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1. Introduction

In this paper we introduce the notion of boundedness of
a filtered family (Tv) of Hammerstein operators in a modular
space., This notion is used to get a theorem on modular conver-
gence of Tvx.

Let X be a real vector space. A function ¢i1X—=[0,00]
is called a modular on X, if ¢(x) = O 1ff x = 0, ¢(~x) = g(x)
and glax+by) < ¢(x) + g(y) for a,b>0, a+b = 1, x,y ¢X, If
olax+by) < ag(x) + bg(y) for a,b>0, a+b = 1, then ¢ is
called convex modular on X, The modular space Xg generated by
e is defined as

Xq={xex : glax) —0 as a—-O}.

We define in X a modular convergence (Q-convergence) xn—g>0
by the condition: there exists an a>0 such that g(axn) —=0
as n—» oo, The g-~closure of a gset ScX_ 1is defined as the

4
set of all elements x ¢ X, such that X, -x —Q>0 for a sequenaqge

of x €S, In the case of convex g, ||x||e= inf{u>0 :q(—ﬁ-)<1}

defines a norm in X . Convergence xn———o in-norm in xe is
equivalent to the oondition g(ax,) —=0 as n —=oo for every
a> 0., Obviously, norm convergence implies g=-oconvergence but

not conversely.
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Let (2, £ ,p) be a measure space, such that @ = [0,b),
0<b<oo, u = Lebesgue measure in the G-algebra I of all
Lebesgue measurable subsets of [U,0). Let X be the space of
all extended real-valued, X -m<asurable functions x = x{+)
over [0,b), finite y-almost everywhere, two functions equal
p - a.e. will be treated as the same element of X.
Let U be a8 nonempty set. ,
Let ¢,:[0,b) xR —[0,0°], ueU, be a family of furctions
such that for every ueUs
(1) Qu(t,r) is a continuous function of », equal to zero
itf r = 0, Q,(t,~r) = Qn(t,r) for every r <R, and non=
decreasing for r >0, for every t¢[0,b),

(2) Qn(t,r) is a measurable function of t ¢[0,b) for every
reR,

Now, taking b

(3) gg(x) = itexg { eult.x(t))at,

we see that ¢, is & modular on X, Let xe be the respective
8

modular space. Throughout this paper we assume (1)-(3).
The results of this paper extends the results of [1] from
linear operators to the Hammerstein operators,

2, A General Theorsm

Let V be a nonempty set and let V be a filter of subsets
of V. <
Definition 1 A function g:V —R tends to
zero with respect to V', g(v) l"0, if for every & > O there
is a set V € V such that [g(v)| < & for all veV_

Definition 2, A family T = (Tv)vev of opera-

tors Tv:xe ——xe will be called V-bounded if there exists
8 8

positive numbers k1, k2 and a functicn g:V—>R+ such that

glv) ¥, 0 and for all x,yeX
which

y

there is a set V. _e¢ V for
€g Xy
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Modular approximation 3

(4) eglalTyx = T.3))< kygglaky(x-y}) + g(v)

for every vevx’ end every a > 0.

Let us remark that if g is convex, then the constant k1
may be always taken equal 1,

Definition 3, An operator ©,tX — X such that
't’.vx(t) = x(t+v), where x 45 extended to the whole R b=-perio-
diocally will be called the translation operator.

Let us extend the functions eu(t,r) b-periodically with
respect to the variable ¢t ¢[0,b) to the whole R, i.e.,
eu(t,r) = qu(t+b,r) for t,r¢R, uecl,

Definition 4. We shall say that the family
of functions (Qu)ueU is T-bounded, if there exist positive
constants n,, n, such that

(5) gylt-v,r) < nyo (t,0,0) + £ (t,v) for r,t,veR, uel,

where the functions fu:R xR—*R.’_ are measurable and b=perio-
dic with respect to the first variable and such that if

b
h(v) = supffu(t,v)dt for every veR,
uel 0

then

H = sup h(v) < oo and h(v)—0asv-—=0 or v— b,
veR

Let us remark that if Qu(t,r) are convex as functions of
r for every uelU, then we may take in the above definition
n, = 1.

