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ON WEAK SOLUTIONS OF A LINEAR PARABOLIC EQUATION 
IN A HILBERT SPACE 

This paper deals with weak solutions of the l inear para-
bol ic equation 

(0 .1 ) Mu = 3 ! - [ a i ; j ( x , t ) u x . + a ± ( x , t ) u ] + b i ( x , t ) u x _ + 

3 f . 1 

+ a ( x , t ) u - u t = f Q 

in a bounded cylinder GT = G x(0 ,T) with G c R n under the 
init ial-boundary condition 

( 0 . 2 ) u|s^ = 0, u(x, 0) = y / ( x ) , x e G, 

where S^ denotes the l a t e r a l boundary of G ,̂. In the above 
problem the c o e f f i c i e n t s of M are real-valued funct ions, 
whereas the functions f^ ( i = 0 , 1 , . . . , n ) , y and u take va-
lues in a Hilbert space H. We consider weak solutions of 
the problem ( 0 . 1 ) , ( 0 . 2 ) which belong to Sobolev's space 
vl'°( ;Gm} H ) ^ . At f i r s t we derive some a ' p r i o r i estimate 

1 0 of t h i s solut ions in the norm of the space V«' (GT ;H). This 

1 ) 
' Throughout t h i s paper we sha l l use the summation conven-

t i o n . 0) | 
' This sjpace and the weak solution are defined in S e c . 1 . 
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2 H.UROwski 

estimate enables us to prove the existence and uniqueness of 
the solution mentioned. The last section of the paper contains 
a number of lemmas which.have been used in the previous sec-
tions. 

The results of Seations 2 and 3 of this paper constitute 
an extension of corresponding ones concerning the scalar case 
(included in [5]) to the case of any Hilbert space. 

In paper [jl(f] there was considered the problem (0.1), (0.2) 
in the particular case where H was a Hilbert space of random 
variables. However in [10] the coefficients of M were random 
functions.Therefore the results of this paper concerning the 
problem (0.1)j (0.2) do not imply those obtained in [10]. 

- 1. Definitions and assumptions 
In this paper H denotes a real Hilbert space with a 

scalar product uv and a norm | u| = (uu)^^ = (u2)1y^. Let 
BcH^ be a bounded domain. For any nonnegative integer s 
we denote by CS(E;H) the set of all functions u:E —"-H 
continuous ii 

s, where 
continuous in B together with all their derivatives Dmu, 

(1.1) Dmu(x) m
3 u U )

m , m1 + ... + mk = m3), 
3x.j ... 

We abbreviate C°(B;H) = C(B;H). Let 

C ^ E j H ) = f ) CS(E;H). 
s=1 

By C8(B;H) (0 4 s <,'«*>) we denote the subset of CS(B;H) 
consisting of those functions which have a compact support 
in E. 

By Lp(BjH) (1<p<°,°) we denote the set of all func-
tions u:B-*-H which are Bochner measurable and have the fi-
nite norm 

The continuity and partial derivatives are understood 
in the strong sense. 
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Linear parabol lo equa t ion 2 

H p , B = ( / l u M P < * ) 1 / P l f I h l l o o . B ^ s s ^ u p | u ( x ) | . 

Lp(BjH) i s a Banaoh space (see Sec. IV.3 of C314^)- Note t h a t 
LgiEjfH1) i s a H i l b e r t spaoe wi th the s c a l a r produot 

( u , v ) 2 B = / u (x)v(x)dx . 
B 

We in t roduce the fo l lowing d e f i n i t i o n of weak d e r i v a t i v e s 
of f u n c t i o n s wi th va lues i n H ( c f . [1 ] , p .179) . 

D e f i n i t i o n 1 .1 . Let f u n c t i o n s u,v:E —»H 
be l o c a l l y i n t e g r a b l e on E ^ . I f f o r every f u n c t i o n 
(f c Cm(E) (m being pos i t i ve i n t e g e r ) ^ ' we have 

/ v ( x ) v ( x ) d x = ( - D m / a (x )Dfyx ) d x , 
E E 

then v i s c a l l e d the weak _m-derivative of u i n E. We 
wr i t e v = Dmu (see ( 1 . 1 } ) . 

