

Janina Ewert

ON BARELY CONTINUOUS AND CLIQUISH MAPS

1. Let Y be a uniform space with a uniformity \mathcal{U} . Simultaneously we will consider Y as a topological space with the topology induced by \mathcal{U} . For any $y \in Y$, $A \subset Y$ and $V \in \mathcal{U}$ we denote $B(y, V) = \{x \in Y : (x, y) \in V\}$ and $B(A, V) = \bigcup \{B(y, V) : y \in A\}$. Let X be a topological space. A subset A of a space X is said to be semi-open, if there exists an open set $U \subset X$ such that $U \subset A \subset \bar{U}$ (cf. [1,4]).

A map $f : X \rightarrow Y$ is called:

- quasi-continuous at a point $x_0 \in X$, if for every neighbourhood G of $f(x_0)$ there exists a semi-open set $A \subset X$ satisfying the conditions: $x_0 \in A$ and $f(A) \subset G$ (cf. [1,6,9]);
- cliquish at a point x_0 , if for every neighbourhood U of x_0 and for every $V \in \mathcal{U}$ there exists an open non-empty set $U_1 \subset U$ such that $(f(x'), f(x'')) \in V$ for any $x', x'' \in U_1$ (cf. [2]). A map f is quasi-continuous (cliquish), if it has this property at every point.

If a uniformity \mathcal{U} is given by a metric on Y , then the above definition coincides with the well-known definition of the cliquishness (cf. [6]).

Evidently every continuous map is quasi-continuous and every quasi-continuous map is cliquish but these classes of maps are different.

A map $f : X \rightarrow Y$ is barely continuous, if for every non-empty closed set $M \subset X$ the restriction $f|_M$ has at least one point of the continuity (cf. [5]).

Theorem 1.1. Any barely continuous map $f:X \rightarrow Y$ is cliquish.

Proof. Let $x_0 \in X$ and let U be a neighbourhood of x_0 . By x_1 we denote a point of the continuity of $f_{/U}$. For arbitrary $V \in \mathcal{U}$ we choose $W \in \mathcal{U}$ such that $W = W^{-1}$ and $W^2 \subset V$ (cf. [8]). Then there exists a neighbourhood U_1 of x_1 in X such that $f(x) \in B(f(x_0), W)$ for each $x \in U_1 \cap \bar{U}$. Hence $(f(x'), f(x'')) \in W^2 \subset V$ for every $x', x'' \in U_1 \cap U$ and f is cliquish at a point x_0 .

Note that the quasi-continuity and the barely continuity are independent properties; moreover the class of cliquish maps is greater than the class of barely continuous maps, as shown by the following examples.

Example 1.2. Let us consider the set $X = [0, \infty)$ with the topology $T = \{\emptyset, X\} \cup \{(r, \infty) : r > 0\}$ and let R be the space of real numbers with the natural metric. By Q we denote the set of rational numbers. The function $f:X \rightarrow R$ given by

$$f(x) = \begin{cases} \frac{1}{n} & x \in [n-1, n) \cap Q \\ \frac{1}{n+1} & x \in [n-1, n) \setminus Q, \quad n = 1, 2, \dots \end{cases}$$

is cliquish. The set $M = [0, 1]$ is closed in X , the function $f_{/M}$ has no continuity points, so f is not barely continuous.

Example 1.3. We take $X = (-\infty, \infty)$ with the topology $T = \{\emptyset, [0, 1], [1, 2], X\} \cup \{[0, 2]\}$. Semi-open sets in this space are of the form: $[0, 1] \cup A$, $[1, 2] \cup B$, $[0, 2] \cup C$ where A, B, C are arbitrary sets. Let R be the space of real numbers with natural metric and let Q be the set of rational numbers. The function $f:X \rightarrow R$ given by the formula

$$f(x) = \begin{cases} 0 & x \in [0, 1] \cup (R \setminus [0, 2]) \cap Q \\ 1 & x \in [1, 2] \cup (R \setminus [0, 2]) \cap (R \setminus Q) \end{cases}$$

is quasi-continuous. Let us put $M = (-\infty, 0) \cup (2, \infty)$, then $f|_M$ has no continuity points; so f is not barely continuous.

E x a m p l e 1.4. The function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x) = 1$ if x is the natural number and $f(x) = 0$ in the other case is barely continuous but is not quasi-continuous.

In the sequel for a map $f: X \rightarrow Y$, we will denote by $C(f)$ the set of all continuity points of f .

L e m m a 1.5. If $C(f)$ is a dense set, then f is a cliquish map.

