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ON GENERALIZED RANDOM DIFFERENTIAL EQUATIONS

1. Introduction

The study of random equations was initiated by the Prague
school of probabilists in the Fifties. &n account of results
on this topic can be found in the books by Bharucha-Reid [1],
Soong [15], Tsokos and Padgett [16]. In this paper we inve-
stigate the generalized differential equation x e ¢(w,t,x),
where w 1is a random parameter and ¢ is o given set-valued
mapping. Deterministic equations of this type were studied
2.8, by Pilippov [8] and Hermes [9]. Pirst results on rendom
differential equations with the multivalued right-hand side
were obteined by Castaing [3], [4] (see also [5]). Phan Van
Chuong [13] studied generalized random integral squations.

In this paper we propose an approach to generalized ran-
dom equations which is based on the measurable selection theo-
ren, We assume that for each value of a random parameter tias
equation has & solution and prove the e¢xistence of a random
solution. Similar spproach was already used to various problems
in stochastic analysis (see e.g. Bocsan [2], Zngl [€1, [7],
Kowak [113, [12]).

2. Notation and definitions
Throughout the paper (R, U, ¥) is a complete probability
space, and T a clcsed bounded interval with the beginning

st the point 0. For s metric space X,ZBX denotes the Borel
0-Field on X, end F(X) the family of all closed and non-
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-empty sutsets of X, By U*BX we mean the product ¢-field
on Q xX.
%e shall consider the generalized random differential egua=-

tion
(1) x(t)eq@lw,t,x(t)), t €T

with %he inftial condition

(2) x(0) eylw),

vhere @:QxT *Rn—»ff(Rn) and w: Q—7F(R") are given
set-valued mappings.

i function E:QxT —R" is called a random solution
of {1)-(2} if it ic mecasursble in w, continuously differen-
tiable in t, and for ell weg,

(3) 35 blw,t) € plw, b, (w,t)), teT

(4) t(w,0) eylw).

Let §:Q—+F(X) be a set-valued map, By the graph of §
we meah

gr' $ ={(w,x)€.9.xX : xe@(w)} .

We call & measurable if for all open GCX,

{wen: d(w nc # g} eu.

4 function §:Q -—X is a measurable selection of ¢ if it
is measurable and for all weQ, nlw) € &(w).

Denote by C(T’) the space of all continuous functions
x:T —=R" endowed with the norm

x|l = sup |x(t)
Il = sup Ixte)],

where |+| is a norm in R™. By C1(T) we mean the family
of all continuously differentiable functions x:T —= R® with
the norm
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C¢(T) and C1(T) are separable Banach spaces,
The gensralized Hausdorff metric D on F(R®) is defined
by

D{4,B) = max{sup d(u,B), sup d(u,A)},
uea ueB

where &,B € F(R"), and

d(u,4) = inf ju~v|.
veh

We shall use the following inequality
(5) |d(u,a) - a(v,B)| < |u-v| + D(4,B), u,veR", a,B € F(R"),
3. Existence of random solutions

We assume that for each w € § the problem {1)-(2) has
a solution and we give sufficient conditions for the existence

of a solution dépending measurably on w. The following lemma
will be useful:

Leama ([12], Lemma 3). Let (X, Ilollx) be a normed
linear space in C(T) which is stronger than C(T}, "i.e.
there is a constant K> O such that [[x| <K|x[y for all
x€X, If p: Q2 =X is meacuraeble, then the function
£:QxT— R" defined as E{w,t) =9(w)(t) is measurable .
in w, _

Now we can state our main result.

Theorem. Lot @:2xTxR*—=g¢(R®) and y:

L& —F(rY) satisl{y the following conditions:

(i) for each weQ, ¢lw,*) is continuous in the generalized
Hausdorfl metric,

(ii) for each (l,u)€TxR%, ¢(+,t,u) is measurable,

(iii) Y is measurable,

If for eacih @ €2, the problem (1)-(2) has a continuously
differentiable cclution, then it has a random solution.
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Froof, Define a new set-valaed mapping & on & by
$(w)={xech(T):%(t) € o(w,t,x(t)) for all t€T, and x(0)e plal}.

