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DIFFERENTIAL GROUPS OF CLASS &), AND STANDARD CHARTS

Introduction

In this paper we consider differential groups i.e. objects
which are simultaneously differential spaces and groups with
the symmetry and the group operation smooth with respect to
the structure of the differential space. For differential
groups, which are differential spaces'of class £D° (see [8]),
we construct so called standard charts, which are very usefull
in the investigation of this kind of differential groups
(see [3], [4]). In Section 3 we give the following example
of the application of standard charts (Th, 2.2): we prove
that for every & -group G the group operations can be con-
tinously extend to the group operations on the completion
of G.

For all basic definitions we refer to [5], [6] and [7].
A differential space will be denoted by (M,C), its tangent
space at pe€M by T (M,C) and its topology by Tee If
f£:(M,C}) — (N,D) is a smooth mapping, then its tangent mep-
ping at p€M will be denoted by f*p.

1. Differential groups and fangent mappings to the symmetry
and the group operction

Ltssume G to be a2 group with the unit e.

Definition 1.1, The differential structure C
defined on the set of elements of G will be céiloa a diffe~
re¢ntial group structure on G 1if the mapping
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2 Z.Pasternak-Winiarski

(1) GxGe(g,h)—=Q(g,h) = gh™ '€

is smooth with respect to differsntial structures CxC and
C respectively, where CxC 1is the canonical differential
structure defined on the Cartesian product GxG (see [SJﬁ.

If C is a differential group structure on the group G,
then thevpair (G,C) 1is called a differential group.

Similary as in the Lie group theory we can prove the fol-
lowing theorem.

Theorem 1.1 If (G,C}) is a differential group,
then the symmetry inv(g) = g'1, a right translation Ra(g) =
= ga and a left translation L_(g) = ag are diffeomorphisms
of the differential space (G,C}). Moreover the group opera-
tion

GxG3(g,h)—=4(g,h) = gh et

is a smooth mapping of the differential space (Gx G, CxC)
onto the differential space (G,C).
Proof. The following mappings

(2) 69g—=1i.(g) = (a,8)€GxG

(Svﬁ-) EG*G

(3) 63 g —=3,(8)

are smooth with respect to the differential structures C and
C»xC, respectively (see [5]). Taking a = e we obtain that
inv = Q°i, 1is a smooth mapping on  (G,C). On the other hand

inv = inv™) and tais implies that the symmetry is a diffeo-

morphism on (G,C).
Hence the mapping

GxG3(g,h) —=B(g,h) = (g,h”1)ecxq

is smooth on (Gx G, CxC) and we can conclude that the group
operation ‘A =QoB is smooth as a superposition of smooth
mappings. The smoothnees of right and left translations fol-
lows now from equalities
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Diiferential groups 3

Ra=Aoja and L _=4o1i_,

-1

Taking into account that RZ' = R and IT7V =1 we
a8 ?-1 a a'1

obtain that right and ‘left trenslations are diffeomorphisms
of (G,C),

From the general theory of differential spaces it follows
that we can ldentify the tangent space T( ’h)(Gx G, CxC)
with the direct sum Tg(G,C) ® Th(G,C] of tangent spaces
T (G,C) and Th(G,C). The value of the pair (v,w) e
eTg(G,C) ©) Th(G,C) on the function fe€CxC 1is given by
the formula

(4) (vyw)(£) = v{fedy) + wlfed,) = (Lp), V(L) +{g )y pwlf)
(see [51, I, §17). With the aid of this formula we prove the
following theorem.

Theorem 1.2. ILet (G,C) bve a differsntial

group. For any element (g,h)€GxG and any vector (v,w)e
eTg(G,C) ® Th(G,C) the following equality is satisfied

(51,) A*(g,h)(v’w) = (Rh)*gv + (Lg,)*hw’
where A 1s the group operation, Ry is the right transla-

tion and L8 is the left trenslation in the group G.
Morsover

(6) inv, = ~(L _,} (L _,)
*g g-‘l xe g—‘l
for any ge€ G, In perticular

(n inv, = -id

whs e idTe(G,C) ig the identity mapping on T (G,C).
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4 Z.Pasternak-Winiarski

¥Yroof. For any function f €C we have

A*(g’h)(v,w)(f) = (vyw)(fod) = v(fvoih)+w(f°A Ojg) =
= v(foRh) + w(f°Lg) = (Rh)*gv(f) + (Lg)*h-w(f)