L e m m a 1.6. If a uniformity \mathcal{U} on Y has a countable base, then for each cliquish map $f: X \rightarrow Y$ the set $X \setminus C(f)$ is of the first category.

These Lemmas follow by [2, Theorem 5] and [2, Theorem 9] respectively.

A topological space X is said to be a Baire space in the narrow sense, if every closed subspace of X is a Baire space (cf. [3]).

T h e o r e m 1.7. Let X be a Baire space in the narrow sense and let a uniformity \mathcal{U} on Y have a countable base. If $f: X \rightarrow Y$ is a barely continuous map, then for any non-empty closed set $M \subset X$ the set $C(f|_M)$ is dense in M .

P r o o f . Let M be any closed non-empty subset of X . Since $f|_M: M \rightarrow Y$ is barely continuous Theorem 1.1 and Lemma 1.6 imply that $M \setminus C(f|_M)$ is of the first category in M and the proof is completed.

C o r o l l a r y 1.8. [5]. Let X be a Baire space in the narrow sense and let Y be a metric space. If $f: X \rightarrow Y$ is barely continuous, then for each closed non-empty set $M \subset X$ the set $C(f|_M)$ is dense in M .

Let $f: X \rightarrow Y$ be a cliquish map and let $M \subset X$. If M is semi-open or dense, then $f|_M$ is cliquish. If M is a closed set, then $f|_M$ need not be cliquish, as shown by Example 1.3.

T h e o r e m 1.9. Let X be a Baire space in the narrow sense and let a uniformity on Y have a countable base. A map $f: X \rightarrow Y$ is barely continuous if and only if for every non-empty closed set $M \subset X$ a map $f|_M: M \rightarrow Y$ is cliquish.

Proof. If f is barely continuous and $M \subset X$ is a closed non-empty set, then by Theorem 1.7 we have $C(f|_M)$ is dense in M . So Lemma 1.5 implies that $f|_M$ is cliquish.

Now let $f|_M$ be cliquish for any closed non-empty set $M \subset X$. Then by Lemma 1.6 we obtain $C(f|_M) \neq \emptyset$, this f is barely continuous.

A sequence $\{f_n : n=1,2,\dots\}$ of maps $f_n : X \rightarrow Y$ is convergent to a map f at a point $x \in X$, if for every $V \in \mathcal{U}$ there exists n_0 such that $(f_n(x), f(x)) \in V$ for $n > n_0$. A map f is said to be the limit of a sequence $\{f_n : n = 1,2,\dots\}$, if that sequence converges to f at every point; then we write $f = \lim_{n \rightarrow \infty} f_n$.

Simple examples show that the limit of a sequence of barely continuous maps need not be cliquish.

Theorem 1.10. Let X be a Baire space in the narrow sense and let a uniformity on Y have a countable base. If $f_n : X \rightarrow Y$ is barely continuous map for $n = 1,2,\dots$ and $f = \lim_{n \rightarrow \infty} f_n$, then the following conditions are equivalent:

- a) f is barely continuous,
- b) for every $V \in \mathcal{U}$ and for every closed set $M \subset X$ and open set $U \subset X$ such that $M \cap U \neq \emptyset$ there exist a number m and an open set $U' \subset U$ such that $M \cap U' \neq \emptyset$ and $(f_m(x), f(x)) \in V$ for any $x \in M \cap U'$.

Proof. We assume that f is barely continuous. Let $M \subset X$ be closed and let $U \subset X$ be an open set for which $M \cap U \neq \emptyset$. For any $V \in \mathcal{U}$ let us take $W \in \mathcal{U}$ such that $W = W^{-1}$ and $W^3 \subset V$. The sets $C(f|_{M \cap U})$ and $C(f_n|_{M \cap U})$ for $n = 1,2,\dots$ are dense G_δ in $\overline{M \cap U}$, thus the set $C(f|_{M \cap U}) \cap \bigcap_{n=1}^{\infty} C(f_n|_{M \cap U})$ is dense in $M \cap U$. Let $x_1 \in C(f|_{M \cap U}) \cap \bigcap_{n=1}^{\infty} C(f_n|_{M \cap U})$. There exists a number m such that $(f_m(x_1), f(x_1)) \in W$. Moreover, there exists a neighbourhood U_0 of x_1 such that $(f_m(x), f_m(x_1)) \in W$ and $(f(x), f(x_1)) \in W$ for $x \in U_0 \cap \overline{M \cap U}$. We denote $U' =$

$= U_0 \cap U$; hence we have $U' \subset U$, $U' \cap M \neq \emptyset$ and $(f_m(x), f(x)) \in V^3 \subset V$ for any $x \in U' \cap M$.

