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Introduction 
In this paper we consider d i f f e r e n t i a l groups i . e . objects 

which are simultaneously d i f f e ren t i a l spaces and groups with 
the symmetry and the group operation smooth with respect to 
the structure of the d i f f e r e n t i a l space. For d i f f e ren t i a l 
groups, which are d i f f e rent i a l spaces of c l a s s SDQ (see [ 8 ] ) , 
we construct so called standard charts, which are very useful l 
in the investigation of th i s kind of d i f f e r e n t i a l groups 
(see C3], [4 ] ) . In Section 3 we give the following example 
of the application of standard charts (Thj. 2.2) s we prove 
that for every S)0-group G the group operations can be con-
tinously extend to the group operations on the completion 
of G. 

For a l l basic def init ions we re fer to [ 5 ] , [ 6 ] and [ 7 ] . 
A d i f f e rent i a l space wil l be denoted by (M,C), i t s tangent 
space at p«M by Tp(M,C) and itB topology by i ^ . I f 
f : ( M , C ) — ( N , D ) i s a smooth mapping, then i t s tangent mep-
ping at p€M will be denoted by * P 

1. Di f ferent ia l groups and tangent mappings to the symmetry 
and the group operation 

Assume G to be a group with the unit e. 
D e f i n i t i o n 1.1. The d i f f e r e n t i a l structure C 

defined on the set of elements of G wil l be call#d a d i f f e -
rent ia l group structure ou G i f the mapping 
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2 Z.Pasternak-Winiarski 

(1) Gx G €{g,h) — Q ( g , h ) = gh-1 €G 

is smooth with respect to differential structures C * C and 
C respectively, where C * C is the canonical differential 
structure defined on the Cartesian product G * G (see [5])i. 

If C is a differential group structure on the group G, 
then the pair (G,C) is called a differential group. 

Similary as in the Lie group theory we can prove the fol-
lowing theorem. 

T h e o r e m 1.1. If (G,C) is a differential group, 
then the symmetry inv(g) = g , a right translation R(g) = 
= ga and a left translation L(g) = ag are diffeomorphisma a 
of the differential space (G,C). Moreover the group opera-
tion 

G * G 3 ( g , h ) - — A(g,h) = gheG 

is a smooth mapping of the differential space (G*G, C * C) 
onto the differential space (G,C). 

P r o o f . The following mappings 

(2) G 9 g ^ i a ( g ) = (a,g)eGx G 

(3) G 3 g — - J a ( g ) = (g,a) 6 G " G 

are smooth with respect to the differential structures C and 
C *C, respectively (see [5]). Taking a = e we obtain that 
inv = Q ° i is a smooth mapping on (G,C). On the other hand e 
inv = inv and this implies that the symmetry is a diffeo-
morphism on (G,C). 

Hence the mapping 

Gx G3(g,h) B(g,h) = (g,h~1) e G x G 

is smooth on (G* S,.C»0) and we can conclude that the group 
operation A = Q ° B is smooth as a superposition of snooth 
mappings. The smoothnees of right and left translations fol-
lows now from equalities 
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D i f f e r e n t i a l groups 3 

R„ = A o j and L = A ° i . a u a a a 

- 1 - 1 Taking i n t o account t ha t R = R and L = L we 
e~ a" 

ob ta in t h a t r i g h t and " l e f t t r a n s l a t i o n s are diffeomorphisms 
of (G,C). 

Prom the gene ra l theory of d i f f e r e n t i a l spaces i t fo l lows 
t h a t we can i d e n t i f y the tangent space T̂  C x C) 
with the d i r e c t sum Tg(G,C) © Th(G,C) of tangent spaces 
Tg(G,C) and Th(G,C). The value of the pa i r (v,w) e 
e T g ( G , C ) 0 Th(G,C) on the f u n c t i o n f € C * C i s given by 
the formula 

(4) ( v ,w) ( f ) = v ( f » i h ) + w ( f » j g ) = 

(see [ 5 ] , I , §17). With the aid of t h i s formula we prove the 
fo l lowing theorem. 