Now let V = R and let W be the filter of all neighbourhoods
of zero in R, \

Theorem 1. If the family (g,) ey 18 ¥ ~bounded
and if for every 0>0 ceX and

€s
b
(6) t <
] g v
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then the family v of translation operators is V-bounded and
for every xexe there is o0 >0 such that
8

Wy (cx,6) =

b

a sup supf qu(t.c(x(tw) - x(t)))dt —0 as §—o0%,
jvl€é uel 0

Theorem 1 is a slight modification of Theorem 3 from [1], so

the proof of that theorem will be omited.

3. On convergence of the integral Hammersteln operators

Let W be a nonempty set and let W be a filter in W,

Let K,:[0,b) —=R_ for weW be integrable in [O,b) and
let

b b
(1) 6(w) = f K (t)at Xer, 6= supIKw(t)dt<oo,
° weW 0

b~§ "

65 (w) = f K,(t) dt —=0 for every 0<0d<2,

d

Let us extend Ky b=periodically to the whole R,
Let F:[0,b) x R —=R be measurable and let us exterd F b-pe~-

riodically to the whole R. Let

b
{8) T, x(s) = I Kw(t-s)F(t,x(t))dt for every wewW,

We prove first

Proposition 1. Let the family (¢,), .y be
Y=-bounded and for every t € [0,b]) let Qu(t,r) be a convex
function of r for every ue U, Lot the assumptions (7) hold
and let F(t,0) = O for every t ¢[0,b), If there exists L>0
such that | P(t,r) = P(t,v]] < L|r=-v| for every te[0,b) and

r,v €R, then TW:XQB—- xes for bvery weW and T = (Tw)wew

is W-bounded, where T  are given by (8.
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Proof. It is sufficient to prove that T is W-bound-

ed and W, o = W for all x,y€X, « In fact, if T is W-bounded
’ . 8
y = W for all x,yexe , then (see (4)) there exist po=-
sitive numbere k,,k, and a function g: W —=R + g(w) — W, 0,
such that for all x,ye€ Xe and every a>0
8

and W
’

oglalTyx = T.y))<kyg laky(x-y)) + glw)

for every we W, In particular, if y = O we have

QglaTyX) <k Q. lak,x) + g(w).

From this we obtain that T By the b-periodicity
W es Qa

of ¢,(*,T), x(*), P(e,r), Jensen’s inequality and tT-bounded-
ness of (Qu uey With oy = 1, n; = n>1 we obtain for X,J € xq
a>0, weW: 8

b b
oglal(Ty x=T.3)) = ggg{ €u <S. ﬁm ,! K (t)6(w)(F(t+s,x(t+s)) -

- F{t+s,y(t+s)))dt)ds <

b b
g?}ws If Kw(t)gu<u,a6< (t+s,x(t+s})-F(t+s,y(t+s)))> dt ds=
00

ueU
b b
N 6‘1(w) oon 4 Kolt fe <P-t aG(F(r x(r))-F(r,y)r))>> dr dt <

b
<gg(naéL(x-y)} + g};yf Ky(t)h{t)dt = o (nabL(x-y)) + g(w),
0

where g(w) = 6T}w—)f K (t)h(t)dt,
0
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6 A, Kasperski

. It is easy to prove that g{(w) K»o (ses [1]). From this
we obtain that T = (Tw)wew isW=bounded,
Now, we are able to prove the following theorem,
Theorem 2., Let the assumptions of Proposition 1
and Theorem 1 hold. If there exists fe¢ X such that

