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AND SINGULARITIES OF LAGRANGIAN SUBMANIFOLDS

Introduction »

The so~called critical state is observed for many substan-~
ces, If, for example, ether is conducted to the point with
the temperature 467 K, the preassure 35,5 atm, and the densi-
ty 0.26 g/cm3 then it exhibits unusual properties,. which do
not appear for other values of thermodynamical parameters,

In this state appears the phenomenon of ce¢ritical opalescencse.
The response functions, e.g. specific heats, isotermal com-
pressibility, take great values. 4 neighbourhood of this point
where such phenomena occurs is called a critical region (for
the definitions see [8]).

On the basis of ideas proposed in [4] or [10] we try to
adopt the geometric formulation of phenomenological thermody-
namics (cf, [7]) to desecription of oritiocal phenomena. In our
approach the critical region is desaribed by the stable singu-
larities of lagrangian submanifolds (of. [1]).

The main points of our approach are as follows-

1°, The principal objects are defined: the phase as a sym-
plectic manifold with local chart (extensive and intensive
parameters) in the neighbourhood of critical point, the space
of equilibriom states of the concrete system as a lagranglan
submanifold of phase space (Hypothesis I).

. 2°, The notion of gtability of lagranglan submanifold is
introduced and stability of space of equilibrium states is
demanded (Hypothesis II). The stability property allcows us to
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2 S.Janeczko

restrict arbltrariness in the choice of a realistic model of
c¢ritical phenomena, '

3°. As a consequences of the hypotheées we obtain a local
properties of the phase diagram (after a suitable modifica~
tion e.g. Maxwell construction). Using the Legendre transfor-
mation and épplying the classification theorem classifying
the stable spaces of states (Theorem 4.3} we obtain, for a
simple system, the critical exponents ¥, B, d (Theorem 5.1).
The identical exponents were derived in the classical theories
(Van der Waals theory, Landau’e theory [8]). One of ‘the con-
sequences of our model is, obtained explicitely in the gene-
ric case, the low of "rectlinear diameter" (Corollary 5.2, on
experimental verification of this law see [8]). The universa-
lity of critical exponsnts is a simple consequence of the
applied methods, specially the. stability notion,

2. Thermodynamic space
Lot XijeeerX .4 (Xi> 0 for 1.=1,2,eee,n+1) denote
the set of extensive thermodynamic parameters (c¢f, [2]).
U is the internal energy of the system, § - a function:
E: R?™1 — R, The function E provides the so-called fun-
demental equation: U = B(X,,...,X ). The first-order ho-
mogeneouity of the function E allows us to write this equa-
tion in the form u := U/X

where x, i= Xi/Xn+1

law of thermodynamics (infinitesimally) has the form du =

n+1 = e(x1,o-oo,xn) = E(X1,ooo,xn,1),
(thermodynamic densities). The first

n
=3 p;dx;, where p; are the thermodynamic forces, which
1=1

for a equilibrium state of the system are given by the follow-
ing equations: p; := 30/3x3, 1 = 1,2,44e,n, the so-called
equations of state.

Let (pﬁ,...,pg,xg,...,xg) be coordinates of critical
point (e.ge Pgr Tgr Vs S, for a simple system). We use
the local coordinates {p;,...,p;l,x;,...,xx’l}={p1—p$,...pn-p:,

x1-x$,...,xn-xg } and functions: u’ = e’(xa,...;xé) 1=

n n
1= e(x)+x° x!+x%) - pix!, du’ = ! dx’
177t ™ n %;; Fitie ;;; PidXje.
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Geometrical approach to phass transitions 3

Our oconsiderations are rather local in a small nelghbour-
hood of the critiocal point. Then throughout this papsr we are
confined to the'germs at critical point of smooth objects i.s,.
germs of menifolds, functions, forms etc., To avoid unessential
formal complications we use functions rather then germs (cf,
[12]). This local approach lead to the |following

Hypothesis I, A. The thermodynamic phase spa=-
ce of the system in the critical state is (isomorphic to)

R°D endowed with the canonicael symplectic structure defined
by 2-form w= d¥, where ¥ is a 1~-form of internal energy.

n
In our case ¥V = %:; pidxi, where {p;,...,ph,x;,...,xﬁ} are

coordinates on Rzn, as before.