T h e o r e m 1 .2 . Let (G,C) be a d i f f e r e n t i a l 
group. For any element ( g , h ) € G * G and any vec to r (v,w) e 
€T g (G,C) © Th(G,C) the fo l lowing equa l i ty i s s a t i s f i e d 

(5I> A * ( g , h ) ( v ' w ) = { R h ^ g v + ( L g W W ' 

where A i s the group ope ra t ion , R^ i s the r i g h t t r a n s l a -
t i o n and Lg i s the l e f t t r a n s l a t i o n i n the group G. 

More over 

(6) inv = - (L 0 ( L 1 ) 
6 g *e g~'*g 

f o r any g e G . In p a r t i c u l a r 

i n v * e = " i d T (G,C)' 0 

i s tha i d e n t i t y mapping on T (G,C). 

(7) 

whsM id, Te(G,CJ 
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4 Z.Pasternak-Winiarski 

p r o o f . F o r a n y f u n c t i o n f € C w e h a v e 

A*(e,h) ( v' w ) ( f } = ( v » w H f 0 A) = v(f ° A o ih)+w(f o A o = 

= v(f°R h) + w ( f L g ) = (\)*gv(f) + (lg)*hw(f) 

(see [4]). This proves the equality (5). 
Let us now consider the tangent mapping to F=(idG,inv):G-

-»• G * G at a e G. 7/e have 

( 8 ) = (idT ( G > C ), inv#g). 
O 

ihe superposition h o F is the constant map and therefore 
= 0 - From this and from (5) v/e have 

for any v eï (G,C) O 

- ( H J v + ( L ) 1
( i n v * g V ) = g " 1 * g E « g 1 

T a k i n g i n t o a c c o u n t ' t h a t t h e m a p ( L ) - i s i n v e r t i b l e w e 
6 *g 

c o n c l u d e t h a t f o r a n y g e G 

( 3 ) i n v = - f ( L 
^ " " I S V 1 9 (ft J . g * g 

Crt thq- ftther hand the identity L » 1 1 = id„ holds and 6 g " ' 
tllxc i.npliee that 
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D i f f e r e n t i a l groups 5 

or equivalently 

(10) i (L ) 1 1 ' 1 = (L 1 ) . 
. 6 * g " ' J g *e 

Applying (10) to (9) we obtain ( 6 ) . 
Bquality (7 ) fo l lows immediately from (6) and from the 

eq ua l i t i e s 

Le*h = (RflU = i dT h (G,C) 

f o r any h €G. 

2. D i f f e r e n t i a l groups of class tS)Q and standard charts 

Given a d i f f e r e n t i a l space (II ,C), a pair (U,c/>), where U 
i s an open nonempty set in LI and <p : U Rn i s a d i f f e o -
morphism of the d i f f e r e n t i a l space (U.Cy) onto the d i f f e r e n -
t i a l space (<f>(U), C°°(HnJ j y j J i s a chart on (M,C). Here Rn 

i s a r e a l n-dimensional spE.ce, 
I f f o r any pels there ex is ts a chart (U,<p) with peU 

then we say that (M,C) i s a d i f f e r e n t i a l space of class «Dq 

(see [ 2 ] , [ 8 ] ) . The most important resul t about the spaces 
of class <®0, we need, i s the fo l lowing 

T h e o r e m 2.1. Let (M,C) be a d i f f e r e n t i a l spa-
ce of c lass p €M and dim T (1-1,0) = k. Then there 
ex is ts a chart (U,cp) on (U,C) such that peU and 

lr 
<p : U — R . In other words the dimension of the image space 

lr 
R i s a minimal "possible. 

the proof we r e f e r to [ 2 ] . 
I t i s easy to see that a d i f f e r e n t i a l group (G,C) ia of 

class i f f there ex is ts some chart on (G,C). The main 
result of this section i s contained in the fo l lowing theorem. 

T h e o r e m 2.2. Let {G,C) be 8 c i i f l ' e rent ie l group 
of class «®0 and denote by k the dimension-of the t*n&9nt 
space T (GTC) at the unit e. Then there cr is ta s chart 
(U,p) on (G,C) sa t i s f y ing the fo l lowing condit ions: 
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(SC^) ( i ) U is a symmetric open neighbourhood of e; 
( i i ) <p i U — Rk j 
( i i i ) <p (e) = 0; 

oo k k k (SC2) there exists a mapping E€C (R * R ,R ) such that: 
( iv ) i f g,h fgh eu then 

<p( gh) = E(V (g) ,<p(h)) ; 