(9) [£(t)| <L for every t€R,

(10) |[F{(t,r) - P(s,r)| < |f(t-s) r| for all r,t,s¢R,

b
(11) jlg,(t)lf(t)]dt l‘”—o,
0

then for every xe¢ X_ there exists a >0 such that

s

0g(a(Tyx ~Fx)) LA 0,

where F 1is given by the formula

(12) Fx(s) = PF(s,x(8)) for xeX, and s €[0,b),
B

Proof. By Proposition 1, we have T x €X, . From Theo-

Sg
rem 1 we infer that co,r(cx,(S) —0 as §—~0% for sufficiently

small ¢ > 0, For J:r:lte and a >0, we have
8

(13) eglall,x - Fx)) =

b b
sup! € (a, E%W,!; Kw(t)aG(w)F(s+t,x(s+t))dt-aF(s,x(s)))dss

uecl
b b
s;— ilélgf qu<s, §%§7 J. Kw(t)zaﬁ’(w) (P(s+t,x(s+t))-
0 0
b
1
- P(s, dt d = y2a{6(w)=1)F(s,x(8)))ds <
(s x(s)))) 8+ 3 z:g'g qu(s a( (w) (s,x(8s ) 8

- 414 -



Modular approximation 7

b b
< '_(_”61w 325‘([ K (t) { Qu(236’(F(s+t,x(a+t))-F(s,x(g)))) ds dt +

b
+ %— 328’! eu(s.ZaL(G'(w)-ﬂx(a))ds.

From (10) and (13) we have

(14) 0gla(Tex -~ Fx))<

b b
< 6'1(11’ ggg{&,(ﬂ ‘([ g (8,4a62(t)x(s+t))ds at +

b b
+ 46’1(w) sup .f Kg(t) IQn‘s-43L6(x(3+t)-x(B)))de at +

uel
+ sup‘!: gu(s 2aL(6(w)=1)x(8))de.

Now, we 8plit the seoond integral on the right~hand side of
this inequality into three :lntegrals over intervals [0,8),
£d,b-6), [b=5,b), where 0<6<-— is arbitrary. The first inte-
gral 1s estimated as follows

§ b
1 t ,4aL6 t)- ds dt<
(15) sup !; K, (t) ‘gqu(s (x(s+t) x(a))) 8

< { K, (t) o (4aL6(v x~x) )dt<6(w)w,c(4a1.6'x, 8)

and the third one, by substitution t = b-u,

b b
16) su (t 4aL6 t) - ds dt <
(6] aup b[d ) ’!q“(s' eL§(x(a+t) - x(s)))ds

< 6(-)0,,(43146:.6).
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8 As Kaspesrski

Finally, for the second integral (see [1]) we have

b=8 b
(1) aup 3[ K, (t) { eu(ssdal Ix(s+t) = x(s)))ds dt<
b=6
< J2‘ f K (t){cg(SanLéx) + h(t) + ¢ (Banlbx))dt<
)
b= &
< (gg(8anL6x) 4-%}1) f K (t)at.
)

The first integral on the right~hand side of the ineqnelity
(14) is estimated as follows

b b
18 t 4a6f(t) t))ds dt<
(18} 3:5{ K, ( ),!:‘?u(s' a x(s+t))ds

b b
S%‘slup '£ K, (t)] (%) Jou 6y (Bs4aL0x(8+t) )ds dt<

b
<1 (g (4anL6x) + H) { K (¢)]£(¢)] ata

From (7), (14), (15), (16), (17}, (18) for sufficiently small
a >0 we obtain that

esle(,x - Ex)) Xeo,

Now let g, and F1 be such that: 31:[0,b)—>R,
F.‘:L'O,b)xR—-R are measurabls, and thers is L >0 for which

(19) | 84(t)| <L for te[O,b),
there is ¢, € (0,b) such that

' for te[O,e_ T [b=g ,b
(20) Pi(t,r) = (0484 Ju[=¢4sD)
gz(t.r) for ¢ e(eo,b-eo)
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tor r ¢eR, and there is L2>O such that
(21) '82“‘91')‘82(1,‘-“” SLzlr-u] for te[O,b), T,ucR,

(22) F1(t,0) =0 for every te[0,b).