B. The set of equilibrium states of concrete system is
represented in ﬁRzn,ﬁﬁ by the lagrangian submanifold L
(definitions see [10]), for which there exists a generating
function e’, called the internal energy, such that L =
= graph de’.

Further on we will write x;,p;,e,u instead of x{,pj,e’,u’,

and len =ROxRr% =P x X, where Pg—fﬁn with the local co-

ordinates {p,,e.e,0p} X df R with the local coordinates
X.ye.03X _pe We have the canonical fibre structures
1 n

7(1;1}22“——. P, Jrzlegn——X.

Remark 2.7, Consider the simple system. According
to Hypothesis I, (11,12) —4—9(11,12) is the fundamental
equation, X, - entropy (of one mole), X, - volume. From the
experimental data (cf. [8]) it follows that the function e
has 2 degenerated critical point at zero. It is observed
that the specific heats Cp, Cv and isothermal compressibili-
ty K, (the response functions) tends to infinity if the
state of system is nearer and nearer to tha critical point
i.e. Cp,CV,KT-—-eo if ¢ —'-TC. This divergence is connect-
a4 with the degree of degeneragy of singularity of function e.

An example of the simple system whers the phase transitions
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not appear is a ideal gas. In this case e and g are the
reguler functions,

3. Stability of the space of equilibrium states

Let (M,P,x) be a diffetential fibration and » a 1-form
on the manifold M. The quadruple (M,P,n,¥} is called a spe-
c:Lap. S‘V[ﬂplectlc structure on M if there is a dlffeomorphlsm
a: M— TP guch that = Tpo Sy U= o* 17~P, where 1rP°’l‘ *p»p
and '&P is the canonical symplectic 1-form on T P (see [10]}).

On the phase space we have two special symplectic struc~
o n
tures (ll?;zn,P,:rr‘],'o'.l = - ; xidpi) and (lR 1 Xy Tp, By =

n
= pidxs ). (The two so-called control modes, see [4]). Let
1= .

(L1,0), (L2,0) be the two germs at zero of the lagrangian
submanifolds in (Rzn,P,sr1,1>1). We say that (L,,0) and (L,,0)
are equivalent if and only if there .exists a symplectomorphism
(germ) ¢ of the fibre space (R Py T ), d: (R ,0)~>(R2n,0)
and diffeomorphism y: (#,0) — (P,0) such that my ° $ =
= wosr.l,Q (L,) = Ly Let (L,;,0), (L,,0) are given by the

embeddings i1,i2:(an,0) — (nz_n,o), so we have the two map-
pings, the so-called lagrangian mappings: Ty e 11, My 12':]Rn—>
—+P, '

Remark 3ete If L1, L2 are equivalent then the
respective lagrangian mappings are equivalent in the sense
of the theory of stable smooth mappings (cf. [3]).

Let us consider the space of embeddings of lagrangian sub-
manifolds endowed with the Whitney C®°~topology (cf. [11]).
We state that the two lagrangian submanifolds are neighbouring
if the respective embeddings are neighbouring.

" Definition 3.,2. The lagrangian submanifold
L1 c R2n is called stable 1f there exists an open neighbour-
hood of the embedding 1,:R"—=R®%, of this submanifold,
Juch that every submanifold from this neighbourhood is egui-
valent to L1.
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Geometrical approach to phase transitions 5

Locally: We say that the germ (L1,0) is stable if for every
open neighbourhood U of the origin in R2n there exist an
open neighbourhood of the submanifold L1 gsuch that for avery
point L of this neighbourhood there exists peU that
(L1,0) and (L,p) are equivalent (see [11]).

The’ next step of our construction is the following

Hypothesis ITI, The space of equilibrium sta-
tes of the thermodynémical system is a stable lagrangian sub-
manifold in the phase space with the special symplectic struc-
ture (B?n,P,W1,ﬂH).

Now the problem of local structure of the phase diagram
in the critical region can be taken up {c¢f. [2]}). Let L
be the space of states of the system and i the embedding of
this space into the phase space. We denote 7 := X0 i and
CL := {eran dim Ker ¢*(x) # 0}. The sets I :=x(CL)C?P
and 1i(CL) . are called the limiting phase diagram (appear
contour) and respectively the limiting set of metastable sta-
tes {spinodal curve). The set I provides us the phase dia~-
gram (as in thermodynamics) after some convencional modifi-
cations.

