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ON THE VELOCITY VECTOR FIELD IN THE MOTION OF VISCID GAS 

1. N o t a t i o n 
Let (M, g) be an n -d imens iona l Riemannian manifold wi th 

boundary or n o t . By ^ we denote a f u n c t i o n R»M—»-R which 
i s everywhere p o s i t i v e . This f u n c t i o n d e s c r i b e s the d e n s i t y 
of gas a t the time t . A time dependent v e l o c i t y v e c t o r f i e l d 
w i l l be denoted by u, and u^ := u ( t , » ) € r (TM) i s the s e c -
t i o n of t angen t bundle TM which d e s c r i b e s the v e l o c i t y of each 
po in t of gas a t the time t . I n the case when the boundary 
3M ^ 0 we need u t o be t angen t t o the boundary, i . e . 
u t ( x ) = u ( t , x ) e T 3 M f o r any x e 3M. The d i s t r i b u t i o n of tem-
p e r a t u r e we denote by T (T: R*M—"-R) . The p ressu re of gas 
i s a f u n c t i o n p : R * 11"—»R. 

The p resen ted above o b j e c t s form the f u l l couple of time 
dependent p h y s i c a l q u a n t i t i e s c h a r a c t e r i s i n g the i d e a l gas 
and i t s e v o l u t i o n . But they do not g ive f u l l c h a r a c t e r i z a t i o n 
of p h y s i c a l p r o p e r t i e s of gae such as v i s c o s i t y , hea t conduc-
t i o n and thermodynamical behav iou r . We need s e v e r a l c o n s t a n t s 
t o complete the d e s c r i p t i o n of i d e a l g a s . F i r s t of them i t i s 
the u n i v e r s a l gas cons t an t R (which i s the q u o t i e n t of 
Bo l t zmsn ' s cons t an t k and the molecular mass m^, R := k/m^). 
By c y we denote the s p e c i f i c h e a t a t c o n s t a n t volume. This 
c o n s i s n t d e s c r i b e s the hea t r e q u i r e d to r i s e the tempera ture 
of a u n i t mass of gas by one u n i t e t cons t an t volume, i n one 
u n i t of t ime . There i s a connec t ion between R and e , na -

- 527 -



2 J.Rogulski 

1 rnely: cv where n.. denotes the degrees of freedom 
2c 

of molecule of gas* (so —g- is an integer). The constant x 
denotes the conductivity. The constants p and X are the dy-
namical and the kinematic viscosit ies. For a monoatomic gas p 
A = - - j |J . xhe approximate equality holds for many kinds of 
gases. 

2. The system of evolution equations 
The equations of motion for viscid f luids are derived from 

physical conservation laws in several monographies. We re fer 
to Shih-I Pai [ 5 ] and Thomas Hughes, Jerrold Marsden [ 2 ] , 
where also fundamental results and many topics of actual in-
terest a.-, e presented. 

The fu l l system consists of the continuity equation (C.E.), 
the dynamical equation (D.) - here i t is -the Navi6r-Stokes 
equation, the energy equation (E.) and the state equation (S . ) . 
One need also to add to this systjem the thermodynamical equa-
tions, which allow to express the internal energy E (which 
appears in the energy equation) by jj and T. We make use of 
the fact that for the ideal gas there exists a simple relation 
between 3 and other thermodynamical variables, namely: 
E = cyT, and we obtain the following system 

(C.E.) + q div u = 0 

(D.) g-j^r = f - grad p + X grad(div u) + fi div U 

> <?(cvT5T+ ? = + * A T + A (div u) * + 1 ^ U ^ 

(S.) p = R (> T. 

In the above system U denotes the deformation tensor (the 
symmetric part of the tensor f i e ld VS, where V i s the 
Levi-Civitta connection defined by the Riemannian metric g 
and "u is a time-de pendent 1-form on M corresponding u 
via the metric). In local coordinates 
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V * ! ^ 1 . U i j = i ( V ; 5 + 

U^ = g ^ g 3 " ^ , (div U)1 = U 1 ^ . . 

The d i f ferent ia l operators appearing on the right hand side 
of equations (D.) and (E.) do not involve time derivative, 
i . e . 

(div u ) ( t ,x ) = (div u t ) ( x ) , 

(AT) ( t , x ) = CATt)(x)f T t (x) s= T ( t f x ) , 

and so on. 
The time dependent vector f i e l d f in (D.) is given. I t 

has an interpretation as a f i e l d of external forces acting 
on the points of f lu id . The function Q in (B.) i s also a 
given function, and means an external heating of inter-
nal parts of gas (e .g . by a radiation). 

