_1: [0, b] \times \mathbb{R} \rightarrow \mathbb{R}$ are measurable, and there is $L > 0$ for which

$$(19) \quad |g_1(t)| \leq \frac{L}{a} \quad \text{for } t \in [0, b],$$

there is $\varepsilon_0 \in (0, b)$ such that

$$(20) \quad F_1(t, x) = \begin{cases} 0 & \text{for } t \in [0, \varepsilon_0] \cup [b - \varepsilon_0, b] \\ g_2(t, x) & \text{for } t \in (\varepsilon_0, b - \varepsilon_0) \end{cases}$$

for $r \in R$, and there is $L_2 > 0$ such that

$$(21) \quad |g_2(t, r) - g_2(t, u)| \leq L_2 |r - u| \quad \text{for } t \in [0, b], \quad r, u \in R,$$

$$(22) \quad F_1(t, 0) = 0 \quad \text{for every } t \in [0, b].$$

Let us extend g_1 and F_1 b -periodically to the whole R .
Let

$$(23) \quad \underline{T}_w x(s) = \int_0^b K_w(t-s) (g_1(t)x(t) + F_1(t-s, x(t))) dt, \quad w \in W.$$

Theorem 3. Let the assumptions of Theorem 1 hold. Let the family $(\varrho_u)_{u \in U}$ be τ -bounded and for every $t \in [0, b]$ let $\varrho_u(t, r)$ be a convex function with respect to r , for every $u \in U$. If the assumptions (7), (19)-(22) hold and there is $\delta_0 > 0$ such that for every $x \in X_{\varrho_s}$ there is $c > 0$ for which

$$\sup_{u \in U} \int_0^{\delta_0} K_w(t) \int_0^b \varrho_u(s, c(g_1(t+s) - g_1(s))x(s)) ds dt \xrightarrow{w} 0$$

$$\sup_{u \in U} \int_{b-\delta_0}^b K_w(t) \int_0^b \varrho_u(s, c(g_1(t+s) - g_1(s))x(s)) ds dt \xrightarrow{w} 0,$$

then for every $x \in X_{\varrho_s}$ there exists $a > 0$ such that

$$\varrho_s(a(\underline{T}_w x - Gx)) \xrightarrow{w} 0,$$

where \underline{T}_w is given by (23) and G is given by formula

$$Gx(t) = g_1(t)x(t) \quad \text{for } x \in X_{\varrho_x}, \quad t \in [0, b].$$

Proof. It is easy to see that the assumptions of Proposition 1 hold. Hence $\underline{T}_w x \in X_{\varrho_s}$ for $x \in X_{\varrho_x}$ and $\underline{T} = (\underline{T}_w)_{w \in W}$

is W -bounded. The rest of the proof is analogous to that of Theorem 2 and we omit it.

Let $\underline{K}_w : [0, b] \times [0, b] \rightarrow \mathbb{R}_+$ for $w \in W$ be integrable in $[0, b] \times [0, b]$ and

$$(24) \quad \text{if } s_1 < s_2, \text{ then } \underline{K}_w(t, s_1) \leq \underline{K}_w(t, s_2) \text{ for } t \in [0, b].$$

We let $\underline{K}_w(t, b) = \lim_{s \rightarrow b^-} \underline{K}_w(t, s)$.

$$(25) \quad \delta(w) = \sup_{s \in [0, b)} \left| \int_0^b \underline{K}_w(t, s) dt - 1 \right| \xrightarrow{W \rightarrow 0} 0,$$

$$(26) \quad \bar{\delta}(w) = \int_0^b \underline{K}_w(t, b) dt, \quad 0 < \bar{\delta}(w) < \infty, \quad \delta = \sup_{w \in W} \bar{\delta}(w) < \infty,$$

$$(27) \quad \delta_\delta(w) = \int_\delta^{b-\delta} \underline{K}_w(t, b) dt \rightarrow 0 \quad \text{for } 0 < \delta < \frac{b}{2}.$$

Now we extend $\underline{K}_w(t, r)$ periodically with respect to the variables $t, r \in [0, b]$ to the whole $\mathbb{R} \times \mathbb{R}$ i.e. $\underline{K}_w(t+b, r) = \underline{K}_w(t, r)$, $\underline{K}_w(t, r+b) = \underline{K}_w(t, r)$ for $t, r \in \mathbb{R}$. Let

$$(28) \quad \underline{T}_w x(s) = \int_0^b \underline{K}_w(t-s, s) F(t, x(t)) dt.$$