(v) D ^ x . O ) = D2B(0,y) = idRk 

for any x j e i p f O ) , where by D̂ B and DgE we denote the 
partial derivative with respeot to x and y respectively; 

oo k k ( SC^) there exists a mapping F e e (R ,R ) such, that 

V U " 1 ) = <P° inv(g) = F°y>(g)! 

for any g e U; 

( v i i } F is a difisomorphism of some neighbourhood 
of thé set <p(U) in Rk and 

DF(0) = -idHk, 

where DF(0) is a total derivative of F at the point 0; 
(SC^) there exist a number 0<m<1 and an open cube 

PCRk such that 
( v i i i ) <f>(U)cp ; 

( ix ) for the mapping 3 and f o r any x, y.̂  ,y2 € 
e clP (the closure of P) the following inequality is satisfied 

||e(x,y2)-S(x,y1)|| » tn|Iy2-y1|J, 

where || • || i s the euclidean norm in Rk ; 

(x ) f o r any neighbourhood V of e in G 
there e;cists a number r > 0 such that f o r any g 6 D 

li[(p(g) (p(b) c (p(gv , 

\r 
where X(<p(g),r) i s the open ba l l in H with the center at 

and ths radius r . 
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Dif fe rent ia l groups 7 

D e f i n i t i o n 2 . 1 . I f (U,<p) s a t i s f i e s condi-
t ions (SC1) - (SCj4), we c a l l i t a standard chart on (G,C). 

R e m a r k . We spli t the proof of the above theorem 
into several parts. The idea of the proof i s that we can 
obtain a standard chart from each chart by a suitable r e -
s t r i c t i o n . 

P r o p o s i t i o n 2 . 1 . For any differential group 
(G,C) of c lass £>0 there e x i s t s a chart (Uf<p) on (G,C) 
which s a t i s f i e s the condition (SC.,). 

P r o o f . Note that i f (U^,^) i s a chart on (G,C) 
and U i s an open subset of U.,, the pair (U,<p|y) i s 
also a chart on (G,C). 

From Theorem 2.1 there e x i s t s a chart (U.,,<p.,) on (G,C) 
such that eeU., and i s a map of U., into R k , where 

K = d i m T Q ( G , C ) . I f we p u t U = U ^ U ^ 1 (U^ - 1 = i n v ( U . , ) ) 

and for any geU ip(g) = ^ ( g ) - ^ ( e j , we obtain the chart 
(U,<p) sa t is fy ing (SC.,). 

P r o p o s i t i o n 2 . 2 . For any d i f f e r e n t i a l group 
(G,C) of c lass there e x i s t s a chart (U,y) on (G,C) 
which s a t i s f i e s conditions (SC.,) and (SC2) . 

P r o o f . Let (U^,^) be a chart on (G,C) which 
s a t i s f i e s (SC.,). Choose a neighbourhood U2 of e in G 

such that u|cu. , . The mapping $ : ^(Ug) x ^ ( U g ) — R k de-
fined for any x ,y e (f̂  (U2) by the formula 

$ ( x , y ) = V l (<p71(x)<p-1(y)) 

i s smooth with respect to the d i f f e r e n t i a l structure 
C°°(Rk* (u ) ( g e e C5], I , §10) and therefore 

there e x i s t s an open neighbourhood IB of the "point 0 = (p(e) 
in Rk and,a mapping B €C°° (R k * Rk ,Rk) such that 

* I (BKB^C^ (U2)« ^ (U2)) = B|(BKB)n(V»1(U2)KV1(U2))-
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A 
P u t U , = (p!j" ( B ) / - \ U 2 and <pj = ( p ^ y • Now i f g , h , g h 6 U ^ , 

we h a v e 

( 1 1 ) <f3(gh) = <(>^H<P3{g))<p^(<P3(h))] = 

= $ ( < P 3 ( g ) , V 3 ( h ) ) = B ( v 3 ( g ) , V > 3 ( h ) ) . 

