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ON THE DEPENDENCE OF TEMPERATURE AND DENSITY
ON THE VELOCITY VECTOR FIELD IN THE MOTION OF VISCID GAS

1. Notation

let (i, g) be an n-dimensional Riemannian manifold with
boundary or not. By ¢ we denote a function RxM—=R which
is everywhere positive. This function descpibes the density
of gas at the time t., 4 time dependent velocity vector field
will be denoted by u, and ug := u{t,+) € r (IM) is the sec-
tion of tangent bundle TM which describes the velocity of each
point of gas at the time t, In the case when the boundary
M # § we need u to be tangent to the boundary, i.e.
ag{x) = u(t,x)e T3 for any xe€?3M, The distribution of tem-
perature we denote by T (T: RxM—=R), The pressure of gas
is a function p : Rxli —R, ,

The presented above objects form the full couple of time
dependent physical guantities characterising the ideal gas
and its evolution. But they do not give full characterization
of physical propertiss of ges such as viscosity, heat conduc-
tion and thermodynamical behaviour. We need severel constants
to complete the description of ideal gas, Firet of them it is
the universal gas constant R (which is thsz quotient of
Boltzmen’'s constant k and the molecular mess m,, R = k/m1).
By c, we denote the specific heat at constant volume, This
constant describes the heat reguired to riss the temperature
of a unit mass of gas by one unit et cconstent volume, in one
unit of %ime. There is s connection vetween R and ¢

ng=-

v!
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n
hnely: ¢ =—§l R, where n., denotes the degrees of freedom
M 2¢ 1 '
of molecule of gas (go Rv is an integer). The constsnt 2

denotes the conductivity. The constants { and A are the dy-
nemical and tue kinematic viscosities, For a monoatomic gas

A= —-%}1. “he arproximate equality holds for many kinds of

2. The system of evolution equations

The eguztions of motion for viscid fluids are derived from
physical consecvation laws in several monographies. We refer
t5> Shin-I Fei [5] and Thomas Hughes, Jerrold Marsden 2],
where also fundamental results and many topics of actual in-

teresi z:e presented.

The full gystem consists of the continuity equation (C.E.),
the dynsmical equation (D.) - here it is the Navier-Stokes
equation, the ehergy eghation {E.) and the state equation (S.).
One need zlso to add to'this systkm the thermodynamical squa=-
tions, which allow to express the internal energy E (which
appears in the energy equation) by gand T. We make use of
the fact that for the ideal gas there exists a simple relation
between & and other thermodynamical variables, namely:

3 = ch, and we obtain the following system

(Coiis) TI))%+ @div u =0

(D.) g-%% = f - grad p + Agrad(div u) + pdiv Uy
(3.)  gey Fg+ o 2%@):%% +e AT + Aoty WP puty
(so) P =RQTO

In the above system U denotes the deformation tensor (the
symmetric part of the tensor field VU, where V is the
Levi~Civitta connection defined by the Riemannian metric g
and U is a time~dependent 1-form on M corresponding u
via the metric). In local coordinates
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~ _ i _ 1 ~ ~
By meygs Uiy s m (B y v i)

ij _ 4l 3 Caio d i
U™ =g g mUlm’ (givU)~ =1U L3
The differential operators appearing on the right hand side
of equations (D.) and {B.) do not 1nvolve time derivative,
i.e.

{div u){t,x) = (div ut)(x),

(AT)(t,x) = (AT )(x), T.(x) := 2(t,x),

and so on,

The time dependent vector field f in (D.) is given. It
has an interpretation as a field of external forces acting
on the points of fluid., The function .Q in (BE.) is also a
given function, and -%% means an external heating of inter-
nal parts of gas (e.g. by a radiation),

The unknown velocity vector field u appears in the sys-
tem of evolution equations not only in visible places, but is
also hidden in the so called material derivative -

e .
(v,x) - LA (v,x) v“c(x’

