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1. I n t r o d a c t i o n 
I n t h i s paper we i n t r o d u c e the n o t i o n of boundednees of 

a f i l t e r e d f ami ly (T y) of Hammerstein o p e r a t o r s i n a modular 
s p a c e . This n o t i o n i s used t o g e t a theorem on modular conve r -
gence of T y x . 

Let X be a r e a l v e c t o r s p a c e . A f u n c t i o n q iX—*• [ 0 , ooj 
i s c a l l e d a modular on X, i f q(x) * 0 i f f x = 0 , ^ ( - x ) = q[x) 
and q(ax+by) <i ^(x) + <j(y) f o r a , b > 0 , a+b « 1, x ,y e l . I f 
^(ax+by) ^ aq(x) + b^(y) f o r a , b ^ 0 , a+b = 1, t h e n i s 
c a l l e d convex modular on X. The modular space X^ genera ted by 
^ i s d e f i n e d a s 

X^ = •[ x eX : q (ax) — 0 as a —«~o}. 
o 

We d e f i n e i n X a modular convergence (^ -convergence) x n — » - 0 
by the c o n d i t i o n : t h e r e e x i s t s an a > 0 such t h a t — 
as n — » o o . The ^ - c l o s u r e of a s e t S c j i s d e f i n e d a s t h e 

Q 
s e t of a l l e l ements x e X^ such t h a t x f l - x —»0 f o r a sequence 
of * n

e S . I n the case of convex q , l l * ! ^ » i n f j u > 0 
d e f i n e s a norm i n X^. "Convergence x f l — - 0 i n norm i n X^ i s 
e q u i v a l e n t t o the c o n d i t i o n q ( a x n ) —»-0 as n - ^ o o f o r every 
a > 0 . Obvious ly , norm convergence i m p l i e s ^ -convergence but 
not c o n v e r s e l y . 
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2 A. KaBperski 

Let (£, £ ,fi) be a measure space, such that Si = CO,b), 
0<b<c>o, fx = Lebesgue measure in the C-algebra 2 of a l l 
Lebesgue measurable subsets of [0 ,o) . Let X be the space of 
a l l extended real-valued, £ -measurable functions x = x(*) 
over [0,b), f in i t e -almost everywhere, two functions equal 
p - a . e . wi l l be treated as the same element of X. 

Let U be a nonempty set . 
Let gaj[Otb) * H ~*"[Otc>oJ t ueU, be a family of functions 

such that for every ueU» 
(1) ^ u ( t , r ) i s a continuous function of r , equal to zero 

i f f r = 0, <?u(t,-r) » t , r ) for every r e R, and non-
decreasing for r>0 , for every t i [0 ,b) , 

(2) g u ( t , r ) i s a measurable function of t<=[0,b) for every 
r e R. 

Bow, taking 
b 

(3) 9fi(x) = sup f p ( t , x ( t ) )d t , 
U€U «Jj 

we see that q i s a modular on X. Let X be the respective 

modular space. Throughout this paper we assume (1)-(3) . 
The results of this paper extends the resul ts of [ l ] from 

linear operators to the Hammerstein operators. 

2. A General Theorem 
Let V be a nonempty set and let V be a f i l t e r of subsets 

of V. 
D e f i n i t i o n 1. A function gsV —*-R tends to 

zero with respect to "V°, g i v J - ^ O , i f for every t > 0 there 
i s a set VQ € V suoh that |g(v)| < £ for a l l v e VQ. 

D e f i n i t i o n 2. A family T = (Tv)veV of opera-
tors T :X —»-X wi l l be called V-bounded i f there exists 

8 "s 
positive numbers k^, kg and a function g:V—»-R+ such that 

g(v) 0 and for a l l x,y e X there i s a set V e V for 
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Modular approximation 1 

(4) e a(a(T v x - T ^ j ) ) * k1 ^8(akg(x-y) J + g(v) 

for every veV_ _ and every a>O s 

Let us remark that i f i s aonvex, then the constant k^ 
may be always taken equal 1. 