4. Local properties of the stable phase diagrams

On the basis of Hypothesis I the space of states L is ge~-
nerated by the internal energy e (with Tespect to the struc-
ture (Rzn;x,sr2,ﬁ~2)). )

Remark 4.1, An assumption of the Hypothesis 1,B.
is a generic property, i.e. the case oi lagrangian submani-

told for which there exist a generating function e 1is ty-
pical as in the following proposition.

Proposition 4.2, The subset in the gpace of
germs of lagrangian submanifolds such that for every subma-
nifold (L,0}, from this subset, there exists a germ of smooth
function e: (X,0) —» R generating the submanifold (L,0) is
open and dense. An every submanifold (T..0) is equivalent to
such which in the special structure (E@n,x,xz,ﬁé), has a ge~-
nerating tfunction.
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Proozr, See for example L1]

Let us denote KL :={x €X: det(2%e/2x;3x,)(x) = 0} and
de : x—=12%x EV”I It is easy to verify that for the spino-
dal curvs we have i(CL) = de(KL),

Let g be a generating function (Gibbs energy) of L in
the special structure (E@ s P W1,0=). The transition from
the representation of lagrangian submanifold L by generat-
ing function with respect to ﬂR?n,P,ﬂa,vH), to the repre-
sentation by generating function with respect to (E@n,x,ﬂz,ﬂé)
is called the Legendre transformation (c¢f. [101),

Por further congiderations we assume that O €KL is a de=-
generated and isolated critical point of function e, besides
we assume that e has 3 finitely determined singularity. This
means that the ideal, ..n the ring of germs at zero of smooth
functions, generated by ae/2x1,...,ae/axn includes a power
of the maximal ideal. Because e is a finitely determined
germ, KL is an algebraic set (c¢f. [3]). In the same way the
set I is elso algebraic (locally), so there exists a finite

stratificetion of I, namely I .= I}u Y I; v Izg:...g;Ii
1 .

‘ 2
v ...\:Iﬁ , Where Ik is a stratum of codimension i,
n
Let O be a small open neighbourhood of zero in P, The

set O -1 = Z 0; decomposes into open connected parts. The

piece of lagrangian submanifold L.i over Oi has a generat-
ing function 8i1° The transition by the Legendre transfor-
mation to the structure (Rzn,x,wz,oé), transforms the func-

tions 831 onto e|“2(Lji), so that 313(91”"’pn) =

n
= e(x1,...,xn) o p;jX;, Wwhere x depends on p as fol-
lows: py = %/¥x;(x), i =1,.e0yn, pE€ Oi.

Theorem 4.3 For the stable space of dequilibrium
states L, dim L<6, the Gibbs potential 831 has the form

gji = F,ji ° 8+'\lf,
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3¢ome:Ticul eppPoach to phase treriiiions 1

where: 6 ~diffeomorphism, ¢ :(P,0)— (?,0), ¥ ~ smooth func-

tion on P. F., 1is a Legendre transformation of the function
£ ﬂé
manifold K with respect to the structure (

one from the following list:

(R..)° whe;e the function f generating lagrangian sub-
i

R?%,X,my,8,) is

dim L = 1. Ag:f = x5, Ayif = #xd.
dim L = 2. 4,:f = x$+x§, Ayif = ix?+x§, A3:f = ix$+(x2+x§)2.
din L = 3. A4:f = x$+xg+x§, Ayif = _k?+xg+x§, Aqy:f = _x$+x§+
+(x2+x$)2, Ayif = +x1*(i3+x?)2+(xz;x$)2,
Dy:f = _x$x2+£g+(x3+x2)2.
dim L = 4, A1:f = x$+xg+x§+xi, A2:f = ix$+x§+x§+x§,
ayif = ix$+(x2+x$)2+x§+xi, by:f = ix?+(x3+x?)2+

2 3

+(x2fx$)2+x4, Ag:f = ix$+(x4ﬁx$)2+(x3+x1}2+(x2+x$)2,

Dy:f = ixfxzixg+(x3+x§)2+x§, Dg:f = ix?xzixg+”

+(x4+xg)2+(x3+x§)2.

dim L = 5. A1:f = x$+x§+x§+xi+x§, A2:f = ix$+x§+x§+xi+x§,
Aqyif = i;$+(x2+x$)2+x§+xi+x§, Ayt = ik?+(x3+x$)2+
+(x2+x$)2+x§+x§, Aszf = ix$+(x4+x?)2+(x2+x$)2+x§,

