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ON SOME BOUNDARY VALUE PROBLEM FOR THE EQUATION
Au(X)-c2(X)=0

1. Consider the equation
(1) Au(x) - c2u(x) =

X = (x1,x2,...,xn), ¢ - positive constant, ih the half-space

D ={X = (x1,x2,...,xn), x,> 0} (n>2),

and let £(X') = £{xy,Xpp00eyXy 1)y X' = (XyyXppe00,x, )€ rA-1,

be a continuous and bounded function on ths space Rn'1,

| £(x")] <M for x’e RA™1,
Ir this paper we give the particular solution u({X)e CZ(D)
of the equation (1) with the boundary condition

(2) 1im [DY u(X) - hu(X)] = £(X)),
X=X n
0
where X = (x?,xg,...,xg_1,0).is a fixed point, Xé =

= (x?,xg,...,x2_1) and h is some positive constant,

In this problem we will use properties of Mac Donald
functions, modified Bescel functions Kp(x) (see [4] §52).
These functions satisfy the following equations

(3) (X) 'Kp 1\x) = 'K(l)p

p+1

(4) g; (x'pr(x)) = -x"Px_.,(x).

p+1
- 303 -



2 Cz. Loster

2. Let

K (cr) 1
(5)  glr} = Po— 2 xg~a;12, XAA(ag,850e00,8,)

ro

r

Lemma 1, The function (5} of index p # O satisfies
equation (1) on R?\ A only if p = _n_-z-_g .
Proof, For the function g(r) we have
Ag(r) = g"(r) + 23V g/ (x).

Prom properties (3}, (4) of the functions Kp(x), we infer that

K_ . .{cr) '
/{: = -_w___. . = —E-—- ——-P- =
g’(r) P ¢ rp[ K (cr) + K 1(cr)]
o Kplem) op  Kpeqlem o
- P T rP-1 r !

(or) e, Kp+1(cr) . 2PC+KE(°F).22
2 rP r o P r

K 1(cr)

= 2 - . 2pe_[2p,
= glrle +—P——p3— 2 *_p+7 Lov Kp(or)+Kp_1(cr):| +
K (er) {cr) K (cr) 2
p 2 p-1 2po+o p . 4p°+2
+ —g—= g(r)c + . + —9—2—2.
P r rP-1 re rP r
Next, we have
K_,{(or) K (oxr) 2
2 p=1 2pc+e p 4p°+2
Aglr) = g{r)ec + . + . —2—E+
8 rP-1 re rP r
K (cr) K_.(cr)
n=1 .« 2 - « 8 1.
s 21 [__;;p _IP.__J?T r]
= g(r)e? + p-1(°r) 2pc+e=o(n-1) . Kplorl 4p2+2p-2p(n-1).
rP-1 re rp r
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Boundary value problem 3

K .qlor) K (er)
Note, that the functions —2 5= and —B—— are linearly in-
r r

dependent and gi{r) = g(r)c2 only when 2pc+c=c(n-1} = 6 and
4p2+2p-2p(n-1) = 0 or 2p+2-n = O.

3. Let us take a function g(r) of index p = n_-2-g R

n = 3,5,7ye4¢ o Using (see [3] form, 223) the formula

v
k
N I S < vk}l o, /1
Kopsr(X) =V25 @ 2 Fi{vek)T <21c) o V=0,1,2,000
2 k=0

we have
Lemma 2e Ifq=%. n=1.3’5’0-o’ then

K (cr)
q . 1), ,-¢cr
—q =% (F) e ’

9

n n=1
(7) Qn(%) = an'(%) + °n-1'(%) +eee + a0 (3)
is a polynomial with coefficlents
an = n__}(n-2)l n '\/:2'1? ’ a!lii ""\/;'_j_g (n>3).
2% (252 :

From (6), (7) for p =nT"2 s D = 3,5,7Ty¢00, We have

8lr) = Qy_o(F)es™%.