Let us extend g, and F, b-periodically to the whole R,
Let

b
(23) I, x(s) = f Kw(t-s)(51(t)x(t)+F1(t-s,x(t))> at, weW,
0
Theorem 3. Let the assumptions of Theorem 1
hold, Let the family (Qu)ueU be v~bounded and for every
te[o,b) let eu(t,r) be a convex function with respect to r,
for every u¢U, If the assumptions (7), (19)=(22) hold and
there is 6°>0 such that for every xexe there is ¢>0
for which 8

8,

0
aupj K (¢) f oulsscle (t+8) - g,(8))x(s))ds 4t LA
uetl o 0

b b
W
1312[‘1) b[é Kw(t) { Qn(e,o(g1(t+s) - gﬂs))x(s))ds dt—0,
o .

then for every xer there exists a> 0 such that
s

GalelZyx - 0x)) Yoo,

where I is given by (23) and G-is given by formula

Gx(t) = 51(t)x(t) for xe€X tel0,b),

ox’
Proof. It is easy to see that the assumptions of

Proposition 1 hold, Hence T xc¢X_ for xeX and T = (T.)
. wr s (3 = ‘—w

- 417 -
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10 A, Kasperski

is W-bounded. The rest of the proof is analogous to that of
Theorem 2 and we omit it,

Let L(':[O,b) *x [0,b) — R, for weW be integrable in
[0,b) x (0,b) and

(24) 1if 84<8,, then gw(t,a.l)glg'(t,sa) for te[0,b).

We let _Kw(t,b) = 1lim Kw(t,e).
s-h"~

b
25 8(w) = l t,8)at - 1 Yoo
(25) (w 2P o) {l‘w( ) '
b
(26) 6(w) =I K _(t,bldt, 0<6(w)<oo, 6= sup 6(w) <oco,
) 0 w weW

b~§ .

(27) 65(w) =3f K _(4,8)at—=0 for 0<6<.

Now we extend _I_(w(t,r) periodically with respect to the varia-~
bles t,r €[0,b) to the whole RxR i,e. K (t+b,r) = K (¢,r),
K, (t,r+b) = _lgv(t,r) for t,r<R, Lot

b
(28) z,x(8) = [ K (t-5,5)F(t,x(t))at,
0

Proposition 2. Let the family (Qu)uwbe
v~bounded and let for every % e [0,b), g, (t,r) be convex as
a function of r for every u<U., Let the assumptions (24)-(27)
hold. Let F(t,0) = O for t e[0,b). If there exists L >0 such
that |P(t,r) - P{t,v)| < L|r-v| for every te[0,b) and all

r,veR, then T :X —= X for eve weWand T = (T
e ’ —w g ¢s Ty = (-W)

is W-bounded, where T are given by (28],
Proof. It suffices to prove that T is W-bounded.

Let x,y € Xe and a> 0, From the assumpti;ns' we have
: 8

weW

- 418 -



Modular approximation 19

(29) gglallyx - I.y)) =

Qu(s,a Kw(t,s)(P(t+s,x(t+s)-F(t+e,y(t+s))) dt)des

_(t,b)L(x(t+e)-y(t+s))dt)ds <

ﬂIN

O% e OS,T

K _(t,b)Qu(s,aGL(x(Hs)-y(tw))) ds dt =
w

< = sup
6(w) uel

=

up

el seU _(t,b)Qu(r,t,a(v’L(x(r)-y(r))) dr at <

|
” [

1

O%ay, T O%y T O%my ¥ Oy
O%y 0 O% T OO O

<=y o Kw_(t.b)9u<r,ansux(r;.,(r,,) dt ar +
1 .
+ 5(w) 3:3 _Kw_(tpb)fu(r,t)dr dt = 93(355L(X-:7))+g(w),
where
b
(30) gtw) = —1— [ K _(¢,5)n(t)at.
6(w) ¢ w