Conversely, we assume that the condition (b) holds. By $\{V_n: n=1,2,\dots\}$ we denote a base for the uniformity \mathcal{U} on Y such that $V_n = V_n^{-1}$ for $n = 1,2,\dots$. Let M be closed and let U be an open set such that $M \cap U \neq \emptyset$. According to assumptions we can choose a decreasing sequence $\{U_n: n=1,2,\dots\}$ of open sets and a sequence $\{m_n: n=1,2,\dots\}$ of natural numbers such that $U_n \cap M \neq \emptyset$ for $n=1,2,\dots$ and $(f_{m_n}(x), f(x)) \in V_n$ for $x \in U_n \cap M$. Take any $V \in \mathcal{U}$ and V_n such that $V_n^3 \subset V$. Then there exists m_n such that $(f_{m_n}(x), f(x)) \in V_n$ for $x \in U_n \cap M$. Since the sets $C(f_{k/M})$ for $k = 1,2,\dots$ are dense G_δ in M their intersection is dense in M . Let $x_0 \in U_n \cap \bigcap_{k=1}^{\infty} C(f_{k/M})$, then we have $(f_{m_n}(x_0), f(x_0)) \in V_n$. Furthermore, there exists a neighbourhood U_0 of x_0 such that $(f_{m_n}(x_0), f_{m_n}(x)) \in V_n$ for any $x \in U_0 \cap M$. Hence $(f(x_0), f(x)) \in V_n^3 \subset V$ for $x \in U_0 \cap U_n \cap M$, so $x_0 \in C(f_{/M})$ and f is barely continuous.

Corollary 1.11. Let X be a Baire space in the narrow sense and let a uniformity \mathcal{U} on Y have a countable base. If a sequence $\{f_n: n=1,2,\dots\}$ of barely continuous maps $f_n: X \rightarrow Y$ is uniformly convergent to a map f , then f is barely continuous.

2. Let X and Y be topological spaces and let \mathcal{U} be a uniformity on Z . For any map $f: X \times Y \rightarrow Z$ we will denote by f_x and f^y maps given by: $f_x(y) = f(x,y)$ and $f^y(x) = f(x,y)$ for $x \in X$, $y \in Y$.

Theorem 2.1. Let X be a Baire space and let Y be locally second countable. If $f: X \times Y \rightarrow Z$ is such that f_x is cliquish for any $x \in X$ and f^y is quasi-continuous for any $y \in Y$, then f is cliquish.

Proof. Let $(x_0, y_0) \in X \times Y$ and let $U \times V$ be any neighbourhood of it point. We can assume that V has a count-

able base $\{G_n : n=1,2,\dots\}$. For arbitrary $W_1 \in \mathcal{U}$ we take $W \in \mathcal{U}$ which satisfies $W = W_1^{-1}$ and $W^3 \subset W_1$. We denote

$$H_n = \{x \in U : (f(x, y'), f(x, y'')) \in W \text{ for } y', y'' \in G_n\}.$$

It is easy to see that $U = \bigcup_{n=1}^{\infty} H_n$. Since U is of the second category, $\text{Int } \bar{H}_n \neq \emptyset$ for certain n . Let $U_1 = U \cap \text{Int } \bar{H}_n$ and $b \in G_n$. By the quasi-continuity of f^b there exists an open non-empty set $U_2 \subset U_1$ such that

$$(1) \quad (f(x', b), f(x'', b)) \in W \text{ for every } x', x'' \in U_2.$$

Let $(x_1, y_1), (x_2, y_2) \in (U_2 \cap H_n) \times G_n$. From the condition $x_1, x_2 \in H_n$ it follows that $(f(x_1, y_1), (f(x_1, b)) \in W$ and $(f(x_2, b), f(x_2, y_2)) \in W$. Applying (1) we have

$$(2) \quad (f(x_1, y_1), f(x_2, y_2)) \in W^3 \text{ for every } (x_1, y_1), (x_2, y_2) \in (U_2 \cap H_n) \times G_n.$$

