Józef H. Przytycki

INCOMPRESSIBILITY OF SURFACES WITH FOUR BOUNDARY COMPONENTS AFTER DEHN SURGERY

Let F be an unknotted surface with four boundary components embedded in a surface-bundle over S^1 . Let each component of ∂F cut each fiber exactly once. We study whether incompressibility of F is preserved after Dehn surgery.

In this paper we generalize Theorem 1.4 of [F] to surfaces with four boundary components. Because of Example 1.15b) of [P] we use some additional assumptions. Namely we prove the following:

Theorem 1. Let M be a bundle over S^1 with a compact surface as a fiber and $\partial M = T^2$. Let F be a properly embedded, 2-sided surface in M. Suppose that the following three conditions are satisfied:

- 1. F has four boundary components and each of them cuts each fiber exactly once.
 - 2. F disconnects M into two handlebodies H_n and H_n' (n \geqslant 2).
- 3. Denote by A_1 and A_2 (resp. A_1' and A_2') two annuli of $H_n \cap \partial M$ (resp. $H_n' \cap \partial M$). We assume that F can be isotoped mod ∂F in such a way that the natural projection $p:M \longrightarrow S^1$ restricted to F is a Morse function and there exists points $t_1, t_2, t_1', t_2' \in S^1$ such that some component K_1 (resp. K_1') of $p^{-1}(t_1) \cap H_n$ (resp. $p^{-1}(t_1') \cap H_n'$) is a disk and $K_1 \cap A_1 \neq \emptyset$ (resp. $K_1' \cap A_1' \neq \emptyset$) i = 1 or 2.

Then F is incompressible in M iff F is incompressible in $\mathbb{M}^{\partial F}$.

1. Preliminaries

We work in PL-category. We follow the terminology of [H], [P] and [L].

Definition 1.1. a) Let M be a 3-manifold and F a surface which is either properly embedded in M or contained in 3M. We say that F is compressible in M if one of the following conditions is satisfied:

- (i) F is a 2-sphere which bounds a 3-cell in M;
- (ii) F is a 2-cell and either $F \subset \partial M$ or there is a 3-cell $X \subset M$ with $\partial X \subset F \cup \partial M$;
- (iii) there is a 2-cell $D \subset M$ with $D \cap F = \partial D$ and with ∂D not contractible in F.

We say that F is incompressible if it is not compressible.

- b) Let F be a submanifold of a manifold M. We say that F is $\underline{\pi_1}$ -injective in M if the inclusion-induced homomorphism from $\pi_1(F)$ to $\pi_1(M)$ is an injection.
- c) Let F be a surface properly embedded in a compact 3-manifold M. We say that F is $\frac{\partial -\text{incompressible in M}}{\partial -\text{incompressible in M}}$ if there is no a 2-disk D \subset M such that D \cap F = α is an arc in ∂ D, D \cap ∂ M = β is an arc in ∂ D, with $\alpha \cap \beta = \partial \alpha = \partial \beta$ and $\alpha \cup \beta = \partial D$, and α is not parallel to ∂ F in F.

Definition 1.2. Let M be a 3-manifold and α a simple closed. 2-sided curve on 8M. We define a new 3-manifold M_{γ} to be M with a 2-handle glued along λ . That is: let A_{λ} be a regular neighbourhood of λ in ∂M . Let (D^3, A) be a 3-disk with an annulus on the boundary and Φ a homeomorphism $A_{\lambda} \longrightarrow A$, then $M_{\lambda} = (M, A_{\lambda}) \cup_{\Phi} (D^3, A)$. If $\{\lambda_i\}_{i=1}^n$ is a finite collection of disjoint, 2-sided, simple, closed curves on ∂M then $M_{\{\lambda_i\}}$ $\stackrel{\text{def}}{=}$ $(\dots,(M_{\lambda_1})_{\lambda_2})\dots)_{\lambda_n}$. The definition does not depend on the ordering of the λ_i . If $\theta_1 M = T^2$ is a boundary component of M, and λ is a nontrivial, simple, closed curve on $\theta_1 M$, then by the Dehn surgery on M along λ , we mean the manifold, M $^{\lambda}$, obtained from M $_{\lambda}$ by capping off the new boundary component of M_{λ} , which equals S^2 . If $\{\lambda_i\}_{i=1}^n$ is a finite collection of nontrivial, disjoint, parallel, λ_1 simple, closed curves on $\partial_1 M = T^2$, then by M^{λ_1} we mean M^1 .