I t e a s i l y fo l lows from Lemma 4.12 t h a t weak d e r i v a t i v e s 
are uniquely determined. Since f o r any u€C e (E ;H) and 
(f e CS(E) we have 

/ Dmu(x)V(x)dx = ( - D m / u(x)Dm<p(x)dx, m ^ s , 
E E 

t h e r e f o r e the c l a s s i c a l d e r i v a t i v e s Dmu, m ^ s of a f u n c t i o n 
ueC s (E ;H) are weak m-der iva t ives of u i n 3 . 

^ In t h i s paper r e f e r r i n g to the monographs [ 1 ] - [ 3 ] , 
C5]-[9] we denote by a Roman numeral the chap te r number. 

c) 
I n t e g r a l s of f u n c t i o n s with values in H are always 

understood i n the Bochner sense . 
By Cm(E) and Cm(E) we denote the space Cm(E;R) and 

Cm(E;R), r e s p e c t i v e l y . 
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4 H.Ugowski 

Let WgíB^) be the set of all functions u€L2(E|H) 
which have weak derivatives 11 e Lo(SfH), i=1 k. By 

1 1 

Lemma 4.14 WgfBjH} is a Hilbert space with the scalar pro-
duct 

= (a,v)2>E + ( u ^ . v ^ ) ^ . 

It follows from the previous considerations that C^(E;H)c 
1 f 1 cw^ÍEjH). Moreover, we introduce the space W^®»1*) defined 

• ©o 1 
as the closure of the set C (E;H) in the space WgfEjH). 

Now we introduce various spaces of functions defined on 
the domain GT = G x(0 T) with values in H (cf. [10] and 
Sec.1.1 of [5]). By Ln (GmjH) (q,r e<1,°°>) we denote the set of all q t r i 
functions ujG^,—H which are Bochner measurable and have 
the finite norm 

T 
l r^dt 1 / r if q,r € < 1,oo), 

if r € < 1, oo), 

Hl q,r,G T -{/C/l^(x)| qdx] 
1 L 0 G 

T 
IMI-,r,GT |uU,t)|]rdtjl/r i 

' K , ~ g t
 = ?1<0 ST> [{ l u ( x' t ,l q d*T / q i f 

IÎ II©o,oo(Gip = [ 6 8 ^ u p -

One can prove that if 

H I 00,00, G t < - , 

then 
H ~ , g t = f i ^ p 
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Linear parabo l i c equat ion 5 

i s f i n i t e and 

IMI*O,oo,G t - M L , G t -

L ^(GmjH), l i k e L _ ( B } H ) , i s a Banach space, q tT ± p 
l y W g ; H ) we denote the se t of a l l f unc t i ons 

u e L 2 ( G T ; H ) which, have weak d e r i v a t i v e s ux e L 2 ( G T ; H ) 

( i = 1 , . . . , n ) . Introduc ing i n W 2 , 0 ( G T ; H ) the s ca l a r product 

( u , v ) ^ ) = ( ^ V ) 2 > G t + ( u x . , v X i ) 2 f G T 

we obta in a H i l b e r t space (see Lemma 4 . 1 4 ) . 

By V2(Gij,;H) we denote the set of a l l f unc t i ons 

u€ W^'^iG^jH) which have the f i n i t e norm 

M 2 , G t • i a l 2 . — ,G T + l l U x «2 ,G T ' 

where 

n 

ux = (u , . . . , t t ) , „ 2 ||ux | | f G m . 
I n i=1 

I n v i r t u e of Lemma 4 . 1 5 V 0 ( G n , ; H ) i s a Banach space. 
1 0 

V ^ ' ( G T ; H ) i s de f ined as the set c ons i s t i ng of those 

func t i ons ucVgfGrpjH) which are continuous wi th respec t to 

the v a r i a b l e t € < 0 , T > i n the space L 2 ( G j H ) , i . e . 

l im II u( • , t +A t ) - u( • , t )|L r = 0 f o r any t e < 0 , T > . 
A t - » 0 