Now we take $(x_1, y_1) \in (U_2 \cap H_n) \times G_n$ and $(x_2, y_2) \in (U_2 \setminus H_n) \times G_n$. Since f^{y_2} is quasi-continuous at a point x_2 there exists a non-empty open set $U_3 \subset U_2$ such that $(f(x_2, y_2), f(x', y_2)) \in W$ for $x' \in U_3$. Hence

$$(3) \quad \text{for each } (x_2, y_2) \in (U_2 \setminus H_n) \times G_n \text{ there exists a point } (x'_2, y_2) \in (U_2 \cap H_n) \times G_n \text{ such that } (f(x_2, y_2), f(x'_2, y_2)) \in W.$$

The condition $x_1, x'_2 \in H_n$ implies $(f(x_1, y_1), f(x_1, b)) \in W$ and $(f(x'_2, y_2), f(x'_2, b)) \in W$. Applying (1) and (3) we have

$$(4) \quad (f(x_1, y_1), f(x_2, y_2)) \in W^4 \text{ for every } (x_1, y_1) \in (U_2 \cap H_n) \times G_n \text{ and } (x_2, y_2) \in (U_2 \setminus H_n) \times G_n.$$

Finally let $(x_1, y_1), (x_2, y_2) \in (U_2 \setminus H_n) \times G_n$. By (4) it follows that

$$(5) \quad (f(x_1, y_1), f(x_2, y_2)) \in W^8.$$

Thus by (2), (4) and (5) we have $(f(x_1, y_1), f(x_2, y_2)) \in W_1$ for all points $(x_1, y_1), (x_2, y_2) \in U_2 \times G_n \subset U \times V$ and the proof is completed.

3. Let X, Y be topological vector spaces and let \mathcal{W} be the neighbourhood filter of $0 \in Y$. The cliquishness of a map $f: X \rightarrow Y$ at a point $x_0 \in X$ in this case means that for every neighbourhood U of x_0 and for every $V \in \mathcal{W}$ there exists a non-empty open set $U' \subset U$ such that $f(x') - f(x'') \in V$ for any $x', x'' \in U'$.

Theorem 3.1. Let X and Y be topological vector spaces. For any linear map $f: X \rightarrow Y$ the following properties are equivalent:

- a) f is continuous,
- b) f is quasi-continuous,
- c) f is barely continuous,
- d) f is cliquish.

Proof. It is sufficient to show that every cliquish linear map is continuous. Let $V \in \mathcal{W}$. Since f is cliquish at 0 there exists an open non-empty set $G \subset X$ such that $f(x') - f(x'') \in V$ for each $x', x'' \in G$. We take any point $x_1 \in G$; there exists a neighbourhood U of $0 \in X$ such that $x_1 + U \subset G$. Then for every $x \in U$ we have $f(x_1 + x) - f(x_1) \in V$, i.e. $f(U) \subset V$ so f is continuous.

Theorem 3.2. Let both topological vector spaces X and Y have a countable neighbourhood filter of 0 . Moreover, let X, Y be Baire spaces and let Z be topological vector space. If $f: X \times Y \rightarrow Z$ is a bilinear map such that f_x and f^y are cliquish for every $x \in X, y \in Y$, then f is continuous.

Proof. By Theorem 3.1 it follows that f_x and f^y are continuous for each $x \in X$ and $y \in Y$. Thus according to [7, p.88] f is continuous.

REFERENCES

- [1] S.G. Crossley, S.K. Hildebrand :
Semi-closed sets and semi-continuity in topological spaces, *Tex. J. Sci.* 22 (1971) 123-126.
- [2] J. Ewert : On quasi-continuous and cliquish maps with values in uniform spaces (to appear).
- [3] Z. Frolík : Baire spaces and some generalizations of complete metric spaces, *Czech. Math. J.* 86 (1961) 237-248.
- [4] N.L. Levine : Semi-open sets and semi-continuity in topological spaces, *Amer. Math. Monthly* 70 (1963) 36-41.
- [5] E. Michael, I. Namioka : Barely continuous functions, *Bull. Acad. Polon. Sci. Ser. Math. Astron. Phys.* 24 (1976) 889-892.
- [6] A. Neubrunnova : On quasi-continuous and cliquish functions, *Časopis. Pest. Mat.* 99 (1974) 109-114.
- [7] H.H. Schaefer : *Topological vector spaces*.
New York-Heidelberg-Berlin 1971.
- [8] H. Schubert : *Topology*. London 1968.
- [9] T. Thompson : Semi-continuous and irresolute images of S-closed spaces, *Proc. Amer. Math. Soc.* 66 (1967) 359-362.

INSTITUTE OF MATHEMATICS, PEDAGOGICAL UNIVERSITY,
76-200 ŚLUPSK, POLAND

Received September 27, 1982.