Under our assumptions ¢ has non-empty values. If 9: 9—>C1(T)
is a messurable selection of @, then {(w,t) = plw)(t) is
a random solution. Indeed, § 1is measurable in w (by Lemma),
continuously differentiable in t, and satisfies (3)-(4).

We shall prove that the graph of & is u~£C1 iT)-measu-

rable, Let the function g:82xT xC1(T)—->R be defined by

g(‘-\)’tyx) = d(;'t(t),(p(w,t,x(t))) + d(X(O),w(w)).

Since the set-valued rappings ¢ and 1y are measurable in w,
for each (t,x)€TxC'(T), g(*,t,x) is measurable (see o.g.
[10], Theorem 3.3). By the inequelity (5),

, glw,t,x) = S(w’-s’y‘” <

<|x(t)-3(s)] + Dlplw,t,x(t)), plw,s,3(8))) + |x(0)-y(0)]

for all we®, s, €T and =x,y EC1_(T). It implies the con-
tinuity of g(w,*). Being measurable in w and continuous
in (t,x), g 4is jointly measurable,

Define the function hz.Q.xc1(T) -+~ R as

h(w,x) = sup glw,t,x).
R teT

We have

gr ¢ = {(0,x)€Q xc!(T):h(w,x) = O},

Let E be a dense countable subset of T, Since g is conti-
nuous in ¢,

h{w,x) = sup g(w,t,x).
e
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Thus h is measurable and, conssguantly, gr ¢ € Ux ‘B~1(,~)'

Hence, & =2dmits 2 neasurable sslection (see [14], Theorer 3).

C

This counletes ths proof,

Remar»ksg 1. Tor the nrobsbility spece (&, U, I)
which is pot nscesserily complete, we ¢en nttain a2 =lignt aoc-
dification of our Theorem with 2 random colution § =etiufy-

2

ing almost surely the conditions (3)-(4). The proof follows
in the same way 28 the previous ons, tut instead of
vie apply Corollasry 1 Iron [14] , end abtain a sslsctor g of
¢ which is messursbls with rsspect 9 the complation 'UP ot
the §-field U, There exists a function p:Q —>C1(1‘) CETIE
reble with respsct to U =nd such that 7p{w) = ¢ (w) a.s.

It is obvious that g(m,t) = 17(0.))(’5) is the desired solution,
In this case 1t suffices if all assumptions on the problem
(1)-(2) are setisfied a.s=.

2., Theorem holds if we replace the closed bounded inter-
val T by the half-line [O,°°). In this case we consider
c[v,2¢) end C'[0,00) with the topology induced by the fa-
mily of semi-norms

py(x) = Ossclp |x(t)], =xec[o,00), n=1,2,...
£t<n

and

qn(x) = Pn(X) + Pn().C), XEC1[O,°°), n=172v°",'

respectively. It is known that these are separable Frechet
spaces, The same proof holds. '

As an example we apply our theorem to the following ge~-
neralized random equation:

(6) x(t) € plw,x(v)), teT,
(7) x(0) = flw),

where (p:.Qan—*?'(Rn) and f:Q —R® are given.
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Corollary. Suppose the problem (6)-(7) satis-
fies the following conditions:
(i) ¢ is compact-valued; for each ueRn, @w(esu}) is measu-
rable, for each w €L, the set

¢(w,R%) = U ¢ (w,n)

neR™

is bounded, and there is k(w) < oo such that

D(plw,u), plw,v)) € klw) |u-v|], u,v €Rr",

(ii) £ is measurable.
Then the equation (6)-(7) has a random solution,
Proof. By aresult of Hermes ([9], Theorem 1),
for each @ € the problem (6)~-(7) has a soclution in C1(T).
In order to complete the proof it suffices to apply Theorem.
Remark 3, Cestaing [3], [4] (see also [5]) studied
generaglized random differential eguations of a special type.
He proved the existence of a solution g which is measursble
in w, absolutely continuwous in t, and PxA-almost every-
where satisfies (3). Here A 1is the Lebesgue measure on T.
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