Similarly using (3), (4), we obtain formulas for partial
derivatives up to the second order (of upper index p) for the

K_..(cr)
. = m=Ie _L . - l -Or.
Dxig(r) r -+ °Dx1r B ap Qn(r)° oDxir,

i-= 1,2,...,11,
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4 Cz, Losgter

K_ ,(or) K . (cr)
= - 1 L3 . +2 . 2 . -
Dxixjg(r) = [ —%— c+r —pr—piﬁ—— c ]Dxir ijr
K +1(cr)\, .

-1 e —%1—— CDxier =

K _.(er) 2
_ +1 . e f2(p+1) ., .
= {-._E;E:T——. c+ <——gf——- Kp+1(cr)+-Kp(cr)i] D T ijr -

rP i
: K r
- rc_pﬂ_). . CD r =
pP+1 Xy Xy
K oqler) K_..{cr) K _(cr)
e loprt 7 +1 2, . ]
[ P+ ¢ + ¢n —%— + ¢ —E——rp Dxir ijr
K r -
-1 e ._M * cD r =
rp+1 xixj
. 1 2 1\] .~cr, .
= [c(n-1)Qn(5) + ¢ Qn-2(r)] e Dxir ijr -
SOE T
In that case we have the estimates:
(88) leig(r)' < chn(%)e-cr’ i-= 1)2gooo|n’

(2b) |Dxixjg(r)|s [c?Qn_2(%)+ chn(%)] 6", 1,3=1,2,000,0

4. Using (5) we construct the following function of
points Y,X €D

- te  Lh(t-y -x,)
(9) 6(¥:X) = glr,) +glr,) - 2h f e BN g(rg)at, vAX,
yn+xn
n=2

P=-%, b~ odd number, n>3, where h is a positive con=-
stant and
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Boundary value problen 5
n n=1
e S g% e S (3,2 (3,02,
i=1 i=1
n=1
1‘% = z (71'31)2 +t2,
i=1

Letting ©=a t = Ip = Xp in the improper integral above, we
have

+oo
(9a) G(Y:X) = g(r1) + g(rz) - 2he fe'hfcg(ia)dfr,
' (]
where
7 D=1
5§ = 12 (71"11)2 + (1:+yn+xn)2.
=1

The function (9) has the following properties:

1, It is symmetrio with respect to Y,X €D, 1,6, G(Y:X) =
= G(X:Y). }

2. It 18 of class Oz(D) with respect to Y and X, because
by (8a), {8b) the improper integral in (9a) and the correspond-
ing integrals of partial derivatives are uniforaly convergent
in any bounded and olosed domain E <D wlth respect to X and
Y, hence they are almoat uniformly convergent with respect
to X,Y, X # Y, in the domain D.

3. It satisfies the identity

(10) n,nc(z’.mx) - hG(Y',0:X) = 0y YT = (§44¥pseees¥p_q)s XeDe
Indeed, with XeD, Ye€D, Y ¥ X

-xp+1( er,) Yo%, ) lfpﬂ(orz) - Ip+x

= L] n $ -
DynG(Y:I) " o ¥ P T, + 2hg(r,)
1 2
+ 0o
~h(t=y ~x )
- 2h% o o BB g(r )at.
an+xn
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6 _Cze Loster

In that case
h(t-x )

Dy G(1',0:2) = 2hg(x) - 2h2e f 2g(rylat, r? -
n
n=1
= Z (’1'!1)2 + xﬁo
i=1
Similarly,
h(t-x )
G(Y’,0:X) = 2g(r) - 2h°f " g(ry)at,
X
n

which implies (10),
Moreover, by Lemma 1 the function (9) satisfies equation
(1) with respect to X for every Y # X.