It is emsy to prove that g(w) JﬁLO (see [1])e Prom this and
(29), (30) we obtain the W-boundedness of I.
 Theorem 4, Let the assumptions of Proposition 2
and Theorem 1 hold. If there exist N>0 and f ¢ X such that

| F(t,r)~F(s,r)| < | £(t-8) ©|< N|r| for reR, t,s ¢[0,b) and

b
é K _(t,b)lf(t)[dt l"')—-0, then for every :nsxe there exists a>0
w 5
such that g (a(l x —rx))—“—f»O, where I are given by (28)
and F is given by formula Fx(s) = F(s,x(s)) for xeXe .
8

B8 € [O.b)c
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12 A. Kasperski

Proof. Since the proof is analogous tc that of

Theorem 2 we give only its outline. ILet xe)(e s 820,
8
We have from the assumptions
(31) eglall x - Fx))g
b b
<3 2 t,8) (P(t+8,x{t+8)-F dt)d
5 izzg g gu(s, a’(/;gw( v8)(F(t+8,x(t+s (s,x(s))) s +
b b
1 -
t3 gz:g {Qu<s,2a<'£§'(t,a)dt 1> F(s,x(s))dt) ds <
] b b
<5 4 K (t b)f(t)x(e+t)dt> ds +
boop [ euforta [ 00
b b
+ % 328 !que,lm {I_(w_(t,b)L(x(tw)-x(e))dt)de +

+ %es(ZaLS'(w)x).
It is easy to see that

(32) J o (2aL6(w)x) Mo 0 for sufficiently small a >0,

b b
(33) sup f 9u<s,4-a fg _(t,b)L(;(t+s)-x(s))dt>ds lV:O
ueU 5 o v

for sufficiently small a >0 (ses the proof of Theorem 2),
To end the proof we must show that

b b
(34) sup f 9u<s,4a fg _(t,b)f(t)x(s+t)dt>ds E—o
uel 0 o ¥

for sufficiently small a >0,
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From the assumptions ‘we obtain

b b
(35) sup f eu<8.4af§ _(t.b)f(t)x(s+t)dt>ds <
ueU ) o ¥

bb
1
< = su K (t,b)e (8,4a6f(t)x(s+t))dt ds ¢
S &{w) ueg'(/;‘(( W Su's
b b
< L sup f/l_{ _(t,b)gu(r,d,ansf(t)x(r))dr at + g(w),
~ 6(w) uel bo ¥

b b
up ff X _(t,b)gu(r.4an6f(t)x(r))dr dt <
00

bb
< —%— sup ff K _(t,b)lf(t)|qu(r,4an6Nx(r))dr dt =
uel § ¢ W

b
= ogl4anix) [k _(s,b)pr(u)at Moo
0 w

for sufficiently small a> 0.
From (31)~(36) we obtain Theorem 4.

4, On aconvergence in Generallzed Orlioz Sequence Spaces
We are now golng to the case of the space X of all sequen-
ces x = (xj,) and to a modular g of the form

(37) elx) = > ¢;(x4),
i=0

where ¢y = ((,oi) is a sequence of ¢-functions, i.e, tp:NxR——>R+.
We shall investigate a family of Hammerstein operators in the
genreralized Orlicz sequence space ‘K‘P. Here V will be the set
N of all nonnegative integers and the filter V' will consists
of all sets Voc V which are complements of finite sets, The

gset W and the filter W of its subsets will be as previously.
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14 A, Kasperski

Let us introduce the family r = (r Jpey by the formula
o] for i<m,

(38) rx(i) =
x{(i) for i>m.

Definition 1. We chall say that ¢= (@) g
is 7 -bounded, if there exist constants ky,k,>1 and a double
sequence ('7n .‘)) such that

’

(39) wn(u)Sk1¢n+3(k2u) + T, for ue€¢R, n>j>0

where Mn, 3 20, "n,0 = 0, ZO Tn,j < oo uniformly with res-~

pect to Jj. We shall say that ¢ is < -bounded, if there are
constants k1,k2 21 and a double sequence &, n, 3 such that

(pn+d(u)$k1¢n(k2u) * 3 for ueR, Nn,j=0,1,2,000,
-
where sn“.,zo, en’o = 0, £y = nzo en’J——O ag j—w= oo,

8 = sup Ej<°°

JjeN
Let us write o, = ((5i {) s Where (Si,ﬁ is the Kronecker
symbol,

It is easy to prove that

Proposition 3.