It follows from the physical considerations, that if we
add to the system of evolution equations the initial data:

u, = ul{0,*), @, = ¢{0,*) and T = T(0,*) (sufficiently
smooth) then the Cauchy problem should possess a unique solu-
‘tion (in the case M # ¢ the boundary condition ut(x) =0
for all t and for any x €3M is required). Of course,
"should possess"™ one have to treat rather as a wishful think-
ing than as a rigorous mathematical statement., Nowadays the
theory of nonlinear partial differential equatioga seems to
be too weak to manage with this Cauchy (or mixed) problem.
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3. Some remarks on solving the system
First note that using (S.) one can eliminate the pressure
p in equations (D.) and (£.). Thus we obtain the following

gystem

(C.E.) 2L+ gdivu =0

(D{) @88 - £ - Rgarad T - RT gradg + A grad div u+ pdiv U
(BZ) ¢y Q %‘E— ~ RT —%% =-g—% + 2AT + A(div u)z pUlJU

with unknown functions @ and T and unknown vector field wu.
For this system the general theory of quasilinear egua-
tions of evolution, which was created by T.Kato (see [4]), is
not applicable. The main obstructions hers are the products
of first order derivatives of u, which appear in (E.).
Now we calculate -%% from (C.E.) and substitute it in
(B{). Thus we obtain the following squation:

B. a2 R g .)T =
(B.) I3 Q ( e iv-u
--—;E (J(div u)2 é-y UijUij + %%) .

Let us consider the case when a part of solution (u,T,g)
of the system ((C.E.}, (D!), (EJ)) is known, namely: we
first aseume that u is given (e.g. from experimental measu- .
rements), Then we can determine Q from the continuity equa-
tion and the initial condition ¢, = @(0,*) (see [6] for de-
tails and formulas). Hence the problem is reduced and we can
regard the equation (E.) as an equation with one unknown func-
tion T - all coefficients and the -right hand side become known.
This equation is linear and parabolic. The theory of such equa-
tions is very deep and strong nowadays. For instance, the re-
sults -of L.H¥rmander [1] and S.Kaplan [3] are immediately
applicable to the considered equation. But we will not follow
further this way, since it is possible to obtain the simpler
equation for T from our system. '
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The structure of tae systea of evolution ecuations for
ideal gas hss several remarkavle propsrties., Initially, we
wo:ld like to point out the behaviour of @ . It appsars that
if ¥ and u eare a known part of solution, then we need not
integrate (C.d.) to obtain the density Q. One can sxpress @
by tnsz 2-jet of T and 1-jet-of u., Now we ctate prscisely
this result.

The oren 1. Let us Rxil—=Til be 2 given time
dependent vector field of class c% and let T : Rxi —=z bs
a given function of class 03. /e assume that thers exists a
positive function @ : RxL—=R such that (u,?,¢) is & solu-
tion of the system ((5.E.), (D!), (3%)). Then

14 : 2 .1 . i)
e=-ﬁ-+zAT +,a]g;1v u) +5 pU Ui,j .
Cy IF * RT div u

Proof. The result follows from the previus conside-
rations and @ is calculated from (EV).

One can easily obtain a relation between p, T and u
as a consequence of Theorem 1 and (S.).

.Corollary 1. The pressure p algebraically
depends on the second jet of T and the first jet of wu.

Corollary 2. The system of evolution for ideal
gas can be reduced to equations containing u and T only,

This reduction we obtain by substituting @ in (C.B.) and
(D)) by the right hand side of furmula in Theorem 1. Then we
obtain the equations in which third order derivatives of T
and second derivatives of u appear. In these equations the

2%
derivative " 5 also appears., The obtained system is rather
t .
complicated one, so there is no reason for writting it down

here, The initial data for this system are: TO, u, and

r (O, ) -—T(H +2AT° + A(div uo)2 + %pﬁijﬁi;j) +
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where U := U(0,*) is the deformation tensor calculated by
differentiating u, (the symmetric part of Vi ).

In the case when M = R® or M is a region in R%,
a vector field u is a family of n real valued functions
of n+1 variables. The system ((C.BE.), (D), (EY)) consists
of n+2 equations for n+2 unknown functions. The reduced sys-
tem consists of n+1 equations for n+1 unknown functions.

The formula giVen in Theorem 1 1s rather .of some practi-
cal than a theoretical importance, It allows to determine the
density of viscous ideal gas from measurements of velocity and

temperature.