H o t » t h a t f o r any g e l ^ 

B ( t p 3 ( g ) , 0 ) . = S ( < p 3 ( g ) , 9 0 3 ( e ) ) = v> 3 (ge) = < p 3 ( g ) , 

3(0,v>3(g)) = 3(^3(6),p3(g)) = <p3(eg) = <pj[g), 

and t h e r e f o r e 

(12) 
C ^ i ^ f g l . O ) . ^ = ( E ( . , 0 ) o = 

The a a p p i n g : U 3 — R ^ i s a d i f f e o m o r p h i s m on t h e 

i m a g e and f o r any g f i U , d i m T ( U , , C n ) = k . T h i s i m p l i e s 
J 6 J u 3 

t h a t t h e m a p p i n g 

S V U 3 ' C U 3 , - ^ V i f i ) ( R k ' C e 0 ( H k , ) " R k 

jr 
i s a n i s o m o r p h i s m o n R . T a k i n g t h e s u p e r p o s i t i o n o f b o t h 

—-i 

s i d e s o f e q u a l i t i e s ( 1 2 ) w i t h t h e m a p p i n g ( ^ „ g ) w e o b t a i n 

f o r any g e u^ 

D . , E (< i p 3 ( g ) , 0 ) = i d R k and D g S f O ^ i g ) ) = i d R k . 

F o r U := l ^ n U ^ 1 a nd y = y we o b t a i n t h e c h a r t (U,<p) 

o n ( G , C ) w h i c h s a t i s f i e s (SC- j ) and ( S C g ) . 
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Differential groups 9 

P r o p o s i t i o n 2.3. For any differential group 
(G,C) of class 3)q there exists a chart (U,<p) on (G,C) 
which satisfies conditions (SC^) - (SC^). 

The proof of the existence of a mapping P which satis-
fies the condition (vi), is similar to the proof of the exis-
tence of the mapping E in the above proposition, Therefore 
we omit the details. Hence let us suppose that (U.,,».,) is 

k k 
a chart on (G,C), which together with some map P€C°°(R ,R ) 
satisfies conditions (i) - (vi) of Theorem 2.2. Prom (vi) it 
follows that 

Dp(°> = 1 W inv«e' 

But inv^g = Qj (see Theorem 1.2) and thus we have 
0 ' 

DF(O) = o(-idTe(GfC)) o ( < ^ e r 1 = -idRk. 

This implies that there exists an open set B c r such that 
0€B and F|j is a diffeomorphism. If we take now U : = 
:= (p^ (B) r> inv(<p^ (B)) and y):= w e obtain the chart 
(U,cp) on (G,C) satisfying conditions (SC-j) - (SC^). 

l e m m a 2.1. If E e c°°(Rk * Rk,Rk) and D2E(.0,0) = 
= id v, then for any number m<1 there exists an open cube 

R 
P in R k such that 0 e p and 

(13) |BU,y2)-E(x,7l)||>m8y2 - y.,|| 

for any x,y.|,y2€clP. 
P r o o f . Let for any x,yeRk A(x,y) := D2E(x,y)-id k, 

k • j. R If L(R ) is the vector space of linear operators on R , the 
mapping A : R k * R k — - L(R ) is continuous with respect to 
the norm in L(Rk). Moreover A(0,0) = 0. Now if m<!|, then 

k ; 
there exists an open cube PcR such that 0€P and for any 
x,y e clP ||A(x»y)|| <1 - m. Then for any x,y1ty2€ clP we have 
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10 Z.Pasternak-Winiarski 

1 
3 (x f y 2 ) - E ( x , y i ) = J D 2 B (x ,y 1 + t ( y 2 - y 1 ) ) ( y 2 - y 1 ) d t = 

0 
1 

0 
and, as a consequence, 

1 
||E(x,y2}-B(x,yi)||>||y2-7l|| - J (l-m)|y2-y1|fdt = 

0 

L e m m a 2.2. I f E € C 0 0 ( H k « H k , H k ) and P i s ail 
k 

open cube in R such that O e p and fo r some 0 < m < 1 and 
any x , y 1 f y 2 e c l p the inequality (13) holds, then 

(a) for any x e c l P the mapping E (x , « ) |p i s a d i f f a -
omorphism; 

(b j for any neighbourhood Y of 0 in Rk there exists 
r > 0 such that for any x e c l P 

K (E (x ,0 ) , r ) CB (x ,Y ) , 

whdre K (E (x ,0 ) , r ) is the open ba l l in Rk with the center 
at E(x,0) and the radius r . 