Introduc ing in v l '^ iGmj 'H) the norm 

M I X * = 0 $ T < T " T T I - ' T , » 2 . G + K l f e . G , , 

we obta in , by Lemma 4 .1é , a Banach sp'ace. 
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6 H.Ugowski 

F i n a l l y , l e t us define 

1 1 
So WjJ* (GrpjH) i s a Hi lbert space with the s c a l a r product 

= Mix*+ i a f V 2 , v 

D e f i n i t i o n 1 .2 . Let us denote by C^°(GT}H) 

(Gt being the closure of GT) the set of a l l funct ions 
'OO — ^ — .. 

u e C (G t ;H) with support contained in G^NS^, where S ,̂ = 

= S x <0 ,T> and S i s the boundary of G. By W^'^G^-H), 

V 2 ( G T ; H ) , V ^ » ° ( G t ; H ) and W ^ ' 1 ( G T ; H ) we denote the closure 
o f C ~ ( G t ; H ) in spaces W J ' 0 ( G t J H ) , V 2(GT ;H), GjjH) 

1 1 

and , r e s p e c t i v e l y . 
We s h a l l consider the problem ( 0 . 1 ) , (0 .2 ) under the 

fol lowing assumptions, denoted c o l l e c t i v e l y by (A): 
The c o e f f i c i e n t s a^^ ( i , j = 1 , . . . , n ) ere rea l -va lued 

funct ions defined in G.T and s a t i s f y almost everywhere in 
G t the condit ions 

• i U l ^ a ^ U . t l Ç ^ p U I 2 , Ç - ( i , 

U l 2 - 2 Kl 
i=1 

where fi > <) are pos i t ive cons tant s . Moreover, we assume that 

(1 .2 ) a ? , a e L q ( r ( S T ) ( i = 1 , . . . , n ) 7 ) , 

71 
' Throughout t h i s paper we s h a l l use the spaces Lp(G), 

L q > r ( G T ) , w J » 1 ( G T ; , V J ' ° ( G t ) , ^ ' 1 ( G t ) and G T ) defined 
i n ' [ 5 ] (p .12-15) . - 446 -



Linear parabolic equation 1 
•(1.3) f i e L 2 ( G T ; H ) ( i = 1 , . . . , n ) , f Q € l (GT;H) 

and 

(1 .4 ) € L 2(G;H), 

where ace constants sa t i s fy ing the following con-
di t ions 

r 2q ' r 1 + 2q1 ' + 4 ' 

q e ( § , ~ > , r e < i t o » ) i f n > 2 , 

a e < 1 , ° ° > f r e < 1 , 2 > i f u - 1, 

q i
 €<i£t> 2 > » r i € < 1 » 2 > i f 

q1 e ( 1 , 2 > , r., € < 1 , 2 ) i f n = 2, 

q1 e < 1 , 2 > , r 1 e < 1 , 4 / 3 > i f n = 1. 

I t follows from ( 1 . 2 ) that 

n n 

¡ 2 4||q,r,GT • || 2 * 3 q , r , G T ' M l q , r , G T « H V 
i=1 1 i=1 1 A 

H-j being a positive constant. 
Like in [ 5 ] ( S e c . I I I . 1 ) we introduce the following def in i -

t ion of a weak solution of the problem ( 0 . 1 ) , ( 0 . 2 ) . 
D e f i n i t i o n 1 . 3 . A function u eV^'°(GT ;H) 

i s cal led a weak solution of the problem ( 0 . 1 ) , ( 0 . 2 ) i f 

u ev^»°(GT ;H) and i f the equality 
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8 H.Ugowski 

( 1 . 6 ) - J u i;>tdxdt + J L I o (u, i ?)dxdt = J y ( x ) y ( x , 0 ) d x 

Gq, Grp 

h o l d s f o r sny f u n c t i o n T) e v ^ ' 1 ( G T ) v a n i s h i n g f o r t = T , 
wher8 

( 1 . 7 ) I . i 0 U , 7 ) = ( a . . u x _ + • + ( - b ± u x - a u + f 0 ) 7 . 
J .1 

Lemmas 4 . 2 0 , 4 . 1 and assumptions (A) i m p l y t h a t 

ul7 t , M 0 ( u , ^ ) e L ^ G j j H ) , • ,0) e L 1 ( Ê j H ) 

O -I * 

f o r any u e V ^ G j i H ) and 17 € W^''(G,p). So the i n t e g r a l s 
o c c u r i n g i n ( 1 . 6 ) e x i s t . 