4, The dependence of T on u

Now we assume that u 1is a vector field of class o3 such
that there exists 8 and T satisfying together with u the
system ((C.E.), (Du), (E.)). This assumption holds throughout
thic chapter. Our purpose here is to give the formula which
expresses T by u and, @« If u and v are vector fields
on L then g(u,v) is a function. To simplify the notation
we will write (u,v) := g(u,v). For instance:

V. = (u, grad T),
Let
1 [2g . 2 1 id
g := E;?f(7¥'+ Alciv u)° + 5 P.U Uig)’
P, os= 02[f - o D4 4 2 grad div 4 + wdiv U
1= 8§ ¢ Dt & H ’
_2(

P2 = Q ff —unu + Agrad div u + pdiv U).

Yie point out that under our assumption, the function q and
the vector Tields P1, r, may be regerded es the known quan-
iities (since u and g, unicuely determine @ ).
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PTheorem 2, Let (u,T,q) be a solution of the
system ((C.E.), (D.), (E”)) such that u is of class C°,
Then T satisfies the following equation

oo
SIS
+
®
3
n
o
-

where the functions a and b are given by the following
formulas

R
8 -Qdivu-——Ae {u, grad lnq)

_ x g
b=g + o R div P1 - B (u,P1).

Proof. We firs.i‘: calculate grad T from the equa-~
tion (D:)
-8 T
gred T ‘T{'P1 - T grad 1ng.

We put grad T into (&f)

AT Q x . : (R : )
——dlv—P +—=— div|T grad 1ln + [+— div u)T +

2% [ 1 <, [Te 'Q] c,

+(u,%P1-Tgrad lng) =

Now we calculate the second divergence on the left hand side

AT X
+—— (grad T, grad 1ngo) + T - (u, grad lne) +
at ¢ [qu ’ S
R 43 - q 4% giv £ .8
+ < div u] =q + e.0 le‘R P1 - (u,P1).

We substitute grad T in the above equation once more

%—%+ T ve Alng - (u, grad 1ng) -c_zy(grad ¢, grad g} +
v
R .. o X ... € . Q x =
+——Cv div u] =G + 5,0 div 3 5= (u,P.]) -W (r1, grad g).
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The obtained above equation has thée form given in statement.,
It is not hard to verify the formulae for a and b by
gstandard calculus. It concludes the proof.

Proa the continuity eguation it follows that in our case
the density function ¢ is of class ¢°. Hence the functions
a end b are continuous. The obtained first order partial
différential equation on T 'is elementary and csn be pretty
easy integrated: .

t s t
T(t,x) ={ To(x)-+f b{s,x) exp I a(f,x)drd%}exp - j a(e,x)ds.
0 0

o]

The above formula allows to eliminate T form the equa-
tion (Di). However this formula is not good enough for re-
ducting tne system, siace the derivative -%% is involved in
the coefficient b (recall that P, includss %%). But the
formule on T can be converted in such way that the dependen~
ce on %% will disappesar.

Now let

N ST . .
by =gl div By £ (0,py), 1=1,2.
e known that ?2 do not include %%- and the relaiion vetween

21 and I2 is »g follows

Hance

; s -2 2 ® . - 1
b=Q+02--c£_;olve %—%u-ﬂ{?’—l{-olvg 1u-§(z;,u)}

3

The continuwity squetion allows to elluinate T +Ton tae

)

ceove eyuvality
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b =

Now
the
the

x_ i, 9iven 2 [ 2 .o _1 |
Q+b2 +—$ div q2 u 'a—t‘{cvR div e 2] (ll,ll)}
we put the right hand side of the above equality under
integral in the formules for T and ‘next we integrate
last term by parts. It leads to the following result.
Thoeoren 3. Under the assunptions of Theorem 2

we have the following relation between T and u

1 2’v
where
- 1 x Y
T1 -2T(u,u) -'qn'dlv e
and

t
]
0

(1]
(2]
(3]

(4]

D o(t,x) =4T (x) ==t (1 uy) + =g 2 dlv-i- +
22t T o'” 2R ‘Yo Cy 'R

s
(q+b2-+E$R-div Qi!é%i u - aT1)(s,x)exp I a(t,x)dtdéya
0o .

x@xp - | a(s,x)ds.

O.—'ﬁd‘
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