P r o o f . The statement (a ) fol lows immediately from 
the inequality (13). For the proof of (b ) let us consider 
the number £ > 0 such that c l K ( 0 , e ) c P . The mapping 
E (x , « )|p i s a diffeomorphism fo r any x ec lP and therefore 
E (x ,K(0 ,e ) ) is a bounded region in Rk . Moreover 
<) [E (x ,K (0 ,£ ) ) ] = E (X,3K(0,E ) ) (35 is a boundary of B ) . Prom 
(13), for any z € 3 [ E ( x , K ( 0 , e ) ) ] 

|| z - E(x,0)|| > me . 

Then fo r any x eclP 

K(E(x,0) ,mg)c E(x,K(0, E) ) . 

This gives the proof of (b ) f o r Y = K ( 0 , e ) . 
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Different ia l groups 11 

As an immediate consequence we obtain the proof in the 
general caBe. 

P r o p o s i t i o n 2.4. For any dif ferentitil group 
(G,C) of c la s s 4bQ there e x i s t s a chart on (G,C) 
which s a t i s f i e s the conditions (SC^) - (SC^). 

P r o o f . Fix a number 0 < m <1 and choose a ohart 
(U.j.p.j) on (G,C), which s a t i s f i e s conditions (SC1) - (SC-j). 

Let S e C ° ° ( S k « R k , R k ) be such as in (SC2) . We have 
DoE(0,0) = id v and therefore we may choose an open cube 

ir R 
P cR containing 0 such that inequality (13) i s s a t i s f i e d 
for any x , y i , y 0 6 c l P . Let U be a symmetric neighbourhood 

P 1 
of the unit e in G such that U c<p^'(P). Moreover, take 
cp = «p^u« I t i s easy to see that (U,<p) i s a chart on (G,C) 
sa t i s fy ing (SC.,) - (SC^) and the points ( v i i i ) and (ix) of 
(SC^). Then i t remains to prove that (U,(p) s a t i s f i e s the 
condition (x) . 

Let V be an arbitrary neighbourhood of e in G. 
Choose the number e > 0 such that (K(0,e|))£Vr>U and 
clK(O fe) c P . Then from Lemma 2.2 there ex i s t s r > 0 such 
that for any x ec lP 

K ( S ( x , 0 ) , r ) c E(x ,K(0,e)) . 

For any g € u we have 

(14) K( V (g ) , r ) = K(B(<p(g) ,0) ,r)CE(y(g) ,K(0,e)) . 

Let us f i x g e U and l e t y be an arbitrary element of 
K(<p(g),r)n<p(U). From (14) there ex i s t s z e K ( 0 , e ) such 
that y = E(<p(g)rz). Moreover note that <p(U) = E(<p(g) (g"1Ul)) 
and <p.,(g~1U) c (^(u 2 ) cp% Prom this and taking into account 
that B((p(g),*) |p i s an one to one map we obtain that 

z6<^(g~ 1 U). As a consequence we have that z e ^ ( g ~ 1 U ) n 
oK(0,e) c ^ ( g ' ^ r k V o U ) and thin z = ^ ( h . , ) , where 

h1 € T n g " 1 D n U , This implies that y = B(cp(g),z) = 
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= Ef^ (g) (h1)) = ^(gh^. Bat gfc^egVnU and therefore 
y e <p(gVnU). This completes the proof of this proposition 
as well as the proof of Theorem 2.2. 

Let us note that if (U>(p) is a standard chart on a dif-
ferential group (G,C) and D^cd is an open symmetric 
neighbourhood of the unit e in G, then (U^,Vjy ) is also 
a standard chart on (G,C). ^ 

The standard charts are very convenient in the investiga-
tions of differential groups of class S)Q (see [3], f4]). 
In the next section we give an example of the application of 
the notion of the standard chart. 

3. The completion of a differential group of class SSn 
Given a topological group G and neighbourhood of the 

unit V CG, two elements g,heG are said to be closed of 
order V with respect to the left^jright) uniform structure 
on G if g"1beV (hg~16V). It is well known, that if G 
is a Hausdorff space, then there exists a complete uniform A A A A 
space Gg (Gp) such that G is a dense subspace of Gg (G^) 
with respect to the left (right) uniform structure on G 
(see [1], II, III). •A A 

On the uniform space G_ (G_) there exists a group struc-b r ^ ^ 
ture consistent with the uniform structure on G„ (G_) and o X̂  
with the group structure on G iff the following condition 
is satisfied: 

(C^) for any left Cauchy filter 7 on G, the image 
inv(T) ={inv(A)CG : 4 6T} is also a left Cauchy filter 
on G (see [1] III). 

