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A CUBIC IDENTITY AND ITS CONSEQUENCES

Several authors considered the prcblem of representation
of integers as the sum of four cubes. It was shown that many
nombers have infinitely many such representations (cf. [2],
chapter 21). :

We show below that there are infinitaly many positive in-
tegers n which have representations

”
n = x? + xg + x% + xz,

(1) ' < (x1 + xz)(x1 + x3)(x1 + x4) £ 0,

X1 ,X2,XB,X4 €27,

in which X, assumes all integer values with at most two
exceptions., We require (x1+x2)(x1+x3)(x1+x4) # 0 to exclude
the trivial representation of n being the sum of two cubes:
n=a +b in the form n = X2 + (-k)3 + a’ +-b3. ¥or the
two exceptions the product is zero.

The result follows from the identity

(2) 2(a6-1) = k3+(2a2-k)3 + (a3-ak-1)3 + (ak-33-1)3.
In fact, for n = 2(a6-1), a>1, the numbers x, =k,
Xy = 2a2-k, Xy = a3-ak-1, Xy = ak-a3-1 satisfy (1), unless

k=2a’4+a4+1.
Further, we have

(3) 2(a6-1) = (a.z-a-1)3 + (a?+a-1)3,
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vhich Tfollows from (2) for k = 8° + a + 1. The identity (3)
with a = 2® was given by R.Niewiadomski [3].
From (2) and (3) we obtain

2

(¢) K+ (282 - k)Y +(ad mak = 1)V = (€ —a - 1)V 4+

2

+(a®+a-1)" 4+ (63 - ak + 1V,

which holds not only for v = 3, but also for v = 1.
We notice that (2) may be written in the form

(a2)7 + (a2)Y + (x - 28%)" + (8k - a2 + 1)V

=1V 4+ 1Y 4k 4 (ak - a3 - 7)Y (v = 1,3).

Cn substituting in (4) a =-§ , k = %- we obtain the identity
(a7r)¥ + (2p%a8 - ¢°r)" + (p’s - pa°r - ¢38)7 =
= (p°gs - pa2s - ¢28)Y + (pas + pa®s - q78)" +

+ (p°s - pa°r + g%8)7 (v =1,3).
Simiiarly, substituting in (2) a =-§ and k = % we obtain
the identity

2(x%yt)Y + (3°2)Y + (x3%2 + 0t + y7t)V = 2(37¢)Y +

+ (3% + 2x%90)Y + (w2 + 2% - 376)Y (v = 1,3).

3
_ a’-1
k = =—

Putting in (4) we obtain

(a® -~ 1)V + (a2 + 1Y = (a3 - a® - a)V + (a3 +a2-a)7 4 (2a)",
whence
(m3 - n3)v + (m3 + n3)v = (m3 - m2n_--rmn2)v +
+ (m3 + m°n - mn2)v + (2mn2)v (v = 1,2).
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Prom the last identity we deduce (c¢f. [1}, Satz V, p.22) that

(=0 + 0¥ + (22 + 02 + 0¥ + (0 -0+ a®n+ an®)V 4

+ {u - m’ - n°n + mnz)w + (u - 2mn2)2 = GnB -+ w)v o
+ (n - m’ - n3)w + (u + m’ -.mln - mn2)W +
+ {u + w + mfn - mn2)w + (u + 2mn2)w (w=1,2,3,4).
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