The unknown velocity vector f i e l d u appears in the sys-
tem of evolution equations ttot only in visible places, but is 
also hidden in the so called material derivative 

D 
DÏ ( * ,x ) ••h 

I t follows from the physical considerations, that i f we 
add to the system of evolution equations the in i t i a l data: 
uQ = u(CV) , ç0 = ç { 0 , ' ) and TQ = T (0 , ' ) (suff iciently, 
smooth) then the Cauchy problem should possess a unique solu-
tion ( in the case 3M 4 <t the boundary condition u t (x ) = 0 
for a l l t and for any x €3M is required). Of course, 
"should possess" one have to treat rather as a wishful think-
ing than as a rigorous mathematical statement. Nowadays the 
theory of nonlinear partial differential equations seems to 
be too weak to manage with this Cauchy (or mixed) problem* 
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3. Some remarks on solving the system 
First note that using (S.) one can eliminate the pressure 

p in equations (D.) and (£.). Thus we obtain the following 
system 
(C.3.) -jjf- + q div u = 0 

(Di) = f - R^grad T - HT gradQ + X grad div u + fidiv U 

(£'.) = ^ + 3 CAT +^(div u)2 + \ p U 1 ^ 

with unknown functions ^ and T and unknown vector field u. 
For this system the general theory of quasilinear equa-

tions of evolution, which was created by T.Kato (see [4]), is 
not applicable. The main obstructions here are the products 
of first order derivatives of u, which appear in (Ei). 

Now we calculate from (C.B.) and substitute it in 
(Ei). Thus we obtain the following equation: 

<»•> - + V + (I; div ")T = 
= ̂ ( A ( d i v u)2 u ^ + . 

Let us consider the case when a part of solution (u,T,(j) 
of the system ((C.E.), (D.J, (E ) is known,, namely: we 
first assume that u is given (e.g. from experimental measu-
rements). Then we can determine from the continuity equa-
tion and the initial condition (jQ = <j(0,*) (see [6] for de-
tails and formulas). Hence the problem is reduced and we can 
regard the equation (b"} as an equation with one unknown func-
tion T - all coefficients and the right hand side become known. 
This equation is linear and parabolic. The theory of such equa-
tions is very deep and strong nowadays. For instance, the re-
sults of L.HSrmander [l] and S.Kaplan [ 3 ] are immediately 
applicable to the considered equation. But we will not foliow 
further this "way, since it is possible to obtain the simpler 
equation for T from our system. 
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The structure of the s jstem of evolution equations fo r 
idea l gas lias 3everal remarkable propert ies . I n i t i a l l y , we 
wo.'ild l ike to point out the behaviour of (> . I t appears that 
i f j? and u are a '.mown part of so lut ion, then we need not 
integrate ( C . J . ) to obtain the density (> . One can express ^ 
by the 2 - j s t of T and 1 - j e t - o f u. Now we s t a te precisely 
th i s r e s u l t . 

T h e o r e m 1. Let u: H* Li —-Til be a given time 
p 

dependent vector f i e l d of c l a s s C and l e t T : R » L — b e 
a given function of c l a s s C^. We assume that there e x i s t s a 
posi t ive funct ion q : R*K—»-R such that (u,T,^) i s a so lu-
tion of the system ( ( E . E . ) , (Dl) , (3 ' . ) ) . Then 

+ ^ ( d i v u) 2 + \ |i U i J U ± j 
P 15m . 

P r o o f . The r e s u l t fol lows from the previus conside-
ra t ions and 3 i a calculated from (E1.'). 

One can eas i ly obtain a r e l a t i o n between p, T and u 
as a consequence of Theorem 1 and ( S . ) . 

C o r o l l a r y 1. The pressure p a lgebra ica l ly 
depends on the second j e t of T and the f i r s t j e t of u. 

C o r o l l a r y 2. The system of evolution f o r idea l 
gas can be reduced to equations containing u and T only. 

This reduction we obtain by subs t i tu t ing q in (C.E.) and 
(D.') by the r ight hand side of formula in Theorem 1. Then we 
obtain the equations in which third order der iva t ives of T 
and second der iva t ives of u appear. In these equations the 

der ivat ive " g a l so appears. The obtained system i s ra ther 
31 

complicated one, so there i s no reason for wri t t ing i t down 
here. The i n i t i a l data for th i s system are : T , u and . 0' 0 

" V ° d i v u ° ' 
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where U := UfO,*) is the deformation tensor calculated by 
differentiating uQ (the symmetrio part of VuQ ) . 