Ag:f = ix$x21x3+(x3+xg)2+xi+x§, Dg:f = ix?xzixg+

+(x4+xg)2+(x3+xg)2+x§, Dg:f = ix$x21x2+(x5+xg)2+
+(x4+xg)2+(x3+xg)2, Bg:f = ixgixg+(x5+x1xg)2+
+(x4+x1X2)2+(x3+xg)2.
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Proof., Let (L,0) be a germ of lagrangian submani=-
fcld, L‘C'.?*Rn and & symplectomorphism of the fiber space
T*R2 2RD, ¢ (T*RR,0) — (4 *®*,0). We need the follow-
ing lemma (see e.g8., L[11]).

Lenmna, Let & be a lagrengian equivalence of T*Rn.
Then ,

a) ¢ is uniquely determined by a pair (®, ¥), where ©-dif-
feomorphism @: (R%,0)— (R’?,O), W-~smooth function (up to
additive constant) and @ owx=x o ¢ {m: T*an—>1Rn-projection).

b) If F; is a generafing function of (L,0) then the gene~
rating function of F@(L) Has the form

Rl "'1
L‘Q(L) = FL°9 + Yo

P r.o of. Using local coordinates we have, $:(p,q) :=
= (p1""'pnv q1n°"qn)"—’(P 8) = (P (PyQ)n")P (qu)v

Q"(a),eee,@%(g)) and [q%,q9] = 0, [o* ,pa]-G [p3s05] =
1<i,j< n, whers [u ,ud] are the Lagrange bracets (cf. [10]),

. 4
i%3q . 29 ag ¥ . _
[w"ynd] s= E (2 T —-3- aui + Hence we obtain two con

u
diftions
n n . n
S 2Pk _ g LTI Tl
P i i’ 2.J 1 1 J
k=1 4 ¢ k=1 37 7% g 9O

in the matrix form

T)T’

. 7 T
(1) (DPP)(qu) = I, (DqP)(qu) ((DqP)(qu)

where DpP 1= (api/a-pj) 1¢1,5€n
Integrating the first equation of (i) we obtain

(ii) P(qu)T = p + @(q),

where ¢ :(R%,0) —=R" is a smooth mapping.
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Now we prove that a(pj/aqi = agoi/aqj {1¢1i,j<n), namely:

Differentizting of (ii) we get an equation, (DqP)(qu)T
+ FD (D, e)l =D g Symmetricity of the first term of this

u‘_tlon is obv1ous on the basis of (i) and the second term

is syametric on the basis of equality. E P, ?° Q /aq:"aq:j =
g By asz/aq:’%q Hence there exist a function

(lR y0) =R such that ¢ = (gq%- seeey -g—l) This comple~

tes the proof -of part a) of our Lemma, i.e.
(iii) P=(p+ qu)((qu)*)'

Let F¢(L) be a generating funciion of @{(L). <then
(DQFQ(L))(Q) = P(Q), and by (iii) we have

(1v) (b + D@ ((0,00%) = (Fy(p)) o0,

but p = DqFL' Substituting this into (iv) we get:

— 0 oa-]
Dq(FL+w) = Dq(FQ(L)°e)' At the end F@(L) =P o0 +y,

where Y=Yy eo 9'1, which completes the proof of our Lemma.

In the open neighbourhood of every point of a stable la-
grangian submanifold 1L, dimL< 6, we can take a symplecto-
morphism ¢ = (©,y) such that the generating function of sub-
manifold K := $(L), with respect to the structure (Rzn,X,
‘II’E,‘U‘Z), is one from the aobove mentioned list (see Theorem 11.3
in [1]). If we return to the special symplectic structure
(R2n,1"‘,'1f1',0'1), then by the Lagrange transformation we obtain
the generating functions of the respective pieces of submani-
told XK. By the Lemma, which hss been proved zbove, we have
the generating function of the piece of L = ¢-1(K) what was
required in the the3is of Theorem 4.3.

S Ganeric critical exponents for the simples system
Let us denote by t =T, 6 - T, p = P - p, the intensive
perameters, wWhere Tc’ p, 8re the coordinates of critical
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point, T =and p the temperature and the preassure, Let

(s,0) De an extensive variables at a neijghbourhood of (sc,vc),
where v =0 + Ve is the volume of one mole of the system,

8 - entropy, (sc,vc) - coordinates of a critical point (cf.
£81), g:(t,p) — g(t,p) - Gibbs potential, The second deriva-
tivesa of g, at the critical region, provides us an important
information about the thermodynamical properties of the system.
An exponents in the infinitesimal power-laws of divergences of
these derivatives are called the critical exponents,

Let us take a real isothermal process conducted under tem-
pereture t. We denote by vG(t), vL(t) the molar volumes of
gas and liquid phases, respectively, at the limiting points
of the set of coexistance phases (as in Figure below)

Pl

t=const.