(a) The family »r = (rm)m=o is V=bounded.

(b) The sget of linear combinations of sequences o LTI PIERR
is g-dense in s

(c) glarpe,) —=0 as m —=oc for every { and every a>0.

From Theorem 1 of [1] and from Proposition 3 we obtain

Theorem '1, For every x e 1% there 18 an a>0
for which ¢(ar x) — 0 as m —=o=,

Let W be a filter of subsets of aset W and let KW:N—fR.'_

be such that
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el K
(40) 6lw) = > }(w’;j{G'(oo’ KW,0L1’ ww,;]’ LA
J=0

for J=1,25e00 WeW,

(= =)

Let ,x = ((T,x);)ic,, where (T, x), = go K (1=3)P(3,x()),
where F:NxR—=R, x(j) = X,.

Proposition 4, Let ¢= ((pi);:‘) be 7 _-bounded
and let Py be convex for i = 0,1,2,s.s » Let the assumptions
(40) hold., If there exists L >0 such that

| P(u,v) = Plu,r})| < L|v-r| for ue¥, v,reR

and F(n,0) = O for neN, then T, 1¥— 1% ror every we W and
T = (Ty )y 18 W-bounded. -

Proof. It is enough to show that T is W-bounded.
We have for every a>0 and all x,y ¢ {¥, wew

Q(a(’l‘wx - Twy)) =

i

S Ry(3)(Rlind,x(1-3) = Bla-3,3(-3)) <
§=0

io: g1 (a

i=0

5‘5‘%7)’ 32(:) K, (J) 123 (Pi(ﬁ'(w)L(x(i-j) - y(i-;j)))g

< kqq(ek,6L(x~y)) + c(w),

where c(w) = ST i K,(J)ejl”—o (see [11).
J=1

Theorem 5. Lot the assumptions of Proposition 4
O
. W
hold, If there exists a >0 such that LZ: ¢, (ak (1)) =0
=1 1 Kw ’
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16 A, Kasperskil

then for every x € ¥, there exists a>0 such that
Q(a(T'x -~Fx)) E—O where F is given by the formula

Fx(i) = F{i,x(1)) for all x e {¥, 1 eN,

Proof. Let xei", a >0, From the assumptions we
obtain

oo b X
(41) glaltgr-mx))= > oy (a( 3 Ky(31P(3=3,51-3))F(1,x(1)) -
i=0 I=1

- q,o(a(xw(o)la(o,x(o)) - F(O'*w’))) *

+ § (Pi<a<Kw(0)F(i,x(i)) - F(i.X(i))) k

i=1

i
£ S zg,(m(i-j.x(i-a))) <

J=1
< <P°<8<Kw(0)l?(0,x(0)) - F(o,:(m))) +
+ % cp1<2a(1g(o)F(1,x(1))) - F(1,x(1))> +

+—%¢1<2a(7w(1)r‘(o.x(o)))> + eee +

+ ?(E]W)' _— (2(m—-1 )a(Kw(O)F(m-1,x(m-1 )) - F(m—1 ,x(m—1)))>+

+m1_ﬂ_ Pmaq (2(m-1)a Kw(m-ﬂF(o,x(o))) + eee +

+ 7(%3)_ ‘Pm-1(2(m'”a K2(2)F(m-2,x(m-3))) +
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Modular approximation 17