(11) u(X) =i o f £(Y')6(Y’,0:X)dY’, X €D, w, = a number,
n
: g1

PTheorem 1., The function (11) is of class CZ(D)
and satisfies equation (1) in D.
Proof. Having

f £(Y’)e(yY’,0:X)ayY’ =

Rn-1
=h(t=x )
j (Y’ )[g(r) - h'/ g(rB)dt:’dI ’

by (6), (8a), (8b) and |£(¥’)| < M in B®"!, we obtain the ine-
qualities

f | £(¥/)6(Y’,01X)] a7’ < 4MQ,_ 1(n> / e~Tay’,

Rn- 1 Rn- 1



Boundary value problem 7

) / e~%Tay’,

/ lr(!’)nx c(r’.o:x)] Y’ < 40MQ,_, (
rA~1 1

where 6n-1(%) = rQn(%), 1 =1,2,000e0=1,

/ lr(r )D G(Y s0:X)[ax'<
Rn-1

<4u[o2Qn_2(;—n) + onQ ( )] / e~%Tay’,

Rn-‘l

i,J = 1,2,¢e0,n=1, and similarly, differentiating that inte-
gral with respect to ite parameter, we get

R;L ]r(r')nxnc(x',o:x)]dr’s

a[oan_1(;—n) + 2hon_2( n):l / e~%Tay’,

ro=1

f ] r(r’)nxixnc(r’.o:x)l ay’'g
r2=1

ézm[czon_2<;n)+ enQ ( n)+ 20hq, ( n)] / e~%%ay’,

i-= 1g2’ooo,n-1,
/ | 2021, , &(¥,0:x)|ax’g
n'n
Rn-1

[(o +20%)q,,, (3 )+ e ( n) . ohﬁn_.,(—;;)] [ a=orar,

Rn-1



8 Cz. Loster

This implies for the above integrale the uniform conver-
gence in any bdounded and closed set B cD. Henoe u{X) ¢ cz(n).

The second part of the theorem results from the propexrties
of the function G(Y:X) and from Lemma 1.

5. Let us take numbers R >0 and e(1 --—. 1) and for
some point X €D the aphere of centre X' = (x1,x2,...,xn_1)
and of radius R = R x ’

n=1
U‘B = (,1.,2'000.711_1) 3 2 (31-31)2<32 »
i=19
and let
r D ay’ rl = ?g; (y,=x4)2 + x2
(12)  Hp(X) = f o™ o Tm T o Iithy n’
Up 1=1

ne= 0,1.2....,!.
Lemma 3. The function (12) has a limit
0 for m = 0,1,2,...,3‘.\-1.
(13) 1lim Kn(x) -
X‘Xo

F( for m = n, where xo-(x:,xg,....x:_1,0).
2

Prootft. It is obvious from the proof of Lemma 3
in [2].

The partial derivative of the funotion (11) with respect
to X, is equal to

J, £(y’) 1(cr) ox
x, n

+0° _h t-x,

- h2 f e ( 3(r3)dt + hg(r)} ax’,
X,
n

= 310 -



Boundary value problem 9

hence we have
(14) n; u(x)-hu(x)--—o f 2(Y') —L1—cx Y’  IxeD,
Rn-1
Theorea 2. If a function £ satisfies the

assumptions of Seotion 1 and >
n-

2
(15) Wy = -N(z") »
then u(X) is a solution of problem (2).

Proof. Por some point X ¢ D take sphere '-URCR"'1.
Then

/ £(Y’) o Eﬁ%i'—:r—)- ox, dY' =

Rn-1 r

(or)

- f [r(r’)-r(x')] 'E'_(1_)' ox d! + (X )°f—%— cx dY +

( r) ,
f £(y') « B cxar’,

where I’ = (x:,xg,.... 0 1) is a fixed point. Using formula (6)
{ p+1 .—), with |£(Y')| <M, M >0, we have

/ If(Y’) - r(x‘;)] E%;gﬂ ¢x, dY'g o-p(x",)Of Qn(%)e"-’rxndr' ’
Ug Uy

where k(X)) = max|f(Y') - £(X))] 1in closed sphere Uy and

/_l%p—i;f—’ ox,dY’ -o.ofon(-} =CTx 41,
Ug
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10 Cz. Loster

(er) _
/ | £(Y')] ‘ﬂ,l-— ex dY’ < cx M % Qn_ﬂ—%—)e"’rd’r’g
CUR CUR

(Qn-1( ) = rQ (—) and for any point Y'C-CUR ise r = XY’ >R).