Proposition 2. Let the family $(\varrho_u)_{u \in U}$ be τ -bounded and let for every $t \in [0, b]$, $\varrho_u(t, r)$ be convex as a function of r for every $u \in U$. Let the assumptions (24)-(27) hold. Let $F(t, 0) = 0$ for $t \in [0, b]$. If there exists $L > 0$ such that $|F(t, r) - F(t, v)| \leq L|r-v|$ for every $t \in [0, b]$ and all $r, v \in \mathbb{R}$, then $\underline{T}_w : X_{\varrho_S} \rightarrow X_{\varrho_S}$ for every $w \in W$ and $\underline{T} = (\underline{T}_w)_{w \in W}$ is W -bounded, where \underline{T}_w are given by (28).

Proof. It suffices to prove that \underline{T} is W -bounded.

Let $x, y \in X_{\varrho_S}$ and $a > 0$. From the assumptions we have

$$\begin{aligned}
(29) \quad & \varrho_s(a(\underline{T}_w x - \underline{T}_w y)) = \\
& = \sup_{u \in U} \int_0^b \varrho_u \left(s, a \int_0^b K_w(t, s)(F(t+s, x(t+s)) - F(t+s, y(t+s))) dt \right) ds \leq \\
& \leq \sup_{u \in U} \int_0^b \varrho_u \left(s, a \int_0^b \frac{K}{w} (t, b) L(x(t+s) - y(t+s)) dt \right) ds \leq \\
& \leq \frac{1}{\bar{\sigma}(w)} \sup_{u \in U} \int_0^b \int_0^b \frac{K}{w} \varrho_u \left(s, a \bar{\sigma} L(x(t+s) - y(t+s)) \right) ds dt = \\
& = \frac{1}{\bar{\sigma}(w)} \sup_{u \in U} \int_0^b \int_0^b \frac{K}{w} \varrho_u \left(r, t, a \bar{\sigma} L(x(r) - y(r)) \right) dr dt \leq \\
& \leq \frac{1}{\bar{\sigma}(w)} \sup_{u \in U} \int_0^b \int_0^b \frac{K}{w} \varrho_u \left(r, a \bar{\sigma} L(x(r) - y(r)) \right) dt dr + \\
& + \frac{1}{\bar{\sigma}(w)} \sup_{u \in U} \int_0^b \int_0^b \frac{K}{w} \varrho_u \left(r, t, a \bar{\sigma} L(x(r) - y(r)) \right) dr dt = \varrho_s(a \bar{\sigma} L(x - y)) + g(w),
\end{aligned}$$

where

$$(30) \quad g(w) = \frac{1}{\bar{\sigma}(w)} \int_0^b \frac{K}{w} (t, b) h(t) dt.$$

It is easy to prove that $g(w) \xrightarrow{W} 0$ (see [1]). From this and (29), (30) we obtain the W -boundedness of \underline{T} .

Theorem 4. Let the assumptions of Proposition 2 and Theorem 1 hold. If there exist $N > 0$ and $f \in X$ such that $|F(t, r) - F(s, r)| \leq |f(t-s)| r \leq N|r|$ for $r \in R$, $t, s \in [0, b]$ and $\int_0^b \frac{K}{w} (t, b) |f(t)| dt \xrightarrow{W} 0$, then for every $x \in X_{\varrho_s}$ there exists $a > 0$ such that $\varrho_s(a(\underline{T}_w x - Fx)) \xrightarrow{W} 0$, where \underline{T}_w are given by (28) and F is given by formula $Fx(s) = F(s, x(s))$ for $x \in X_{\varrho_s}$, $s \in [0, b]$.

Proof. Since the proof is analogous to that of Theorem 2 we give only its outline. Let $x \in X_{\varrho_s}$, $a > 0$.