D e f i n i t i o n 3. An operator t i y i Z — X such that 
t v x ( t ) = x(t+v) , where x i s extended to the whole R b-perio-
dioally will be called the translation operator. 

Let us extend the functions § u ( t , r ) b-periodioally with 
respect to the variable t e [ 0 , b ) to the whole R, i . e . , 
<?u(t,r) = § u ( t+b,rJ for t ^ r e R , u e U. 

D e f i n i t i o n 4. We shall say that the family 
of functions (gQ)U € U i s T-bounded, i f there exist positive 
oonstants n 1 , n2 such that 

(5) ^ ( t - v . r ) ^ n 1 § u ( t , n 2 r ) + f u ( t , v ) for r , t , v e R , u e U, 

where the functions f u : R * R — a r e measurable and b-perio-
dic with respect to the f i r s t variable and such that i f 

b 
h{v) = (t ,v)dt for every v e R , 

H = sup h(v) < and h(v) —- 0 as v — 0 or v — b . 
V€R 

Let us remark that i f £ a ( t , r ) are convex as functions of 
r for every ueU, then we may take in the above definition 
n1 = 1. 

Now let V = R and let V be the f i l t e r of a l l neighbourhoods 
of zero in R. 

T h e o r e m 1. If the family (<>u)a€U i s i?-bounded 
and i f for every o > 0 c e X and 

then 

b 
(6) 

0 tt6U 
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4 A. Kasperski 

then the family t of translation operators is V -b o uncled and 
for every x e X there Is o >0 such that 

^s 

b 
» sap sup I e„ ( t ,c ( x { t+v ) - x ( t ) ) ) d t — 0 as 6 — 0 + . 

IvKÓ ueU ¿ u 

Theorem 1 Is a slight modification of Theorem 3 from [ 1 ] , so 
the proof of that theorem wi l l be omited, 

3. On convergence of the integral Hammersteln operators 
Let V be a nonempty set and let t be a f i l t e r in V. 
Let K ^ : [ 0 , b ) — f o r w e W be integrable in C0,b) and 

let 
b b 

(7) 6(w) = J K^ t jdt Cf * sap J l y t j d t <oo f 

0 w e W 0 
b-¿ 

(w) = J K ^ t J d t ^ O for every 0 < < 5 < | . 
6 

Let us extend K^ b-periodically to the whole R. 
Let F: [0,b) * R—*-R be measurable and let us extend F b-pe-

riodically to the whole R. Let 
b 

(8) Tw x (s ) = J K^ft-sjFit.xtt)Jdt for every w e W. 
0 

We prove f i r s t 
P r o p o s i t i o n 1. Let the family ($u )u 6u be 

tf-bounded and for every te [0 ,b ) let Q u ( t , r ) be a convex 
function of r for every u e U» Let the assumptions (7) hold 
and let F(t,0) =• 0 for every t € [0 , b ) . I f there exists L>0 
such that | P ( t , r ) - F(t,v)| < L|r-v| for every t €CO,b) and 
r , v e R, then TW:X — X for fevery weW and T = ( T w ) w e W 

"b ^S 
i s TV-bounded, where Tw are given by (8 ) . 
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Modular approximation 

P r o o f . It i s sufficient to prove that T i s "W-bound-
ed and 7L _ = W for a l l x,y € X„ . In fact , i f T i s "W-bounded 

i s 
and W = W for a l l e X. , then (see (4J J there exist po-

, y "W • 
s i t ive numbers k-j»^ afld a function g : W — f i ( w ) — " " 0 » 
such that for a l l x,yeX and every a>0 

?8 

<?8(a(Twx - T^y) X ^ ^ t a k g f x - y ) ) + g(w) 

for every w e W. In particular» i f y = 0 we have 

S g U ^ x X k ^ l a k g X ) + g(w). 