(see [4]). This proves the equality (5).
Let us now consider the tangent mapping to F=(idG,inv):G-’
- Gx G at 2€G. We have

(8] | Teg = (idTg(G.C)’ invygle

The esurerposition 4o F 1is the constant map and therefore
(io F)«g = bup(g) ® Fug = 0+ From this and from (5) we have
for any v ei‘g G,C)

oF v = A (idTg(G’c)v,inv*gv) =

*(2,8"7)

1(:i.nv’”gv) = 0,

= (R L
( g_,)'gv + (L,)

*g

Taking into account that the map _('Lg) .q 18 invertible we
: *
conclude that for any geg &

' -1
(9) tnv, = _[u ) o(R ) .
& & ng™] g g
0¥ tha other hand the identity Lgo L - E idG holds and

&
ti4ic implice that

(i oL ) = (L) oL ) = id
g sty Ly R T,(6,C)
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Differential groups 5

or equivalently

-1
0 L = (L .
(10) [( g)*g_1] e

Applying (10) to (9) we obtain (6},
Bquality (7) follows immediately from (6} and from the
equalities

Lewn = (Re)*h = 1dTh(G,C)
for any h €G,

2. Differential groups of class &) and standard cherts

Given a differential space (I1:,C), & pair (U,¢), where U
is an open nonempty set in LI and ¢: U ~—=R? ig a giffeo-
morphism of the differeritial space (U,CU) onto the differen-
tial space (¢(U), c°°(R“)¢(U)) is a chart on (M,C). Here R"
1s a real n-dimensionagl spece,

If for any pe€k there exists a chart (U,p} with peU
then we say that (M,C) is a differential space of class $o
(see [2], [8]). The most important result sbout the spaces
of class ,, we need, is the following

Theorem 2,1, Let (K,C) be a differential spa=-
ce of class'i)o, p€M and dim T (1,C) = k. Then there
exists a chart (U,¢) on (M,C) such that pe€U and
¢ +: U—=R", In other words the dimension of the image space
RX 1s & minimal possible,

Fow the proof we refer to [2].

It is easy to see that a differential group (G,C) is of
class .30 iff there exists some chert on (G,C). The nain
result of this section is contained in the following theorem.

Theorem 2,2, Let {G,C} be g difrerentizl pgroup
of class J)o and denote by k +the dimensios.of the tenssnt
space Te(G,C) at the unit e, Then there :xists 2 chert
(Uy¢) on (G,C) satisfying the following conditions:
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(SC1) (1) U is a symmetric open nedghbourhood of e;
(11) ¢: U — R
(i1i) ¢@l(e) = 0;

(SCZ) there exlsts a mapping EEC“(ka Rk,Rk) such that:
(iv) if g,h,gh €U +then

p(gh) = E(e(g),plh));

(V) D1E(XQ0) = D2E(0’y) = ide

for any x,ye€@(U), where by D, and D,E we denote the
partial derivative with respect to x and y respectively;
(5C5) there exists a mapping Fec® (R¥,RX) such that

®(3™1) = @o inv(g) = Foplg)l
for any g €U;
(vii) F is a diffeomorphism of some neighbourhood
k -
of the set @(U) in R~ and

DF(0) = -idgk,

where DF(0) is a total derivative of F at the point 0;
(SC4) there exist a number 0<m<? =and an open cube
PC-Rk such that
(viii) (U) c P;
{ix) for the mapping E and for any X, J4,¥, €
€ c1P (the closure of P) the following inequality is satisfied

"E(X’YQ)'W(ihy‘])" > m"y2'y1",
where ]I -" is the euclidean norm in Rk;
x) for any neighbourhood V of e in G

(
there exists a number r>0 such that for any gé€U

elgl,r)n (V) c plgVnl),

k

where X(e(g),r} is the open ball in R~ with the center at

¢(z) ond tas radius .
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Differential groups i 7

Definition 2.1, If (U,p) satisfies condi-
tions (SC1) - (Sq4), we call 1t a standard chart on (G,C).

Remark. We split the proof of the above theorem
into several parts, The idea of the proof is that we can
obtain a standard chart from each chart by a sultable re-
striction,

Proposition 2.1, For any differsntial group
(G,C) of class D, there exists a chart (Uy9) on (G,C)
which satisfies the condition (5C,).