We have from the assumptions

$$\begin{aligned}
 (31) \quad & \varrho_s(a(T_w x - Fx)) \leq \\
 & \leq \frac{1}{2} \sup_{u \in U} \int_0^b \varrho_u(s, 2a \int_0^b K_w(t, s)(F(t+s, x(t+s)) - F(s, x(s))) dt) ds + \\
 & + \frac{1}{2} \sup_{u \in U} \int_0^b \varrho_u(s, 2a \left(\int_0^b K_w(t, s) dt - 1 \right) F(s, x(s)) dt) ds \leq \\
 & \leq \frac{1}{4} \sup_{u \in U} \int_0^b \varrho_u(s, 4a \int_0^b \frac{K}{w}(t, b) f(t) x(s+t) dt) ds + \\
 & + \frac{1}{4} \sup_{u \in U} \int_0^b \varrho_u(s, 4a \int_0^b \frac{K}{w}(t, b) L(x(t+s) - x(s)) dt) ds + \\
 & + \frac{1}{2} \varrho_s(2aL\delta(w)x).
 \end{aligned}$$

It is easy to see that

$$(32) \quad \frac{1}{2} \varrho_s(2aL\delta(w)x) \xrightarrow{w \rightarrow 0} 0 \quad \text{for sufficiently small } a > 0,$$

$$(33) \quad \sup_{u \in U} \int_0^b \varrho_u(s, 4a \int_0^b \frac{K}{w}(t, b) L(x(t+s) - x(s)) dt) ds \xrightarrow{w \rightarrow 0} 0$$

for sufficiently small $a > 0$ (see the proof of Theorem 2).

To end the proof we must show that

$$(34) \quad \sup_{u \in U} \int_0^b \varrho_u(s, 4a \int_0^b \frac{K}{w}(t, b) f(t) x(s+t) dt) ds \xrightarrow{w \rightarrow 0} 0$$

for sufficiently small $a > 0$.

From the assumptions we obtain

$$\begin{aligned}
 (35) \quad & \sup_{u \in U} \int_0^b \varrho_u \left(s, 4a \int_0^b \frac{K}{w} (t, b) f(t) x(s+t) dt \right) ds \leq \\
 & \leq \frac{1}{\bar{c}(w)} \sup_{u \in U} \int_0^b \int_0^b \frac{K}{w} (t, b) \varrho_u (s, 4a \delta f(t) x(s+t)) dt ds \leq \\
 & \leq \frac{1}{\bar{c}(w)} \sup_{u \in U} \int_0^b \int_0^b \frac{K}{w} (t, b) \varrho_u (r, 4a \delta f(t) x(r)) dr dt + g(w),
 \end{aligned}$$

$$\begin{aligned}
 (36) \quad & \sup_{u \in U} \int_0^b \int_0^b \frac{K}{w} (t, b) \varrho_u (r, 4a \delta f(t) x(r)) dr dt \leq \\
 & \leq \frac{1}{N} \sup_{u \in U} \int_0^b \int_0^b \frac{K}{w} (t, b) |f(t)| \varrho_u (r, 4a \delta N x(r)) dr dt = \\
 & = \frac{1}{N} \varrho_u (4a \delta N x) \int_0^b \frac{K}{w} (t, b) |f(t)| dt \xrightarrow{w \rightarrow 0} 0
 \end{aligned}$$

for sufficiently small $a > 0$.

From (31)-(36) we obtain Theorem 4.

4. On convergence in Generalized Orlicz Sequence Spaces

We are now going to the case of the space X of all sequences $x = (x_j)$ and to a modular ϱ of the form

$$(37) \quad \varrho(x) = \sum_{i=0}^{\infty} \varphi_i(x_i),$$

where $\varphi = (\varphi_i)$ is a sequence of φ -functions, i.e. $\varphi : N \times \mathbb{R} \rightarrow \mathbb{R}_+$. We shall investigate a family of Hammerstein operators in the generalized Orlicz sequence space ℓ^φ . Here V will be the set N of all nonnegative integers and the filter V' will consist of all sets $V_0 \subset V$ which are complements of finite sets. The set W and the filter W' of its subsets will be as previously.