From this we obtain that TW:X^ — X ^ . By the b-periodicity 

of 3 u (*»r ) , x(•)» P(» , r ) , Jensen's inequality and t-bounded-
ness of (^U)U6U with n1 = 1, n2 = n>1 we obtain for x,y e X„ , 
a > 0, weWx 8 

b b 

? s l 8 ' V " V " = <?u(e» eWT S KwitJffiwJlPit+B.xit+s)} -
u e u 0 o 

- F(t+s,y(t+s) J )dt)ds s; 
b b s 

' * " / ^ . . . g _ 
4 6TwT s u p / / Kw(t)qu(s,a6(p(t+8,x(t+sj)-p(t+8,y(t+s)j)) dt d 

ueU o o 

b b / \ 
= 6^)" jup J Kw(t) J § u ( r - t , a6(p(r ,x ( r ) ) -p( r ,y}r ) ) ) j dr dt ^ 

b 
<^0(na6L(x-y)) + g^T J V t , h ( t , d t

 = ?0(naSL(x-y J) + g(w), 
0 

b 
where g(w) = ^ y J Kw(t)h(t)dt. 
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6 A, Kasperski 

I t i s easy to prove tha t g(w) — 0 (Bee [ 1 ] ) . From t h i s 
we obtain tha t T = (Tw)weW i s l^-bounded. 

Now, we are able to prove the following theorem. 
T h e o r e m 2. Let the assumptions of Propos i t ion 1 

and Theorem 1 hold . I f there e x i s t s f e X such tha t 

(9) | f ( t ) | « L for every t € R, 

(10) | F ( t , r ) - F ( s , r ) | < | f ( t - s ) r | f o r a l l r , t f s é R , 

b 
(11) J V t ) | f | t ) | d t X 0 f 

0 

then f o r every x e l there e x i s t s a >0 such tha t 

ç s (a(T w x - F x l l - ^ O , 

where F i s given by the formula 

(12) F x ( s ) = P ( s , x ( s ) ) f o r x e X and s e [ o , b ) . 
^s 

P r o o f . By Proposi t ion 1, we have T x e x . From Theo-
"s 

rem 1 we infer that «^(cx,^) — - 0 as 5—0 + for s u f f i c i e n t l y 
small c > 0 . For z e ! and a > 0 , we have 

"s 

(13) ç s (a(Twx - F x ) ) = 

b b 
= sup f ç a ( e , g f e - | K^( t )a6(w)P{s+t ,x (s+t ) )d t -aP(B,x(e) ) )ds< 

u e U 0 0 
b b 

S g / ê f c ) J V * ' 2 « ^ ( p ( B + t , x ( s + t ) ) -

P(s ,x ( s ) ) ) j dt ds + \ sup j ? u ( s ,2a ( t f (w) -1)F(s ,x (B ) ) )d8 4 
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Modular approximation 7 

b b ^ 1 
J g f c y sup J y t ) J ? u (2a6-(p(8+t ,x(B+t))-P(B,x(s))) ] da dt + 

u e U 0 0 

+ i sup I p n ( s ,2aL(6(w)-1)x(8) )ds . 
* ueU J s u 

From (10) and (13) we have 

(14) ? s { a ( V 

b b 
^ 4 8 u p / K w ( t ) / $ t t<B,4atff( t)x(B+t))d8 <3t + 

u e U 0 0 
b b 

ueU 0 

b 

+ ~iffTwT s u p / V t J / <?a(B,4aL$(x(8+t)-x(8)))dB dt + 
u e U 0 0 
b 

+ \ s a p ^ ^ a(8 , 2 aL( f f(w ) -1)x(8))dB. 