Remark 1.3. The manifold M^{λ} is obtained from M by operation which is in fact only the second part of the original Dehn surgery (which consists of drilling and filling) and, perhaps, should be called Dehn filling.

Definition 1.4. Let $(F, \partial F) \longrightarrow (M, \partial M)$ be a surface properly embedded in a 3-manifold M. We say that F is unknotted in M iff M-int V_F is a collection of handle-bodies, where V_F is a regular neighborhood of F in M.

Definition 1.5. 3-manifolds M_1 and M_2 are congruent iff there exist homotopy spheres \sum_{1}^{3} and \sum_{2}^{3} such that $M_1 \# \sum_{1}^{3} = M_2 \# \sum_{2}^{3}$.

Definition 1.6. Let WcF be a set of words (or cyclic words) in the basis X of a free group F. The incidence graph J(W) is the graph whose vertices are in 1-1 correspondence with the non-trivial words in W with an edge joining vertices w_1 and w_2 if there exists $x \in X$ such that x or x^{-1} lies in w_1 and x or x^{-1} lies in w_2 . W is connected with respect to the basis X if J(W) is connected, and is connected if it is connected with respect to each basis of F. If the set W of elements (or cyclic elements) is not contained in any proper free factor of F and if W is connected we say W binds F.

- 2. Proof of Theorem 1. Cut open M along F to obtain H_n and H'_n . $\partial M \cap H_n$ consists of two annuli A_1 and A_2 which classes in $\pi_1(H_n)$, for an appropriate basis of $\pi_1(H_n)$, are either
- (i) $\begin{bmatrix} A_1 \end{bmatrix} = x_1$, $\begin{bmatrix} A_2 \end{bmatrix} = x_2$ in which case neither side of the conclusion of Theorem 1 is satisfied, or
- (ii) $\begin{bmatrix} A_1 \end{bmatrix} = x_1$, $\begin{bmatrix} A_2 \end{bmatrix} = x_1 w'$ where w' is written using letters different than x_1 .

To see this, consider a system of n properly embedded in H_n 2-disks which cut H_n into a 3-cell. We have uniquely associated with such a system the basis of $\pi_1(H_n)$. If we can assume that $t_1 = t_2$ and $K_1 = K_2$ in the assumption 3 of Theorem 1 then

we choose the basis which is associated with a system of disks which contains $K_1 = K_2$. Then we deal with the case (ii). If the previous situation cannot be achieved then $K_1 \neq K_2$ and $K_1 \cup K_2$ does not disconnect H_n . Then we choose the basis which is associated with a system of disks which contains K_1 and K_2 . We deal with the case (i). We get the conditions analogous to (i) and (ii) for H_1' and $\partial M \cap H_1' = A_1' \cup A_2'$. To conclude Theorem 1 it suffices to prove the following proposition (compare [H; Chapter 6]):

Proposition 2.1. Consider a handlebody H_n ($n \ge 2$) with a family $\{r_i\}_{i=1}^s$ of disjoint, 2-sided, simple closed curves in H_n . Assume that for some basis x_1, \dots, x_n of $F_n = \pi_1(H_n)$ we have

$$[\tau_1] = x_1, [\tau_2] = x_2, \dots, [\tau_{s-1}] = x_{s-1}, [\tau_s] = x_1, \dots, x_{s-1}, [\tau_s]$$

where
$$\mathbf{w}' \in \mathbf{F}_{n-s+1} = \{\mathbf{x}_s, \mathbf{x}_{s+1}, \dots, \mathbf{x}_n\}.$$
Then

Proof. We have the following equivalences:

 $H_n = \bigcup_{i=1}^{s} \tau_i$ is incompressible iff ([L]; see Lemma 2.2 below)

 $[\tau_1], \dots, [\tau_S]$ bind F_n iff (see Lemma 2.3 below)

w' binds $F_{k-\epsilon+1}$ and $w' \neq x_s$ iff ([Sh])

 $^G=\left\{\mathbb{F}_{k\to s+1};w'\right\}$ cannot be decomposed into a nontrivial free product and $G\neq Z$, 1 iff $[H;\ Chapter\ 7]$