Proof. Note that if (U,,p,) 1is a chart on (G,C)
and U is an open subset of U,, the pair (U,¢|U) is
also a chart on (G,C).

From Theorem 2.1 there exists a chart (U1’¢H) on (G,C)

such that eeU1 and ?, is a map of U1 into Rk, where

k = dim T(G,C). If we put U = U;nUT' (U7 = inv(u,))
and for any geU ¢(g) = ¢,(g) - fp1(e), we obtain the chart
(U,p) sotisfying (SC,).

Proposition 2.2 For any differential group
(G,C) of class D, there exists a chart (U,p) on (G,C)
which satisfies conditions (SC,I) and (802).

Proof. Let (U1,<p1) be a chart on (G,C) which
satisfies (SC1). Choose a neighbourhood U, of e in G

; "2 . k
such that U;cU,. The mapping § : (p1(U2) x ¢1(U2)——R de-

fined for any x,y e<p1(U2) by the formula

B(x,3) = 94007 (x)p7 (7))

is smﬁothkwith respect to the differential structure
(o -]

g
¢ (R*=xR )¢1(U2)x¢1(U2) (see [5], I, §10) and thersfore
there exists an open neighbourhood [B of the point 0 = ¢{e)
in RX and a mapping E€C™(R¥xRK,RK) such that

®1(BxB)n (g (Up)x 0y (Up)) = BI(BeB)nlg, (Uy)ne, (U )
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8
- _ o= } .
Fut Uj = @] (B)f\U2 and ¢ = ‘P1|U3' Now if g,h,gh€Us,

we have

o, e (9508 07" (@5(n1)] =

§(¢3(g),¢3(h)) = E(¢3(8) v‘PB(h) Je

(11) V3(gh)

Note that for any geU3

p4lee) = psle),

E(py(g),0) = B(py(8),p5(e))

p4leg) = p;(8),

#0,05(e)) = Elpyle),p5(e))

and therefore

Dyile3(8)10) e 9y, = (B(+20) e p3)yg = @30
(12) -
DQE(Or(PB(g)) ° (PB*S = (E(O’.) °(P3)*g = %*g-
The mepping @ : Uy —RrE is g diffeomorphism on the
imege and for eny g€U, dim T_(U,,C; ) = k. This implies
3 9im BglU30 0y, ~

that the mapping

. o K A% oK)y o ok
Prug Tg(UB,CUB) L@glg)(R ,0T(R®)) 2 R

Taking the superposition of both

igs an isomorphism on Rk.
)=1 we obtain

sides of equalities (12) with the mapping (go3*g

for any g 6U3

D1E(¢3(g),0) = idgk and D,E(0,p4(g)) = idgk.

-1 .
For U := U3nU;" and ¢= g3|y we obtain the chart (U,p)

on (G,C) which satisfies (SC1) and (SCQ).
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Differential groups 9

Proposition 243 For any differential group
(G,C) of class £D0 there exists a chart (U,p) on (G,C)
which satisfies conditions (SC1) - (SCB)

The proof of the existence of a mapping F which satis-
fies the condition (vi), is similar to the proof of the exis~
tence of the mapping E in the above proposition, Therefore
we omit the details. Hence let us suppose that (U1,qH) is
a chart on (G,C), which together with some map FtEC°°(Rk,Rk)
satisfies conditions (i) - (vi) of Theorem 2.2, From (vi) it
follows that

DF(0) ® 0y, 0 = Pixg ® 10V, q-

But inv = -idT (e,C) {see Theorem 1.2) and thus we have

; -1
DF(0) = @1pe ° (-2 (g,c)) © (P10e) ™ = -1 i

This implies that there exists an open set BCRk such that

0O€B and FIB is a diffeomorphism, If we take now U :=

1= '1(B)ninv((p11(B)) and @i= IOl obtain the chart

(U,) on (G,C) satisfying condltlons (SC ) - (SC )e
Lemma 2.1. If BEe€C™(R kaRk) and DE(0,0):

= ide, then for any number m <1 there exists an open cube

P in RX such that 0O€P and

(13) "E(x952)‘E(x971 )" ? muyz - 51"

for any XyJq9s75 € clP.
Proof. Let for any x,yeR Alx,y) := D2E(x,y)-1d X

If L(R¥) 1is the vector sgace of linear operators on Rk the
mapping A : Rk'R —= L(R™) 1is continuoue with respect %o

the norm in L(Rk)_. Moreover A(0,0) = O, Fow if m<‘|, then
there exists an open cube PC R® such that 0 €P and for any
X,y € c1P "A(x,y)" <1 - m. Then for any X,¥4»3,€ c1P we have
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10 Z.Pasternak-Winiarski