Let us introduce the family $r = (r_m)_{m \in \mathbb{N}}$ by the formula

$$(38) \quad r_m x(i) = \begin{cases} 0 & \text{for } i \leq m, \\ x(i) & \text{for } i > m. \end{cases}$$

Definition 1. We shall say that $\varphi = (\varphi_i)_{i=0}^{\infty}$ is τ -bounded, if there exist constants $k_1, k_2 \geq 1$ and a double sequence $(\eta_{n,j})$ such that

$$(39) \quad \varphi_n(u) \leq k_1 \varphi_{n+j}(k_2 u) + \eta_{n,j} \quad \text{for } u \in \mathbb{R}, \quad n > j \geq 0,$$

where $\eta_{n,j} \geq 0$, $\eta_{n,0} = 0$, $\sum_{n=0}^{\infty} \eta_{n,j} < \infty$ uniformly with respect to j . We shall say that φ is τ_+ -bounded, if there are constants $k_1, k_2 \geq 1$ and a double sequence $\varepsilon_{n,j}$ such that

$$\varphi_{n+j}(u) \leq k_1 \varphi_n(k_2 u) + \varepsilon_{n,j} \quad \text{for } u \in \mathbb{R}, \quad n, j = 0, 1, 2, \dots,$$

where $\varepsilon_{n,j} \geq 0$, $\varepsilon_{n,0} = 0$, $\varepsilon_j = \sum_{n=0}^{\infty} \varepsilon_{n,j} \rightarrow 0$ as $j \rightarrow \infty$,
 $s = \sup_{j \in \mathbb{N}} \varepsilon_j < \infty$.

Let us write $e_t = (\delta_{i,t})_{i=0}^{\infty}$, where $\delta_{i,t}$ is the Kronecker symbol.

It is easy to prove that

Proposition 3.

(a) The family $r = (r_m)_{m=0}^{\infty}$ is \mathcal{V} -bounded.

(b) The set of linear combinations of sequences e_0, e_1, e_2, \dots is ϱ -dense in ℓ^{φ} .

(c) $\varrho(\text{ar}_m e_t) \rightarrow 0$ as $m \rightarrow \infty$ for every t and every $a > 0$.

From Theorem 1 of [1] and from Proposition 3 we obtain

Theorem '1'. For every $x \in \ell^{\varphi}$ there is an $a > 0$ for which $\varrho(\text{ar}_m x) \rightarrow 0$ as $m \rightarrow \infty$.

Let \mathcal{W} be a filter of subsets of a set W and let $K_{\mathcal{W}}: \mathbb{N} \rightarrow \mathbb{R}_+$ be such that

$$(40) \quad \delta(w) = \sum_{j=0}^{\infty} K_{w,j} \leq \delta < \infty, \quad K_{w,0} \xrightarrow{w} 1, \quad \frac{K_{w,j}}{\delta(w)} \xrightarrow{w} 0$$

for $j=1, 2, \dots, w \in W$.

Let $T_w x = ((T_w x)_i)_{i=0}^{\infty}$, where $(T_w x)_i = \sum_{j=0}^{\infty} K_w(i-j)F(j, x(j))$,
 where $F: N \times R \rightarrow R$, $x(j) = x_j$.

Proposition 4. Let $\varphi = (\varphi_i)_{i=0}^{\infty}$ be τ_+ -bounded and let φ_i be convex for $i = 0, 1, 2, \dots$. Let the assumptions (40) hold. If there exists $L > 0$ such that

$$|F(u, v) - F(u, r)| \leq L|v-r| \quad \text{for } u \in N, v, r \in R$$

and $F(n, 0) = 0$ for $n \in N$, then $T_w: \ell^{\varphi} \rightarrow \ell^{\varphi}$ for every $w \in W$ and $T = (T_w)_{w \in W}$ is W -bounded.

Proof. It is enough to show that T is W -bounded. We have for every $a > 0$ and all $x, y \in \ell^{\varphi}$, $w \in W$

$$\begin{aligned} \varphi(a(T_w x - T_w y)) &= \\ &= \sum_{i=0}^{\infty} \varphi_i \left(a \sum_{j=0}^i K_w(j)(F(i-j, x(i-j)) - F(i-j, y(i-j))) \right) \leq \\ &\leq \frac{1}{\delta(w)} \sum_{j=0}^{\infty} K_w(j) \sum_{i=j}^{\infty} \varphi_i (a K_w(i) L(x(i-j) - y(i-j))) \leq \\ &\leq k_1 \varphi(a K_2 \delta L(x-y)) + c(w), \end{aligned}$$

where $c(w) = \frac{1}{\delta(w)} \sum_{j=1}^{\infty} K_w(j) \varepsilon_j \xrightarrow{w} 0$ (see [1]).