 $\begin{array}{lll} \partial(H_n) & \text{is incompressible and } (H_n) & \text{is congruent} \\ & \left\{ \mathcal{T}_i \right\}_{i=1}^S & \left\{ \mathcal{T}_i \right\}_{i=1}^S \\ \text{to an irreducible manifold or is equal to a lens space with} \\ & \text{hele iff (see Lemma 2.4 below)} & \partial(H_n) & \text{is incompressible} \\ & \left\{ \mathcal{T}_i \right\}_{i=1}^S & \end{array}$

Lemma 2.2 [L]. Let $\{\tau_i\}_{i=1}^S \subset \partial H_n$ be a collection of pairwise disjoint, 2-sided, simple closed curves. Then $\partial H_n - \{\tau_i\}_{i=1}^S$ is incompressible iff $\{[\tau_i]\}_{i=1}^S$ bind $F_n = \pi_1(H_n)$ and no τ_i is contractible in ∂H_n .

Lemma 2.2 is proved in [L] for an orientable handlebody but the proof can be extended to a nonorientable handlebody as well (using the fact that each automorphism of a free group $\pi_1(H_n)$ can be got from a homeomorphism of H_n).

Lemma 2.3. Let $F_n = \langle x_1, \dots, x_n \rangle$ be a free group of rank $n \ge 2$. Assume $w_1 = x_1^1$, $w_2 = x_1^2 w'$ and w_3, w_4, \dots, w_8 , $w' \in F_{n-1} = \langle x_2, \dots, x_n \rangle$. Then cyclic words w_1, \dots, w_8 bind F_n iff cyclic words w', w_3, \dots, w_8 bind F_{n-1} and $w' \ne x_2$ for s = 2.

Proof. \Longrightarrow If cyclic words w', w3,..., wg does not bind F_{n-1} then there exists an automorphism φ of F_{n-1} such that either cyclic words $\varphi(\mathbf{w}'), \varphi(\mathbf{w}_3), \ldots, \varphi(\mathbf{w}_8)$ do not use all letters (x_2, \ldots, x_n) or the incidence graph of cyclic words $\varphi(w'), \varphi(w_3), \ldots, \varphi(w_s)$ is not connected with respect to the basis (x_2, \dots, x_n) . Let $\varphi(w') = w_0^{-1} w_0' w_0$ where w_0' is cyclically reduced word, then $\overline{\varphi}(w_2) = x_1^{0.1} w_0^{-1} w_0' w_0$ (by $\overline{\varphi}$ we understand the automorphism of F_n which is the anique extension of $\varphi:F_{n-1}$ \rightarrow F_{n-1} given by $\bar{\varphi}(x_1) = x_1$). Let ψ be an automorphism of F_n defined as follows: $\psi(x_1) = w_0^{-1}x_1w_0$ and $\psi(x_1) = x_1$ for i > 1. Then $\psi \bar{\varphi}(w_1)$ and w_1 are equal as cyclic words, $\psi \bar{\varphi}(w_2)$ and $x_1^{-1}w_0'$ are equal as cyclic words, and $\psi \bar{\varphi}(w_1) = \bar{\varphi}(w_1)$ for i > 2. Thus either the cyclic words $\psi \overline{\phi}(w_1), \ldots, \psi \overline{\phi}(w_g)$ do not use all letters x1,x2,...,xn or the incidence graph of cyclic words $\psi \overline{\psi}(w_1), \ldots, \psi \overline{\phi}(w_n)$ is not connected with respect to basis $(x_1, ..., x_n)$; so $w_1, ..., w_n$ do not bind F_n . If n = 2 and $x_1 = x_2$ then cyclic words $x_1^{a_1}$ and $x_1^{b_1}x_2$ obviously do not bind Fa.

We can assume that for some automorphism φ of F_{n-1} , cyclic words $(\varphi(w'), \varphi(w_3), \dots, \varphi(w_g))$ have minimal length

under all automorphisms of F_{n-1} . $\varphi(w') = w_0^{-1} w_0' w_0$ where w_0' is a cyclically reduced word. Let ψ be the automorphism of F_n defined by $\psi(\mathbf{x}_1) = \mathbf{w}_0^{-1} \mathbf{x}_1 \mathbf{w}_0$ and $\psi(\mathbf{x}_1) = \varphi(\mathbf{x}_1)$ for i > 1. Now we apply Whitehead automorphisms of F_n to show that cyclic words $(\psi(\mathbf{w}_1), \dots, \psi(\mathbf{w}_s))$ have minimal length under all automorphisms of F_n ([L-S]). Therefore, by [L], $\mathbf{w}_1, \dots, \mathbf{w}_s$ bind F_n .