How, we s p l i t the seoond i n t e g r a l on the r igh t -hand s ide of 
t h i s i nequa l i t y in to th ree i n t e g r a l s over i n t e r v a l s [ 0 , 5 ) , 
Cfi ,b-6), Cb -S f b) t where 0 < i < ^ i s a r b i t r a r y . The f i r s t i n t e -
g r a l i s est imated as fo l lows 

S b 
(15) sup J ^ ( t ) J ? u ^8 ,4aL6(x( s+ t ) -x ( s ) ) ) ds d t $ 

6 

0 

and the t h i r d one, by s u b s t i t u t i o n t = b -u , 

(16) sup J t ) J 3 a (s ,4aLtf (x(s+t) - x ( s ) j ) ds dt 4 
b—6 0 

< 6(w)u1i,(4aL6x,6). 
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8 A. Kasperskl 

Finally, for the second integral (see [1]) we have 
b-S b 

(17) sup J Kw(-t) J <>u(s,4aJ. '.x(s+t) -x(a)))ds dt< 
i 0 
b- S 

^ 2 / Kwt̂ J i^i^anLSx) + h(t) + 98(8anL6x) )dt< 

w 
^ (<>8(8anL6x) + \ H) J Kw(t)dt. 

<f 
The first integral on the right-hand side of the inequality 
(14) is estimated as follows 

b b 
(18) sup f K (t) f p (s,4a&f(t)x(s+t))ds dt< 

ueuJ * { u 

b b 
sup f K (t)| f(t)| f ?„{s,4aL6x(s+t))ds dt< L 4 4 
(?s(4anl^x) + H) j K^t) | f(t)| dt. 

0 
Prom (7), (14), (15)» (16), (17), (18) for sufficiently small 
a > 0 we obtain that 

How let g1 and P̂  be such that: g1s[0,b)—•R, 
P-jilTOfbJxE—are measurable, and there is L>0 for which 

(19) | «-,(*)! < £ for t £ CO,b), 
there is €Q e(0,b) suoh that 

(20) P^t.r) -
0 for t t [O,e0]u[b-e0,b) 
g2(t,r) for t €( e0,b-£0) 

- 416 -



Modular approximation 9 

f o r r<=R, and there i s L g > 0 such tha t 

(21) | g 2 ( t , r ) - g 2 ( t , u ) | < L 2 | r - u | f o r t e C O . b ) , r . u t R , 

(22) P ^ t . O ) = 0 f o r every t € [ 0 , b ) . 

Let us extend g1 and P^ b -pe r iod ica l ly to the whole R. 
Let 

b 
(23) Tw x (s ) = J K w ( t - s ) ( g 1 ( t ) x ( t ) + P 1 ( t - s , x ( t ) ) ) d t , w € W, 

0 

T h e o r e m 3. Let the assumptions of Theorem 1 
hold . Let the family ( ? a ) u t U be f-bounded and f o r every 
t e [ o , b ) l e t § u ( t , r ) be a convex func t ion with respec t to r , 
f o r every u t U . I f the assumptions (7 ) , (19)—(22) hold and 
there i s ¿ o > 0 suoh tha t f o r every x e X there i s c > 0 
f o r which 8 

*o b 
sup f K ( t ) f ^ ( s . c i g ^ t + s ) - g 1 (s) )x(s) )ds d t X e 
u<=U q o 

u u 
SUP f U t ) f ? ( 8 , 0 ( 6 l ( t + 8 ) - g l l s ) ) x ( 8 ) ) d 8 d t ^ O , 
U6U btd0 0 

then f o r every x e X there e x i s t s a > 0 suoh tha t 

"s 

(feUfl^x - G x ) ) - ^ 0 , 

where Tw i s given by (23) and G i s given by formula 
Gx(t) • g 1 ( t ) z ( t ) f o r x « X ? , t € | I 0 , b ) . 

P r o o f * I t i s easy to see tha t the assumptions of 
Proposi t ion 1 hold. Henoe T„,x€2L f o r x ex and T = (T ) m * ? 8 w W6ff 
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10 A» Kasperski 

l e "W'-bounded. The rest of the proof is analogoos to that of 
Theorom 2 and ve omit i t . 

Let J^stO,^* C0,b) —^ R+ for weW be integrable in 
[0,b) x co,b) and 

(24) i f s 1 < s 2 , then K^t.s. , ) < K ^ t . s ^ for téCO.b). 