From Lemma 3 and the formula for the coefficisnt a, ot
the polynomial Q. ( ) in (7) we have

qler)
(16a) lim /—L—:i 0x dY’

X"I
n n Nne2
2 2t=2(8=3), 3 "3
= oap % 2 = cap* (n.(.z?!) * jr/—l‘-‘ = "l(g_om) .
2 V(z)

Similarly, from the continuity of £{Y’') in R™ ' we obtain

(16b) lim ou(X,) /o % =0Tx 4T = 0.
—-X
° Up
Also
(16c) ia 22 fé (2)e~0Tar’ = o
° x-x R n-1\r/® 4 =0.
o CUp

Indeed, in the polar coordinates on R™™' the integral (16c} be-

comes
+co

1 -cr n=2
f n-1F cg doy

where Q 1s the coefficient of the polar transformation and

——my x
T = \,Qz'ﬁxﬁo Por —n = '§—0x1 q’ 1 <q<1’ 'ith Jziz‘$1.
g +xn

we have




Boundary value problem 11

+00
-cr n=?2

f n-‘] 9 dQ <

R
+oo n=3

1 2 -C

f (@n 7 * 8paq * 80t cee t 8, 4 00 >e qdq.
R \ 2

On the other side, with a >R,

+0co a +°° 2,.2

-cr -C a+\/a +X

[ 5 ae<[Fag+ [ o decin —5 R Lo 0™
n

R 0 a

In that case we have the estimation

o]
-
)
o
0
-]
TN
[
+
o
+l\)
II‘
l
o
o
_/
+

n
(2, sourd)oeg
v=1
where m = —“5—1 » which implies (16¢).
Prom (16a), (16b), (16c) the theorem follows.

6. Lot the dimension n of the space R® be even, n =2v,
veN, In this case we use Mac Donald’s funotions

+oo

(17) K, (x) = %j’ exp[--’zj (t+ %)] t¥-1as,
(]
x>0, ¥V = 0,1,2,000 (800 [1], [4])
400 ;)2'" n
(18a) K (x) = -I(x)(1nF+0) +3 > (:”2 > 1, x>0
m=1 k=1
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12 Cz, lLoster

{18b) K,(x) - (-1)"’1Iv(x)(1n—;- +C) +

v=1

g e g

)Zn-v .

2n+v

(2] h 2 P S e (3 03 4)

k=1 h k=1

x>0, veN,

2n+p '
where I (x) = E} n”.. n+p+1 C 1is the Bulexr oonstant.

Lenma 4, If v = 1,2,3,040, that
2
(19) K (x)<} [1 +2. (%) (v-1) +

+ (%)3 (ve1)(v=2) + ¢0o0e + (%)' (v--1)!Je._g .

Proof. Prom (17) (with x>0)

1 X 400 _X |
Kxic 3| [o 2at s [o 2. t7as).

0 1

Integrating the second integral by parts we have (19).
Lemnma 5. Iftvs 1’2.3,..0. th&t