Lemma 2.4. Let τ be a two-sided, simple closed curve in ∂H_n which is not homotopically trivial in H_n . If $\partial (H_n)_{\tau}$ is incompressible in $(H_n)_{\tau}$ then $(H_n)_{\tau}$ is congruent to an irreducible manifold or is equal to $L(p,q) \# D^3$, $p \neq 0,1$ (L(p,q) denotes a lens space).

Proof. If n = 1 then $(H_n)_T$ is equal to $L(p,q) \# D^3$, $p \neq 0$ (or $P^2 \times I$ if H_n is a solid Klein bottle) so the conclusion of Lemma 2.4 is satisfied. Let $n \geq 2$. Assume that $(H_n)_T$ is not congruent to an irreducible manifold. Because no boundary component of $(H_n)_T$ is a 2-sphere so the group $\pi_1((H_n)_T) = \{F_n \colon [T]\}$ can be decomposed into non-trivial free product. Therefore T does not bind T_n , so $\partial H_n - T$ is compressible. Let D_0^2 be a disk of compression of $\partial H_n - T$. We have three possibilities:

- (i) ∂D_0^2 is parallel to τ in ∂H_n . This contradicts the assumption that τ is homotopically nontrivial in H_n .
- (ii) ∂D_0^2 and ∂A_7 (A_7 is a regular neighborhood of γ in ∂H_n) bound a pair of pants on ∂H_n . In this case, a disk D_1^2 can be easily find which is a compressing disk of $\partial H_n \gamma$ but which does not satisfy (i) and (ii).
- (iii) If D_0^2 does not satisfy (i) and (ii), then D_0^2 is a compressing disk of $\partial(H_n)_{\tau}$ in $(H_n)_{\tau}$. This contradicts the assumption that $\partial(H_n)_{\tau}$ is incompressible.

3. Final remarks

The following corollary is an important application of Theorem 1.

Corollary 3.1. [C-J-R], [P]. Let M be a punctured-torus bundle over S¹ with hyperbolic monodromy map.

If F is an incompressible, θ -incompressible and π_1 -injective surface in M, then F is incompressible, π_1 -injective in M $^{\partial F}$.

Proof. Fhas 1,2 or 4 boundary components [H-F]. If Fhas four boundary components then Corollary 3.1 follows from Theorem 1 (by [H-F] F satisfies all assumptions of Theorem 1). If F has one or two boundary components then we use Theorem 1.4 [P] or reduce these cases to the case of four boundary components (as in Corollary 2.2 [P]) and then use Theorem 1.

Remark 3.2. Theorem 1 remains valid if we allow aM to consist of two tori. Then we have to understand by Mar appropriate Dehn surgeries along both boundary components of M. Conjecture 3.3. Theorem 1 remains valid without assuming the condition 3.

Acknowledgements. This paper is based on a part of the author's doctoral dissertation prepared at Columbia University under the supervision of Prof. J. Birman. I would like to express my gratitude to Prof. J. Birman, whose assistance enabled me to accomplish this paper.

REFERENCES

- [C-J-R] M. Culler, W. Jaco, H. Rubin stein: Incompressible surfaces in once-punctured torus bundles, Proc. London Math. Soc. (3) 45, 1982.
- [H-F] W. Floyd, A. Hatcher: Incompressible surfaces in puctured-torus bundles, Topology Appl. 13, (1982).
- [H] J. Hempel: 3-manifolds. Princeton, New Jersey 1976.
- [L] H.C. Lyon: Incompressible surfaces in the boundary of a handlebody-an algorithm. Canadian J. Math. 32 (3) 1980.
- [L-S] R.C. Lyndon, P.E. Schupp: Combinatorial group theory, Springer-Verlag 1977.

- [P] J.H. Przytycki: Incompressibility of surfaces after Dehn surgery, to appear in Michigan Math. J.
- [Sh] A. Shenitzer: Decomposition of a group with a single defining relation into a free product, Proc. Amer. Math. Soc. 6 (1955) 273-279.

INSTITUTE OF MATHEMATICS, WARSAW UNIVERSITY, 00-901 WARSZAWA, POLAND Received June 22, 1982.