We let J^ft.b) = lim K^ít.s). 
a - b b 

- « - O . (25) 6(w) = sap f K ( t ,s )dt - 1 
S£[0,b)l JQ V 

b 
(26) Ç(w) = I K ( t ,b )dt , 0<ë (w )<oo , er = sup ë(w) <00, w~ weW 

b-6 
(27) ^ (w ) » J K j t , b ) d t — » 0 for 0 < ( 5 < | . 

6 W 

Now we extend K ^ t . r ) periodically with respect to the varia-
bles t , r e[0,b) to the whole RxR i . e . K^t+b^r) = ^ ( t . r ) , 
K^ft.r+b) » K^ft.r) for t , r e R . Let 

b 
(28) Twx(e) - J ^ ( t - B . s j P i t . x f t ) ) « . 

0 

P r o p o s i t i o n 2. Let the family (?u ) t t tu b® 
t-bounded and let for every t é [ 0 , b ) , Çu ( t ,r ) be convex as 
a function of r for every uéU. Let the assumptions (24)-(27) 
hold. Let F(t,0) = 0 for t e [0 ,b ) . I f there exists L>0 such 
that | P ( t , r ) - F(t,v)|< Ljr-v| for every teCO.b) and a l l 
r ,v eR, then — X for every w e W and ? = l?w )w t W 

"S '8 
is "W-bounded, where Tw are given by (28). 

P r o o f . I t suffices to prove that T is "W'-bounded. 
Let x,y €x and a>0. Prom the assumptions we have 
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M o d u l a r a p p r o x i m a t i o n 11 

( 2 9 ) ? 8 ( « ( V S « y i i * 

b b 
= sup J <?u(s,a J K^(t,s) (F(t+s,x(t+8)-F(t+8,y{t+s))) dt)ds< 

0 0 

b b 
* 8 U p / < ? u ( 8 » a / £ J t . t ) l ( x ( t + 8 ) - a r ( t + B ) ) d t ) d B < 

u f e U » \ tf0 w 

b b sup f f K (t,b) p fs,a6L(x(t+s)-y(t+8) A ds dt «= 
6tw) utU ̂  o w" 

b b 
zr*—sup / f K (t,b) 9 (r,t,a6L(x(r)-y(r))) dr dt ^ er(w) ueu » J w uv ' 

b b 
— sup / f K (t,b)o (rtan6L(x(r)-y(r))jdt dr + S(w) ueU 11 w \ ' 

b b 
=4— sup / f K (t,b)f (r,t)dr dt = oian6L(x-y) )+g(w), 6(w) ueU I £ w u 

0 0 

where 
b (30) g(w) f K (t,b)h(t)dt. 

6{w) ^ w" 

" W 
It is easy to prove that g(w) — 0 (see [1]). Prom this and 
(29), (30) we obtain the "W-boundedness of T. T h e o r e m 4* Let the assumptions of Proposition 2 and Theorem 1 hold. I f there exist N>0 and f €X such that | P(t,r)-P(str)| < | f(t-s) r| s$ N|r| f or r e R, t,se[0,b) and b _ / K _(t,b)|f(t)|dt - ^ 0 , then for every x e X there exists a>0 0 w "s 

W such that ^ (a l j ^ -FxJJ -^O, where |w are given by (28) 
and F is given by formula Fx(s) « F(stx(s)) for xeX , 
seHO.b). - 419 -



12 A. Kaaperski 

P r o o f . Since the proof i s analogous to that of 
Theorem 2 we give only i t s outline. Let x e X , a > 0 

°a 
We have from the assumptions 

(31) <?3(a<Sw* " 
b b 

^ J sup J ? u ( s , 2 a j K ^ i t . s J t P i t + s . x t t + s J - P i s . x i s ) ) ) dtjds + 
u t U 0 0 

+ J sup J ? u ( s , 2 a Q j ^ ( t , s ) d t - l ) F ( s , x ( s ) )dtj ds < 

b b 

< | sup J ? u ( s , 4 a J K J t , b ) f ( t ) x ( s + t ) d t J ds + 

b b 
+ 4- sup f <?„ (s,4a [ K ( t , b ) L ( x ( t + s ) - x ( s ) ) d t ) ds + 

4 U€U 1 i w" / 
O v O 

+ J ? 8 (2aL6(w)x) . 