Here we shall prove that any differential group of class 
3)q fulfils the above condition. 

Let U be an open subset of the topological group G. 
By U we denote the set of all left Cauchy filters T on G 
such that U « ? . 

i-ro p o s i t i o n 3.1. Let G be a topological 
group, i'hen the condition (C^) is equivalent to the following 
condition 
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(C2) there e x i s t s an open symmetric neighbourhood U' of 
the unit e in G such that f o r any l e f t Cauchy f i l t e r A 
^ e U the image inv(?) i s also a l e f t Cauchy f i l t e r on G. 

P r o o f . The implication (C^) = » (C2) i s obvious. 
Suppose that a topological group G f u l f i l s the condition 
(C2) and l e t UCG be such, as in (C 2 ) . I f 7 i s a l e f t 
Cauchy f i l t e r on G, then there e x i s t s e spt A e 'i such 
that f o r any two elements g , h e A g " ^ h e u . I f we f i x g eA, 
then g"1A = L _ 1 ( A ) c U and the l e f t Cauchy f i l t e r L «(?) g-" ' ^ ' 
i s an element of U . Prom (C ?) inv(L . . (9)) = R ( inv(7) ) 

g 6 

i s a l e f t Cauchy f i l t e r on G. Then inv(3) i s also a l e f t 
Cauchy f i l t e r on G. 

Now l e t us consider a d i f f e r e n t i a l group (G,C) of c lass 
3)q. The group G with the topology i s a Hausdorff spa-
ce because the i n t e r s e c t i o n of a l l neighbourhoods of the unit 
e i s equal to the single point set { e } (see [ 1 ] , I I I ) . 
So G can be ident i f ied with the dense subspace of some com-A plete uniform space G . s 

T h e o r e m 3 . 1 . I f (U><?) i s a standard chart 
on a d i f f e r e n t i a l group (G,C), then the mappings (p and 

are uniformly continuous with respect to the l e f t uni-
te form structure on U and the usual uniform structure on R . 

P r o o f . Let a mapping E e c°° (Rk * R k ,R k ) and a cube 
k 

P c R be such as in (SC2) and (SC^). Choose for a given £ > 0 
a number 6 >0 such that for any x , y ^ , y 2 e c l P , i f 
| | 7 2 1 1 I < ^ ' t h e n l|B(x,y2)-B(x,y1)||< 6 . i t i s possible be-
cause of the uniform continuity of the mapping B on 
clP * c l P . How caoose a neighbourhood of the unit V c u such 
that for any z e V || cp(z,)|| < 6. I f h , g e u and h € g V , then 

II <p(h) -<p(g) || = || <p(gz)-<p(g)|| =|| E(<p(g),v>U))-3(v(g),v(e)|| < £ . 

This proves the uniform continuity of (p. The uniform c o n t i -
nuity of ( f o l l o w s immediately from the point (x) of 
Theorem 2 . 2 . 
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T h e o r e m 3.2 . I f (G,C) i s a d i f f e r e n t i a l group 
of c las s ¿DQ, then there ex i s t s a group structure on G0 

consistent with the uniform structure on G0 and with the 
group structure on G. 

P r o o f . I t s u f f i c e s to prove that G f u l f i l s the 
condition (C 0 ) . Let us choose a standard ohart (U,q>) and 

Oo lr lr a mapping F e C (R ,R ) such as in Theorem 2 .2 . Note that 
P i s uniformly continuous on <p(U) (̂ p(U) i s a bounded set if 
in R ) and from Theorem 3.1 i t follows that the symmetry 
invjy i s uniformly continuous! with respect to the l e f t uni-
form structure. Now i f a f i l t e r S" « U s , then 3B = 
= { A n U c u j A e f } i s a l e f t Cauohy f i l t e r on U and 
inv(J3) i s a l e f t Cauchy f i l t e r on U. On the other hand 
inv(JB) i s a bas i s of the f i l t e r inv{9T). This implies that 
inv(?) i s a l e f t Cauchy f i l t e r on G (see [1 ] , I I ) . 
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