400 )2" m+v 2
(20) 2 n!{m+v :(2 k*t Z >$;_ * Io(x,'

k=1



Boundary value problem 13

Proof,

5 (5: by > S

k- 1

oo 2(n+1)
=2 2 n!(mv-i)l 2 2 (n+1)l(m+v)l =

2m
2 +o° (.8_) 2 +00
- (%) Z (aet) [{mev] T S £—2‘ « I,(x).
l-O
By Lemnma 1, the funotion
(or) a
(21) k(r) ._Kv;l_: v R e S nyma)? Xklageageeeeral,

i=1
satisfies equation (1) in R®\ A, Using formulas (18a), (18b)
we have

+oo (9_1_’ n

k(r) = I (er)(1n 9F-4c) + 5 (2.”2 + > 1 for vy,
n=1 i=1

)Zn

k(r) = (=1)7. Iw'l(:r) (1!.1:-—"2£ + c) +
v-1 2 -l 2m=n+2 -2 vl v
A S o o g LTS
B0 1a1
V=1 or 2n Ve
+%(%) 2 m!{m+v=1 !(121 ‘} 121 -l'> for v>2.

Similarly, we oonclude from Lemma 4 that for n = 2v, veN,
there exists a polynomial LS (—) of degree n with positive
coefficients and the free tm equal to O such that

- 315 =



14 Cz, Loster

Kv(cr) T
(22) N w(d)e 2 n=2v,

o' n(r) ’

In that cese, similarly in Section 3, we have estimations of

partial derivatives of function k(r) up to the second order

_or
'D k(l‘)’ orw (%) e 2, 1= 1,2,000,0,

or
xjk(:r.')[ < I:eawn_z(%) + cnwn(%)]e 2 s 1,3 = 1,2,0ee,n.

With n = 2v, ve N, the functions (9), (11) have an analogous
form
+0°
=h{t=y _ -x_)
G(Y:X) = k(r,) + k(r,) - 2he j o 2 "N k(r;)dt, Y#XeD,
Y o*%y,

where r,, Ty, Iy are like in (9)

u(x)g—{——. f £(y’)c(y’,0;x)ay’,
2w

n Rn--1

- proper coefficlent, X eD,

These functions are of olass CZ(D) and satisfy equation
(1) in D because of (22) and estimations of partial deriva-
tivee of k(r). With condition (2) we have, similarly to (14),
foraula

K,(cr)
(23] Dy u{X) - hu(Xx) = -—_1—— . f £(Y’) -5 v cxr,dY',
n w r *
n=2v, velN, X€D,
n=1
where T = 2 (y:]_--xf,_)2 + xg.
i=1



Boundary value problem 15

V3 shall prove, that u(X) satisfies ocondition (2) in any
point xéﬂi‘_"' with proper coefficient .
If v=1, or n = 2, then formula (23) has the form

— jf(y1) .

where X = (x.,,xz), Y= (y,,O), while (from (18b))

)
T oxpdyy, T 2utyx, 1242,

2m
K,(er) ‘oo (er
A =-‘l-2 (2) ln£+c>+
T 2 0m!lm+1)! 2
m=

1 - (?)zm -
*—'2"%"%' 2:1 m!{m+1) 1 <2 2 %+m+>
o=

or ix1

In this integral we put Jq=xq 4+ t and next we take in sum
of integrals

$0c = -8 a + oo
K,{cr)
/f(x1+t) -—1———cx2dt = j + j+/, 7222 4 xg, a-x;,
r

with amy o, 0<«<} , Because of (22), with n = 2, and
| £(xy 2 t)] <

-g 400 +00
+ / If(x1+t) + f(x1-t)l B hinist oxzdt
| wmOoQ a a
+00 . _92: +oo ¢t ao
1 2 AV
< Al 1 - 1
< 2cx2uf wz(;)" dtszouxzwa(a) f e 24t 4Mx2W2(a)oe ,
a a
and using lim x.W —) = 0, the sum of integrals [ +
2°2\a
12-—0 -0 8
a
tends to 0, when x—*x", = (x?,o). The integral J' is equal

to the sum e
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16 Cs, Loster

S_E

a o _
% . f:ﬂt-}-!.') ZOET(IHL‘”T (ln 921: + c)oxzdt +
-8 =

x, . x,
+ -'/a' [f(t+x1) - f(x:):] ? at + f(x‘;) f‘-;—,f dt -

a 400 (_o_i)z" m m+1
e Jeoomg [vod 5 alfhn(3 40 3 et
-8 o= i=1 i=1

-A1+A2+A2'.'A4o

With small x,> 0, r<1 for any t € (~a,8) we have estimations:

‘ 02 ] = [+]
| 44| < 3 MeT (o) f (|10F| + | 1n £ + c|)atex,,

2
-a
a
X
f—f%dt'

=g

|A2| s(_-:;> If(t+x1) ~ £(x3)

2 a 2.2
] . e r .
l‘4'<—2‘ M f[1 +—T . Io(c)} at 120 ((20). v= 1),
-8
-1
x
x 2
Beoause of _Z ;—g—dt = f 1—?1;5-: Zarcta(x; Y, Ay has 1imit
Y |
. —32 A
1lim A3 = f(xg) 7, where (x1 .x2) — (x‘1’.0). Obviously,
1im A =0, lim A4 = 0 and, by the continulty of the funotion
£, lim A, = O when (x1 .12) — (xg,o). Hence the theorem in

case w, = =T 1s proved.
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Boundary value problem

17

Now let n = 2v, ve K, v>2, Liks in Seoction 5 for any
X¢D we take the sphere Up, R = R x%, cc (1 =31, 1) ana
we split integral (23) into the sum of integrals

[ e B

gro=? Cup Uy

Because of (22), with |£(Y’)| < M we have

or
’ Ne 2 gy’
ox dY’| < oMx, / W(d)e 2ar'<

er
oM 1= o N\a 2 ’
<R, % ° / “ouq(F)e © ari

CUg

where W, 1(%) - rw (’). Similarly in the proof of (16c) we
state

(or)
1im / £(Y’) o 5 v oxnd!’ = 0,
X Io CU r

R

Acoording to (18b) we have

v

Kler) g4 Iglor) or
g (= s ——— (2 c
= (=1) = ( n =5+ ) +

V=1

2m-v -2
she S tnm e deegl g
M=
v

v
g e 3 Ee
()7 )2" n4+v
- (%) 2m!m+vl<21""21’>
m=1 1=t
- 319 =



18 Cz, Loster

Kv(or)
In that ocase the integral f £(Y’) o v— ©X,dY’ is equal
v r
Up
to the sum of integrals:
I_(cr)
J, = (-1)'*"cxnf 2(y') « *5— (1n %w)ar’,
Up
f S m, (v-m—ﬂ c\2B=V X
o = [#tr) - 2tx)] 3 (-1 (3) cmpm v
UR n=0
/e it m_ (vem=1)1 [0 22V / Xn /
3y = 2(xy) e 3 (-0t LT (8170 oo-2m 9T
m=0 UR
\l 1 < 1+‘ (%)Zm m4§1
c\ e A I N2/ 1 1 I}
Iy = ("E) /f("') YT 2Tt Al (mev) 1 (2 Tt 1)]‘”‘::“ .
UR i=1 m=1 i=1 i=1

Por Y'e Uy we have rlg szz"‘-vxn and so we can put 6 >0

such that from condition x, < 6 we have r <1 for every Y'e Ug.
Then, letting IURI be the volums of Up, we have the estima-
tions '
|J1|<o Y Mx afl2ex |+ 20§+ cIT (0)e| UG,
and from (20)
\J 2
'] o°° .,
| 34| <0(8) x, [+ I (o]

X"xo X"xo
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Boundary value problem 19

By Lemma 3 in {2], we have

v=1

e S (et =)l (_g_)m-vn.f —E%Edr -n.(2g>v-1

XX r

(xo = (xg,xg....,x:_.‘,o), vV = %), and thus the continuity of f

V=1
implies the equalities lim J, = 0, lim J, = f(x")).-n(.?%"-) .
x*xo -—x
Thus we conalude that the boundary problen (2) is satisfied
when

n=2
Bn--sr(%")a .
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