I t is easy to see that 

(32) I ? e ( 2 a L 6 T ( w ) x ) ^ 0 for sufficiently small a > 0 , 

(33) s u p J ? u ( s , 4 a / K _ ( t , b ) L ( x ( t + 8 ) - x ( s ) )dtj ds ^ 0 
6 0 0 

for sufficiently small a > 0 (see the proof of Theorem 2 ) . 
To end the proof we must show that 

b 
(34) sup f o (s ,4a f K ( t , b ) f ( t ) x ( s + t ) d t ] d s 

ueU £ I - » - / 

for sufficiently small a > 0 . 
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Mod alar approximation 13 

From the assumptions we obtain 
b b . 

(35) sup [ o f s , 4 a f K ( t ,b ) f ( t )x (s+t )dt )ds ^ 
ueU £ J w" ) 

b b 
< sup f f K ( t ,b )o ( s ,4a6 f ( t )x ( s+t ) )d t ds ^ 

S(w) utU 4 o w" 

<C - J — s u p f I K (t ,b)o ( r ,4an6f( t )x ( r ) )dr dt + g(w), 
" 5(w) ucU ^ o w 

b b 
(36) sup f / K (t,b)D (r ,4an6f(t )x{r))dr dt $ 

ueU {, % w 

b b 
•J- sup / / K _(t,b)|f(t)|?u(rf4an6Nx(r))dr dt 

U€ü g «0 W 

D 

= i 9s(4an6Wx) J K J t ,b)|f (t )|dt ̂  0 
0 w 

for suff ic ient ly small a>0. 
From (31)-(36) we obtain Theorem 4. 

4. On convergence In Generalized Orlioz Sequence Spaoes 
We are now going to the case of the space X of a l l sequen-

ces x = (Xj) and to a modular ^ of the form 

(37) $(*} = § 
i=0 

where 4)= i s a soquenoe of </>-functions, i . e . (p :N*R— 
We shal l investigate a family of Hammerstein operators in the 

. to 

generalized Orlicz sequence space i . Here V w i l l be the set 
W of a l l nonnegative integers and the f i l t e r Y w i l l consists 
of a l l sets Vqc v which aro complements of f i n i t e se ts . The 
set W and the f i l t e r W of i t s subsets w i l l be as previously. 
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14 A, Kasperski 

Let us introduce the family r = (^mJmeN ^ t b e f ' o r m u l a 

0 f o r i m, 

x ( i ) f o r i > m . 
(38) r n x ( i ) 

oo 
D e f i n i t i o n 1 . We sha l l say tha t y = ( ^ ) i = o 

i s t -bounded, i f there ex i s t constants k ^ t k 2 > 1 and a double 
sequence (y .,) such tha t n, j 

(39) V a K k l V j ( k 2 u l + ^ n . j f o r U € R ' n > 3 > 0 » 

r e s -where ^ > 0 , i?n Q » 0, 2 i7n j < 0 0 uniformly with 

pect to j . We s h a l l say tha t cp i s ^ -bounded, i f there are 
constants k ^ k g ^ l and a double sequence £n ^ suoh tha t 

" ^ n + j ^ ^ + e n , j f o r U € R » 
CO 

where £ n f J > 0 , e n > 0 - 0, E j - ^ £ n — 0 a s j - - , 

s = sup < c > 0 . 
jeH 
Let us wri te e^ = C <5̂  ^ ) i _ o , where ^ i s the Kronecker 

symbol* 
I t i s easy to prove tha t 
P r o p o s i t i o n 3. 
(a) The family r = ( r m ) ^ 0 i s V-bounded. 
(b) The se t of l i n e a r combinations of sequences e n , e 1 ( e 9 f . 