4
<y

Now we car introduce the respective critical exponents
(ef. [8)):
pa(vg - v)e) ~ (80P, t>0,
' —'6‘"
7 Iy (g ~ (07T, 60,
Kp - isothermal compressibility, Kq := ——%
s .
§: p{®) ~ (sgnw)|®]°, t=0,

a2
'ap2

s
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In the case of our simple system dim L = 2. &ccording to
[Theorem 4.3 as stable there can appear the following la-
Igrangién submanifolds: A1,A2,A3. Henae wa can say that in the
neighbourhood of a fixed equilibrium state, the space of sta=-
tes has one of the mentioned above 51ngular1tles. The more de-
tailed treatment is as follows.

A1) In the neighbourhood of such point the space L has
a8 "good" projection both on X and P. The Gibbs potential g
is a regular function, thus such point is not identified with
the critical point, and is called a regular point of L.

A2) Such states corresponds to a totally'unstable states
(thermodynamic stability [2]), in the neighbourhoo® of which
there are the regular metastable states.

A3) In the stable case such points appears as an isolated
points adhering to the set of codimension one of A2 ~points
and %o the set of codimension zero pf A1 -points. The
A3 - points we identify with the critical p01nts of matter,

Let PxX, with the ocoordinates {t,p,s w} be a phase
’space of the system, By G we denote ithe group of preserving zero
symplaeqtomorphisms of the special structure (Px X,P,T. 0 )e
Let LCPxX = 4 be a space of equilibrium states p0533391ng
at zero the singular point of typs A3._As a conclusion of this
assumption we obtains the following

Theorem 5.1, There exists an open and dense sub=-
set of the space of germs of lagrangian submanifolds of type
A3 such that for every element of this set we have the follow-
ing values of critical exponents

p=1/2, =1, 8=3.

(the critical exponents are the invariants of action of defor-
mation group G din this subset),

Pro osf, By Theorem 4.3 we take the function f(x1,k2)=
= ix$+(x2+x$)2. The Legendre transformation of a piece Kij

of lagrangian submanifold K has a form:
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(i) Fij(y1,y2) = ix?+(xo+,,) X434, 5
(ii) y = 14x$+4x1(x2+x$), ¥, = 2(12+x$).

Hence the Gibbs potential gij(t’p) = (F;5°0)(t,p) +
+w(t,p),(t,p) € 0;, where ©:(t,p) —=(Y,(t,p), Y,(t,p))~dif-
feomorphism e{0) 0, vy~ smooth function., In this case for
J=1 we have i =1 and for J =2, 1 =1,2,3. For the pre~
sent we omit the indices i,je The .volume has the form:

»(t,p) := (3g/3p)(t,p) and the set CK is given by the equa-
tion

(iii) x0+(113)x$ = 0,

Taking X, from {ii) and substitutlng 1t to (1) we obtains:-
g(t,p) = - 2 x,Y,(t,0) + F x4 (t,p) = F ¥5(t,0) +w(t,p),

Y1(t,p) = 14x?+2x1Y2(h,p), where x4 is a parameter,
If (t,p) —=X,(t,p) is e solution of the equation

{(iv) © ='R(.,s,x1(-,.)), R(t,p,x1) = i4x?+2x1Y2(t,p)-Y1(t,p),

then it is easy to see that

(V) '&—-X1-5——+X-3p— _§Y22p +T

Let s — (t(s),p5(s)) be a smooth parametrization of

the curve {iii) such that
. - - 3 8 . - - 2 ]

(vi)  ¥,(t(s),p(s)) 4887 = 0, Y,(t(s),p(s)) £6s° = 0.
The esbove system satisfies the assumptions of Impllcit Func-
tion Theorem, Let Y, (t,p) = gt + oyp (mod?ﬂ )y Yz(t,p) =
= Pyt + poo ( ﬂodiﬂa) (W is e maximal ideal of the ring of
perns of ﬁnooth iunctlons‘ It follows from (vi) that t{s) =

e 4 O(~ }, pls) = B g2 + O(s 3), where A =

(P - Beats), 5 - +60, /(4P = Bioty)e  Following

1

"
*ba,

+
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the generic assumption oy # 0, o4 # 0 there exist the smooth
functions P1s Po such that T(s) = sgn(A+)cp$(s), p(s) =