1
E(X;72) - E(X’y1) J DQE(X:31+t(3’2'§’1))(y2'y1)dt =
0

1
= ¥p-¥q * j' A(x,34+t(35-34 1) (3,7, )48

0 ’ .

and, as a consequence,

. 1 |
E(x,3,)-E(x,3 ) 25,774 -f (1-m)f 3=y, ][t = alyo-y,)
0 ' :

Lemma 2.2 If EeC®(RExRX,R¥) and P is an
open cube in R¥ such that 0O€P and for some O<m<1 and
any x,34,3,€ ¢1P the inequality (13) holds, then

{(a) for any xeclP the mapping E(x,-)lP is a diffe-
omorphism;

(b) for any neighbourhood Y of 0 in R
>0 such that for any x €clP

k there exists

X(E(x,0),r) CE(x,Y),

where K(BE(x,0),r) is the open ball in RE with the center
at E(x,0) and the radius r.

Proof. The statement (a) follows immediately from
the inequality (13)}. For the proof. of (b) let us consider
the number € > 0 such that ¢1X(0,e)cP. The mapping
E(x,-)lP is a diffeomorphism for anmy x €clP and therefore
B(x,K{0,€)) 1is a bounded region in Rk. Moreover
’b[E(x,K(O,E))] = B(x,0K(0,e}) (3B 1is a boundary of B). From
(13), for any z €3[E(x,K(0,€)]]

|z - E(x,0)] > me .

Then for any x €clP

‘ K(E(x,0),ng) c E(x,K(0, &) ).
This gives the proof of (b) for Y = X(0,g).
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Differential groups . 11

As an immediate consequence we obtain the proof in the
general case,

Proposition 2.4, For any differential group
(G,C) of class &  there exists a chart (U,p) on (G,C)
which satisfies the conditions (SC ) - (SC )e

Proof. Fix a number 0< m < { and choose a chart
(Uy,94) on (¢,c), which satisfies conditions (SC.') - (SCB)'

Let BeC™ (RExR5,R¥) be such as in (SC,). We have
D2E(0,0) = 1d_, and therefors we may choose an open cube
R

pcRE containing O such that inequality (13) is satisfied

for any XyJ4135€ clP., Let U be a symmetric neighbourhood
of the unit e in G such that UZc q;'1(P). Moreover, take
¢ = ¢y ye It is easy to see that (U,(p) is a chart on (G,C)
satisfying (SC1) - (SCB) ~and the points (viii) and (ix) of
(SC,). Then it remains to prove that (U,p) satisfies the
condition (x).

Let V Dbe an arbitrary neighboui-hood of e in G,
Choose the number € >0 such that (p11(K(0 EI))CVr\U and
c1X(0,e) cP., Then from Lemms 2,2 there exists r>0 such
that for any xeclP

K(8(x,0),r) c B(x,K(0,€)).

For anj 8€U we have

(14) K(e(g),r) = K(E((P(Q),O),I‘)C E(?(S) ,K(O,E)).

Let us fix g€U and lqt ¥y be an arbitrary element of
K(o(g),z)n@(G)., Prom (14) there exists 2z €K(0,&) such
that y = E((p(g),z). Moreover note that @(U) = E(cp(g),v1(g'1U1))
and (p1(g U)CQ1(U ) S€P. From this and taking into account
that E(q:(g),')lP is an one to one map we obtain that
z e<p1(g U). A8 a consequence we have that ze¢1(g 1U)n
nK(o,e)c¢1(g'1UnVnU) and then 2z = (p,l(h1), where

h1eVng"1UnU. ,'I‘-his implies that 3 = EBl{¢(g),2) =
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12 Z.Fasternak-Winlarsnl

= E(¢p1(g),(p1(h1)) = (p1(gh1). But gh,€gVnU and therefore
y€@(gVnU), This completes the proof of this proposition
as well as the proof of Theorem 2.2.