if O e. 

i s ^ -dense in <• . 
(c) ^(arme^) —"-0 as m - • o o f o r every i and every a > 0 . 
Prom Theorem 1 of [ i j and from Proposi t ion 3 we obtain .<p 

t h e o r e m 11' • For every x e I there i s an a > 0 
f o r which g(armx) — 0 as m — 

Let W be a f i l t e r of subsets of a set W and l e t I^sN — R+ 

be such tha t 
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Modular approximation 15 

(40) crew) = § V o 1 - 1 » ^ 0 

J-0 
for j = 1 , 2 , . . . wilt , 

OO 

Let Twx = ( ( V ' i ^ l T o » W h 0 r e ( TwX , i = 2 V i - J i F t J . x t d ) ) , 
where FsNxR—- R, x ( j ) = * . 

P r o p o s i t i o n 4. Let (p = be t+-bounded 
and let ^ he convex for i = 0 , 1 , 2 , . . » . Let the assumptions 
(40) hold. If there exists L>0 such that 

Jp(u,v) - F(a,r)| < L|v-r| for ueH, v , r € R 

and P(n,0) = 0 for n € K, then Tw: for every weW and 
T = ŵtW i s ^-bounded. 

P r o o f . I t is enough to show that T is W-bounded. 
We have for every a > 0 and al l x,y e C*, weW 

ç(a(Twx - T ^ ) ) « 

• 2 ( a 2 Kw^XPd-d.xd-d) -
i=0 V J«0 

CXD OO 

^TfrT 2 2 Vi(^(w)L{x(i-j) - y ( i - i ) j ) < 

d=0 i - J 

s£ k^iakgÔLix-y)) + c(w), 
where c(w) § V ^ j " ^ 0 ( s e e r i 3 ) * 

J-1 
T h e o r e m 5. Let the assumptions of Proposition 4 

OO -UP 

hold. I f there exista a > 0 such that 2 (j^iaK^i) ) 0 , 
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16 A. Rasper s k i 

then f o r every x e {<ff there e x i s t s a > 0 such that 
u l 

£>(a(Twx where F i s g iven by the formula 

F x ( i ) = F ( i , x ( i ) ) f o r a l l x e i e N. 

t f 

P r o o f . Let x e t , a >0. Prom the assumptions we 
obt a i n 

- / / 1 

i=0 V > 1 

* V 0 ( a (K v ( 0 )T ? (0 t x {0 ) ) - F ( 0 t x ( 0 ) ) 

+ 2 V i ( « ( i , , ( 0 ) F ( i , x ( i ) ) - P ( i , x ( i ) j ) 

2 ^ ( j J P i i - a . ^ i - J ) ) ) ^ 

i=1 

i 
+ 

J-1 

+ 2 

V o ( a ( V 0 ) i ( 0 , « ( 0 j ) - F (0 f x(0 ) ; 

¿ ^ ^ « ( y o j p o . x d i ) ) - ? ( i , * ( u j ) + 

l p 1 ^ 2 a ( l i w ( 1 ) p ( 0 , x ( 0 ) ) ) ) + . . . + 

Vm-1 ( z f m - D a ^ t O l P ^ - l . x t m - l ) ) - p(m-l ,x(av-1))| + 

2 r ¥ l u * m - l ( 2 ( ° - 1 , a K w ( f f l - 1 l F ( ° » x ( 0 ) ) ) + — + 

2 T W ^ - l ( 2 ( , n - 1 , a K2 (2)p(m-2,x(m-3)) ) + 
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Modular approximation 17 

+ Í ¥ W i ( 2 a V 1 ) p ( m - 2 » x ( t n - 2 0 ) + 

oo , i-m+2 V 
^ z S ^ i f 2 3 2 ( V ^ F C i - j . ^ i - á ) ) ) ) + 

i=m V d=1 

+ 2 t A t 2 ^ i ( 2 ( » - 1 ) a ( ^ ( 0 ) p ( i , x ( i ) ) - p ( i , x ( i ) ) ) ) + 
i=m V 