In the case when llj = Rn or M is a region in Rn, 
a vector f ie ld a is a family of n real valued functions 
of n+1 variables. The system "( (C.E.) , (D'.), (Ei')) consists 
of n+2 equations for n+2 unknown functions. The reduced sys-
tem consists of n+1 equations for n+1 unknown functions. 

The formula given in Theorem 1 is rather of some practi-
cal than a theoretical importance. It allows to determine the 
density of viscous ideal gas from measurements of velocity and 
temperature. 

4. The dependence of T on u 
Now we assume that u is a vector f i e ld of class Cp such 

that there exists ^ and T satisfying together with u the 
system ( (C .B . ) , (D. ) , ( E . ) ) . This assumption holds tjhro ughout 
thie chapter. Our purpose here is to give the formula which 
expresses T by u and„ (>. I f u and v are vector f ie lds 
on 1.1 then g(u ,v ) is a function. To simplify the notation 
we w i l l write (u,v) := g (u ,v ) . For instance: 

VUT = (u, grad T) . 

Let 

P1 := - 3 + X grad div u + fi div U^, 

P2 := q~2(jf + X grad div u + jjdiv U). 

Vie point out that under our assumption, the function q and 
the vector f ie lds P^, may be regarded as the known quan-
t i t i e s (since u and unit uely determine ) . 
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T h e o r e m 2. Let (u,T,g) be a solut ion of the 
system ( ( C . E . ) , (Di) , (Si')) such that u i s of c l a s s C 3 , 
Then T s a t i s f i e s the following equation 

+ aT = b, 

where the functions a and b are given by the following 
formulae 

a = - f - div u - A-k - U . grad In o ) 
c v cv ? ^ 

b = P1 " 5 (»> F 1>' 

P r o o f . We f i r s t ca lcula te grad T from the equa-
tion (Di) 

O 

grad T = ^ P1 - T grad In q . 

We put grad T into ( ¿ ' J 

41 " c f̂ div R F1 divtT &rad ln<?3 + (I; d iv a)T + 

+ (u, | P1 - T grad In $) = q. 

How we ca lculate the second divergence on the l e f t hand side 

| £ + - ^ ( g r a d T, grad In q ) + - (u, grad In q ) + 

+ - f - d i v u] = q + - ^ d i v | p i - l u . P ^ . 

Vie subst i tute grad T in the above equation once more 

I? + T Aln$ " s r a d l n ? > («rad ? ) + 
+ - f - o i v u ] = q + - J L - d i v | ^ { u . P ^ 7 - 5 ^ ( P r grad q ) . 
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The obtained above equation has the form given in statement. 
I t i s not hard to ver i fy the formulae for a and b by 
standard ca lculus . I t concludes the proof. 

From the continuity equation i t follows that in our case 
2 

the density function q i s of c lass C . Hence the functions 
a and b are continuous. The obtained f i r s t order p a r t i a l 
d i f f e r e n t i a l equation on T i s elementary and can be pretty 
easy integrated: 

( * S ) t 
i ( t f x ) = j T 0 ( x ) + J b ( s , x ) exp J a(ii,r)di?ds|-e:cp - J a ( e , x ) d s . 

O O J o 

The above formula allows to eliminate T form the equa-
t ion (Di) . However thic; formula i s not good enough for r e -

2 u ducting the system, since the derivative -Srr i s involved in 
3u 

the c o e f f i c i e n t b ( r e c a l l that P1 includes •^•J. But the 
formula on T can be converted in such way that the dependen-
ce on w i l l disappeer. 

Eow l e t 

'.Ve known that do not include -̂ ¡r and The r e l a t i o n between 

r.j and 12 i s e s follows 

-1 3u 
r1 = r 2 " $ at • 

hence 

ii us 

= q + b l - q+b2 - div ^ I f (a , I f ) . 

b = q+b2 - ^ 

do 
The continuity squstión allows to e.li.ninate ^ ±rom tne 
ibove equality 
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b = q + b 2 + ^ div ^ u - div | - ^ ( M l } • 

Kow we put the r ight hand side of the above equality under 
the in tegra l in the formula f o r T and'next we integrate 
the las t term by parts. I t leada to the fo l lowing r esu l t . 

T h e o r e m 3. Under the assumptions of Theorem 2 
we have the fo l lowing r e la t i on between T and u 

T = + T2 , 

where 

- 0 ( x ) - 2 Ì - (u 0 , u 0 ) + 

3 

T1 - - ^ I T d i v f 

and 

T 2 U , X ) = | T 

"t *3 v 

+ J |c5+b2+"c3Sr d i v d i V 2Ü u ~ aT-ijiStxIsxp J a(r ,x )d*dsl j 

t 
*exp - J a ( s , x )ds . 
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