Theorem 5. Let the assumptions of Proposition 4 hold. If there exists $a > 0$ such that $\sum_{i=1}^{\infty} \varphi_i (a K_w(i)) \xrightarrow{w} 0$,

then for every $x \in \ell^q$, there exists $a > 0$ such that
 $\varrho(a(T_w x - Fx)) \xrightarrow{W} 0$ where F is given by the formula

$$Fx(i) = F(i, x(i)) \text{ for all } x \in \ell^q, i \in \mathbb{N}.$$

P r o o f . Let $x \in \ell^q$, $a > 0$. From the assumptions we obtain

$$\begin{aligned}
 (41) \quad \varrho(a(T_w x - Fx)) &= \sum_{i=0}^{\infty} \varphi_i \left(a \left(\sum_{j=1}^i K_w(j) F(i-j, x(i-j)) - F(i, x(i)) \right) \right) = \\
 &= \varphi_0 \left(a \left(K_w(0) F(0, x(0)) - F(0, x(0)) \right) \right) + \\
 &+ \sum_{i=1}^{\infty} \varphi_i \left(a \left(K_w(0) F(i, x(i)) - F(i, x(i)) \right) \right) + \\
 &+ \sum_{j=1}^i K_w(j) F(i-j, x(i-j)) \leq \\
 &\leq \varphi_0 \left(a \left(K_w(0) F(0, x(0)) - F(0, x(0)) \right) \right) + \\
 &+ \frac{1}{2} \varphi_1 \left(2a \left(K_w(0) F(1, x(1)) \right) - F(1, x(1)) \right) + \\
 &+ \frac{1}{2} \varphi_1 \left(2a \left(K_w(1) F(0, x(0)) \right) \right) + \dots + \\
 &+ \frac{1}{2(m-1)} \varphi_{m-1} \left(2(m-1)a \left(K_w(0) F(m-1, x(m-1)) - F(m-1, x(m-1)) \right) \right) + \\
 &+ \frac{1}{2(m-1)} \varphi_{m-1} \left(2(m-1)a \left(K_w(m-1) F(0, x(0)) \right) \right) + \dots + \\
 &+ \frac{1}{2(m-1)} \varphi_{m-1} \left(2(m-1)a \left(K_2(2) F(m-2, x(m-3)) \right) \right) +
 \end{aligned}$$

$$\begin{aligned}
& + \frac{1}{2} \varphi_{m-1} \left(2a K_w(1) F(m-2, x(m-2)) \right) + \\
& + \frac{1}{2} \sum_{i=m}^{\infty} \varphi_i \left(2a \sum_{j=1}^{i-m+2} \left(K_w(j) F(i-j, x(i-j)) \right) \right) + \\
& + \frac{1}{2(m-1)} \sum_{i=m}^{\infty} \varphi_i \left(2(m-1)a \left(K_w(0) F(i, x(i)) - F(i, x(i)) \right) \right) + \\
& + \frac{1}{2(m-1)} \sum_{i=m}^{\infty} \varphi_i \left(2(m-1)a K_w(i) F(0, x(0)) \right) + \dots + \\
& + \frac{1}{2(m-1)} \sum_{i=m}^{\infty} \varphi_i \left(2(m-1)a K_w(i-m+2) F(m-2, x(m-2)) \right) \leq \\
& \leq \sum_{i=0}^{\infty} \varphi_i \left(2am \left(K_w(0) F(i, x(i)) - F(i, x(i)) \right) \right) + \\
& + \sum_{i=1}^{\infty} \varphi_i (2amLx(0) K_w(i)) + \dots + \sum_{i=m-1}^{\infty} \varphi_i (2amLx(m-2) K_w(i)) + \\
& + \sum_{i=m-1}^{\infty} \varphi_i \left(2a \sum_{j=1}^{i-m+2} K_w(j) F(i-j, x(i-j)) \right).
\end{aligned}$$