Let us note that if (U,9) 1s a standard chart on a dif-
ferential group (G,C) and U,€U is an open symmetric
neighbourhood of the pr;it e in G, then (U1,<p,U ) 1is also
a standard chart on (G,C). 1

The standard charts are very convenient in the investiga-
tions of differential groups of class éDo (see [3], [41).
In the next section we give an example of the application of
the notion of the standard chart.

3e The completion of a differential group of class &)D

Given a topologic:l group G and neighbourhood of the’
unit V<€G, two elemsnts g,h€G are said to be closed of
order V with respect to the left fright) uniform structure .
on ¢ if g 'bev (hg”lev), It 15 well known, that if G
is a Hausdorff space, then there exists a complete uniform
space 63 ('dr) such that G is a dense subspace of 'éa (Gr)
with respect to the left (right) uniform structure on G
(see [1], II, II1I), N n

On the uniform space Gg (Gr) there existsha group struc-
ture consistent with the uniform structure on Gy (Gr) and
with the group structure on G iff the following condition
is satisfied:

(01) for any left Cauchy filter F on G, the image
inv(¥) = {'inv(A)CG : 4 G?} is also a left Cauchy filter
on G (see [1] III).

Here we shall prove that any differential group of class
éDo fulfils the above condition,

Let U be an open subset of the topological group G,
By’ ﬁs we denote the set of all left Cauchy filters ¥ on G
euch that UE€¥F,

rroposition  3.1. Let- G be a topological
aroup. rhen the condition (C1) is equivalent to the following
condition
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_(02) there exists an open symmetric neighbourhood U’ of
the unit e in G such that for any left Cauchy filter
¥el, the image inv(¥) 1is also a left Cauchy filter on G.

Proof. The implication (C.]) => (02) is obvious,
Suppose that a topological group G fulfils the condition
(C,) and let UCG be such, as in (Cy). If F is a left
Cauchy filter on G, then there exists 2 set A € ¥ such
that for any two elements g,h€4i g"1h €U, If we fix g €4,
then g™ 'A =L _,(A)CU and the left Cauchy filter L _, (%)

g , g
ig an elsment of Gs' From (02) inv({l _1(‘5)) = Rg(inv(‘?))

is a left Cauchy filter on G. Then iiv(?) is also a left
Cauchy filter on G.

Now let us consider a differential group (G,C) of class
51)0. The group G with tae topology 7T is & Hausdorff spa-
ce because the intersection of all neighbourhoods of the unit
e 1s equal to the single point set {e} {see [1], III).
So G can be identified with the dense subspace of some com-
plete uniform space 68.

Theorem 3.1« If (U,p) is a standard chart
on a differential group (G,C), then the mappings ¢ and
(,o"1 are uniformly continuous with respect to the left uni-
form structure on U and the usual uniform structure on Rk.

Proof. Letamapping Ee€C™(RExRX,RE) and a cube
PcR® be such as in (5C,) and (5C,). Choose for a given £>0
a number & > 0 such that for any X,¥4,9 €c1F, if
||y2-y1||<6, then llE(x,yz)-E(x,y1)”<£. It is possible be-
cause of the uniform continuity of the mapping E on
¢lF xclF., Now cioose g neighbourhood of the unit VcU such
that for any z€V |¢(z)|]<6. If h,g€U and hegV, then

lo(h)-ple}] = olez)-gle)] =] Ele(g),p(2))-B(ep(g), 0lc)] <E.
This proves the uniform continuity of ¢. The uniform conti-

nuity of (p-1 follows immediately from the point (x) of
Theorem 2.2.
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14 Z.Pacternak-Winiarski

Theorem 3.2. If (G,C) is a differential _group
of class D, then there exists a group etructure on G
consistent with the uniform structure on G and with the
group structure on G,

Proof. It suffices to prove that G fulfils the
condition (C,). Let us choose a standard chart (U,p) and
a mepping Fec (Rk,Rk) such as in Theorem 2.2, Note that
F is uniformly continuous on ¢{U) (@{(U) is a bounded set

in Rk) and from Theorem 3,1 it follows that the symmetry
inv|y is uniformly continuound with respect to the left uni-
form structure. Now if a filter ¥F € U then B =

={4nUcy : 4 €7} 15 a left Cauchy Filter on U and
inv(B) is a left Cauchy filter on U. On the other hand
inv(B) 4is a basis of the filter inv(¥F). This implies that
inv{¥) 1is a left Cauchy filter on G (see [1], II).
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