= sgn(B+)(p§(s) and (dq1/ds)(0) £ 0 # (dcp;/ds)(o). Hence

the pha;e diagram has a general form: p = sgn(B+)(p2° (p1'1-
.(a(sgn(A+)t)1/2), €= +1, and also -

(vii) p(t)

(B,/4,)% + os(((sgn(Ai)t)”%B).

whére B+/A+ is a slope of coexistence curve (Clapeyron law).
SubsTituting (vii) to (v) we can define

(viti)  vE(t) = vo+(e/y[h, |) (ssan(a,)) /240, (((tegn(a,))1/2)?

and vG(t) 1= v+1(t), vL(t) 1= v'1(t).

As a conclusion we obtain p= 1/2.

Differentiating (iv) and {v) with respect to p we get
the function
2

2
X, Y °Y () ay °Y,
; e _ 1 7% 1 1 2, x2 272
(ix) b= "3 7 - % 27’ t25= X 35 * K 3z
._1333_11.323{21_321»
279 "2 72 ap2 apz

Now we prove the following lemma,
Lemaa. If & smooth curve x:t —egq(t} is such
that =(0) = 0, and (dw/dt}(0) = B_/A_ then

(x) | (du/2p) (t,x(t)) ~C ¢ .

Eroof . First of all' we consider the equation
r{(t,x(t),x1} = 0, R(t,t(t),x1)‘= 1x$4+2x1t([51—d1p2/o(2) +

+ th(mod m3) € M°, The determinant of tiue Hessian matrix,
st zero, of this function is -([5.1 '“#2/“'2)2 < 0, On the
besis of lorse Lemma stating ebout a normal form of function
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14 S.Janeczko

in a neighbourhood of nondegensrated critical point we get
the two solutions of the equation mentioned above, namely the
curves: fy:8 —= (v(8),X,(x)) = (F2ey/(Pyotp=otsPp))8® + 0(8”),8)

and ”o‘gzs—*('v(s)'.x{(sn = (S,(Dctzlz({szu1 - Bopl)s + 0(s?)),

where R(m(s),ar('c(s)),x.‘(s)‘) = 0,

The curve To has no physical meaning (like the Van der
Waals theory). Henoe after a study of dependence of (ix) on
the curve g, we obtain the thesis of our Lemma, i.e. y'= 1.

Let us set in (iv) and (v) t = 0O, Then by (iv) p =

4

= ;l-_-d—z <p3(x1), ¢ 1is a smooth function, ¢'(0) =1, 80 we

. -1 oy 1/3 e
obtain X1(0,p) =@ ‘(i‘z‘ p) )e Substitating this term
to (v) we get v-v, ~(igg/4)1/3.p1/3, QGe€ads

At once we have also the following corollary.

Corollary 5.2 (The law of "rectlinear diame-
ter" - [8])

(VG4VL)(t) = 2vc+C1t+O(( is a constant

1
6. Final remarks
Physical attainability of the above introduced guantities
impose some restrictions onto the coefficients of its expan-~

sions. The aim of our considerations has been a derivation of
critical exponents, hence we omit the problem of above men-
tioned physical gunantities,

We have proposed the general features of a possible
approach to critical phenomena. In order to consider the con-
crete systems the approach must be enriched, for example the
gymmetry properties of ferromegnet (s.g. uniaxial ferromag-~
net) defines some constraints on the physically attainable
'spaces of equilibrium states (cf. [6]). The consequent de-
scription, by the singulerity theory methods, in different
cases, leads to the different mathematical problems and pro-
vides and interssting physical coaclusions (cf. [6], [5]).
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In more complicated cases Theorem 4.3 becomes insufficient
and it is necessary to extend it with respect to the dimen-
sion (as in [11]) and in the presence of constraints,

The symplectic framework applied to the composite system
(according to [2]), i.e. the system defined as a conjunction
of disjoint subsystems, provides as a conclusion the Maxwell
convention, In this way one can obtain the space of coexisten-
ce states as in the figure contained in the text¥’.
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