+ 2Tn¿TT 2 yi(2("»-1)a V i ) P ( 0 t x ( 0 ) ) ) + . . . + 
isffl 

\ 
+ "2í¿TT 2 Vi(2(m-1)a ^í-m+2)v(m-2 fx(m-2)))^ 

i=m 

^ § x ( i ) ) - F ( i , x ( i ) ) } ) + 
i=0 ^ 

oo oo 
+ 2 <Pi(2amLx(0)Kw(i))+ . . . + 2 ^i(2amLx(m-2)Kw(i) ) + 

i»1 i=m-1 

oo i-m+2 . 
+ 2 ? i ( 2 a 2 ^ C i i ï f i - i . x i i - i ) ) ) . 

I t i s easy to see that for suf f i c i ent l y small a>Ot 

(42) 2 ^>i(2an»Lx(0)Kw(i)) 
i -1 

(43) 2 ^ ( í amLxím- l -DI^d) ) - ^ 0 for 1»1 ,2 , . . . ,m-2 , 
i=m-1 
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18 A, Kasperekl 

(44) 2 « P i f a a m t ^ i O j - D P d . x d ) ) < ^ (2amL*(Kw(0)-1)) ^ 0. 
i=0 

On the other hand, from the assumptions and from Proposition 3 

ve obtain 

oo / i-m+2 . 

(45) 2 Vi(2a ^ V J Wi-J.*(*-;))>)« 
i-m-1 V ' 

< 2 V ^ 2 V j U a S L a c U - j n ^ O 
j-1 i=3+m-2 

as m —<* oo for sufficiently small a > 0 . 

From (41)-(45) we have: 

for every x e there exists a > 0 suoh that g ( a ( T w x - F x ) ) — 0 . 

Let K^sN*!! — f o r w € W be suoh that 

(46) there exists M £ N such that j,l) j,M) 

oo 
for all j, 1 € N and 0 < 6(w) = ^ K^CJ.MJ 4 

(47) S(w) = supK I KL(0,i) -
ieN 1 * 1 

Let T wx = ( ( V ^ i l o * w h e r e ( 5 w
x , i = ^ V 

where P:N*R —>-R. 

P r o p o s i t i o n 5. Let cp = ) i = 0
 b e ^-bounded 

and let be convex for i=0,1,2,... . Let the assumption (46) 

hold and -=!r J5L*- 0 for j«1,2 
er(w) 

If there exists L > 0 such that 

|P(n,u) - P(n,v)| ^ L|u-v| for n e N , u.vefi 
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Modular approximation 19 

and F(n,0) = 0 f o r every n e N , then Tw: C — - t * f o r every 
wef t and T = ( ï^wew isW-bouaded» 

The proof \ s analogous to tha t of Proposi t ion 2 and Pro-
pos i t ion 4 and we omit i t * 

T h e o r e m 6. Let the assumptions of Proposi t ion 5 
hold . I f the assumption (47) holds and there e x i s t s a > 0 suoh 

a > 0 f o r which ç(a(Twx - Fx)) —»-0, where F i s given by 
formula 

The proof i s analogous to t ha t of Theorem 4 and Theorem 5 
and we omit i t . 

We give some f i n a l remarks: 
1. I f we take F ( t , x ( t ) ) = x ( t ) i n Theorem 2, we obtain 

Theorem 4 of [ l ] . 
2. I f we take F ( t , x ( t ) ) a x ( t ) i n Theorem 5 we obtain 

Theorem 5 of [ l ] . 
3. I f i n Chapter 3 we r e s t r i c t X to the se t of a l l essen-

t ia l ly-bounded f u n c t i o n s , then in Theorems 2, 3, 4 q -conver -
gence can be replaced by norm convergence in X . 
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then f o r every x e there i s 

Fx ( i ) = F ( i , x ( i ) ) f o r a l l x e i * , i e N . 
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