It is easy to see that for sufficiently small $a > 0$:

$$(42) \quad \sum_{i=1}^{\infty} \varphi_i (2amLx(0) K_w(i)) \xrightarrow{W} 0$$

$$(43) \quad \sum_{i=m-1}^{\infty} \varphi_i (2amLx(m-l-1) K_w(i)) \xrightarrow{W} 0 \quad \text{for } l=1, 2, \dots, m-2,$$

$$(44) \sum_{i=0}^{\infty} \varphi_1 \left(2am(K_w(0)-1)F(i, x(i)) \right) \leq \varrho (2amLx(K_w(0)-1)) \xrightarrow{w} 0.$$

On the other hand, from the assumptions and from Proposition 3 we obtain

$$(45) \quad \sum_{i=m-1}^{\infty} \varphi_1 \left(2a \sum_{j=1}^{i-m+2} K_w(j)F(i-j, x(i-j)) \right) \leq \\ \leq \sum_{j=1}^{\infty} K_w(j) \sum_{i=j+m-2}^{\infty} \varphi_1 (2a\delta Lx(i-j)) \xrightarrow{w} 0$$

as $m \rightarrow \infty$ for sufficiently small $a > 0$.

From (41)-(45) we have:

for every $x \in \ell^{\varphi}$ there exists $a > 0$ such that $\varrho(a(T_w x - Fx)) \xrightarrow{w} 0$.

Let $K_w: N \times N \rightarrow R_+$ for $w \in W$ be such that

$$(46) \quad \text{there exists } M \in N \text{ such that } K_w(j, 1) \leq K_w(j, M)$$

for all $j, 1 \in N$ and $0 < \bar{\delta}(w) = \sum_{j=0}^{\infty} K_w(j, M) \leq \delta < \infty$.

$$(47) \quad \delta(w) = \sup_{i \in N} |K_w(0, i) - 1| \xrightarrow{w} 0.$$

Let $\underline{T}_w x = ((\underline{T}_w x)_i)_{i=0}^{\infty}$, where $(\underline{T}_w x)_i = \sum_{j=0}^1 K_w(i-j, i)F(j, x(j))$,
where $F: N \times R \rightarrow R$.

Proposition 5. Let $\varphi = (\varphi_i)_{i=0}^{\infty}$ be τ_+ -bounded and let φ_i be convex for $i=0, 1, 2, \dots$. Let the assumption (46) hold and $\frac{K_w(j, M)}{\bar{\delta}(w)} \xrightarrow{w} 0$ for $j=1, 2, \dots$.

If there exists $L > 0$ such that

$$|F(n, u) - F(n, v)| \leq L|u-v| \quad \text{for } n \in N, \quad u, v \in R$$

and $F(n,0) = 0$ for every $n \in \mathbb{N}$, then $\underline{T}_W: \ell^q \rightarrow \ell^q$ for every $w \in W$ and $\underline{T} = (\underline{T}_w)_{w \in W}$ is W -bounded.

The proof is analogous to that of Proposition 2 and Proposition 4 and we omit it.

Theorem 6. Let the assumptions of Proposition 5 hold. If the assumption (47) holds and there exists $a > 0$ such that $\sum_{i=0}^{\infty} \varphi_i(a K_w(i, M)) \xrightarrow{W} 0$, then for every $x \in \ell^q$ there is $a > 0$ for which $\varphi(a(\underline{T}_W x - Fx)) \rightarrow 0$, where F is given by formula

$$Fx(i) = F(i, x(i)) \quad \text{for all } x \in \ell^q, i \in \mathbb{N}.$$

The proof is analogous to that of Theorem 4 and Theorem 5 and we omit it.

We give some final remarks:

1. If we take $F(t, x(t)) = x(t)$ in Theorem 2, we obtain Theorem 4 of [1].

2. If we take $F(t, x(t)) = x(t)$ in Theorem 5 we obtain Theorem 5 of [1].

3. If in Chapter 3 we restrict X to the set of all essentially-bounded functions, then in Theorems 2, 3, 4 φ -convergence can be replaced by norm convergence in X_{φ_s} .

BIBLIOGRAPHY

[1] J. Musielak: Modular approximation by a filtered family of linear operators, ISNM 60 Functional Analysis and Approximation (1981) Birkhäuser Verlag Basel 99-110.

INSTITUTE OF MATHEMATICS, SILESIAN TECHNICAL UNIVERSITY,
44-100 GLIWICE

Received November 29, 1982.