+ % o (2a Kw(a)F(m-a,x(m-E))) +

oo
*Jz' > *°1<2°
i-m

i-m+2

S (Kw(:l)F(i-.i.X(i-j)))> +

3=1

+ B(EeT] § S01<2(m-1)a(Kw(0)F(i,x(i))-I“(i,x(i)))> +

i=m

+?(E:T)' > 71(2("1'1)3 Kw(i)F(O,x(O))) + oee +
iz=m

Sl S, wa(ete-tle K hemeiR(ez x(e2)) <

i=m
< i goi<2am<Kw(0)F(i,x(i))-F(i,x(i)))-) +
i=0
+ ozo: ¢y (28mLx(0)K (1)) + eoo + § ¢4 (2anlx(m=2)K, (1)) +
i=1 i=m=-1
oo l-m+2
+ z (pi(Za 2 &,(J)F(i-j,x(i—;]))).
i=m-1 =1

It is easy to see that for sufficiently small a >0

(42) > ‘Pi(ZamLx(O)Fw(i))lr’O
i=1
(43) > <pi(2am1.x(m-1-1)Kw(i))l‘p—o for 1a1,2,e00,m=2,
i=m=-1
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18 A. Kasperski

< W,
(44) > «pi(Zam(K"(O)-ﬂF(i,X(i)) < g(zamz.x(K,,(O)-ﬂ)—— 0.
i=0

On the other hand, from the assumptions and from Proposition 3
we obtain

oo 1-m+2
(45) > (p1<28 > K,(J)F(i-a.x(i-a)))<
i=m-1 3=
<3S S EA
< D K3 D> eyl2alx(i-3)) -0
J=1 1=j+m=-2

as m — ©° for sufficiently small a> O,
From (41)-(45) we have:

tor every x e {¥ there exists a>0 such that g(a(T x-¥x)) —Vf—o.
Let szN’fN ——-R+ for we W be such that

(46) there exists M€ N such that Kw(j,l)slg’(j,'m)

_ oo
for all j,l1€ N and 0<6(w) = Z K, (J,M) <6 <oo,
J=0

W
= N O'i - 1| —= 0,
(47) Stw) = sup|K(0,1) - 1|

oo i
Let wa = ((wa)i) 1=0? where (wa)i = 3§O Kw(i-j,i)F(;j,x(J)),
where F:NxR —R.,

Proposition 5. Let ¢= (q’i):o be 7 -bounded
and let ¢; be convex for i=0,1,2,... « Let the assumption (46)

(3,M)
hold am&;—’—&o £0T §=1,2,000 o

6(w)
If there exists L>0 such that

| F(n,u) - P(n,v)| < Lju-v| for neN, u,veR
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and F(n,0) = O for every necN, then T : (¥~ for every
weWwand T = (I) is W-bounded.,

The proof is analogous to that of Proposition 2 and Pro-
position 4 and we omit it,

Theorem 6, Let the assumptions of Propoaition 5
hold. If the assumption (47) holds and there exists a >0 such

that 12 cpi(a(l('(i,ld))ﬁo, then for every x ¢ {¥ there is

a>0 for which ¢(a(T x - Fx)) —0, where F is given by
formula

Fx(i) = F(1,x(1)) for all xelf, 1en,

The proof is analogous to that of Theorem 4 and Theorem 5
and we omit it,

We give some final remarkss

1. If we take F(t,x(t)) = x(t) in Theorem 2, we obtain
Theorem 4 of [1].

2. If we take F(t,x(t)) = x(t) in Theorem 5 we obtain
Theorem 5 of [1].

3. If in Chapter 3 we resirict X to the set of all essen=
tially-bounded functions, then in Theorems 2, 3, 4 Q~-conver~
gence can be replaced by norm convergence in XQB.

BIBLIOGRAPHY
[1]J. Musielaks: Modular approximation by a filter-

ed family of linear operators, ISNM 60 Functional Analysis
and Approximation (1981) Birkauser Verlag Basel 99-110,

INSTITUTE OF MATHEMATICS, SILESIAN TECHNICAL UNIVERSITY,
44-100 GLIWICE
Received November 29, 1982,

- 427 -