2 . A p r i o r i e s t i m a t e of weak s o l u t i o n s 
I n order to o b t a i n a p r i o r i e s t i m a t e of weak s o l u t i o n s of 

the problem ( 0 . 1 ) , ( 0 . 2 ) i n the norm I ' I ^ q 0 ^ w e n e e d t i i e 

f o l l o - v i n g lemma. T 

L e m m a 2 . 1 . Let assumptions (A) be s a t i s f i e d and 
o i Q 

suppose t h a t a f u n c t i o n u € V 2 ' ( G T ; H ) i s a weak s o l u t i o n 
of the problem ( 0 . 1 ) , ( 0 . 2 ) . Then f o r any t 1 , t 2

 6 

t ^ t g h o l d s the e q u a l i t y 

( 2 . 1 ) J u 2 ( x , t ) d x + f M ( u , u ) d x d t = 0 , 
G t ~ t 1 G+ + 

1 ' 2 

where i s d e f i n e d by ( 1 * 7 ) and G t ^ = G x ( t 1 , t 2 ) . 

P r o o f . Let us put 

( 2 . 2 ) V ± = a i ; j u + 3 i u - f . , V = - b ± u - au + f Q . 
J 
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Linear parabolic aquation 9 

In view of Lemmas 4.20, 4.1 and assumptions (A) we have 

( 2 . 3 ) u i E L 2 ( G T } H ) , 

(2.4) V v a u e l ^ j G ^ H ) , f Q e L ^ ^ (GT;H), 

where q2 = 2q(q+1)~1, r 2 = 2r ( r+ l )~ 1 . Using Lemmas 4.21-
-4.23 of [10] , De f in i t ion 1.3 and Green's theorem and arguing 
as in the proof of r e l a t i on ( I I I . 2 . 1 ) of [ 5 ] ( p. 166, 167) 

set 

(2.5) / 
« €<7-U 

u h t ? + u ihVX i + Vh9 , d x d t = 0 
,o) 

for any function rj (G.^ j ) vanishing for t 4 0 and 

t > T - h 9 ) . 
Let us introduce the functions if^ (k>-|-) given by for-

mula 

r?k(x,t) = < 
l7(x,t)%k (t ) , ( x , t ) € O t , 

0, x € 0 , t e <-h f0> u < t v T > , 

where and 

X k ( t ) 

-1 
0, t < 0 
kt, 0 < t < k 
1, k"1.< t < t 1 - k~1 

k(t 1 - t ) f , t1 - k~1< t < t v 

o, t > t r 

8) The symbols u^, Ujjj and V^ denote Steklof f ' s mo l l i f i -
cations of functions u, Uj and V, respectively (see (4.15) 
of C101). 

9) This argumentation is correct because Lemmas 4.6, 
4.20-4.25 of paper [10] remain true i f we replace L_(fl) and 
L2 (3) by H. p 
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10 H»Ugow3ki 

Tak ing 7 = 7k i n ( 2 . 5 ) we o b t a i n t h e e q u a l i t y 

/ ( u h t ? k + U i h ? k * , + V k ) d I d t -
G t T 1 

Hence, u s i n g Lemma 4 .1 and Lemmas 4 . 6 , 4 . 2 0 , 4 . 2 4 of [10~I 
Q \ L J 

( s ee ' ) and p r o c e e d i n g l i k e i n [10] ( p . 1 1 4 - 1 1 6 ) one can 
o b t a i n t he e q u a l i t y 

( 2 . 6 ) j M.j ( u , 7 ) d x d t = 0 , 7 e w j ' 1 ^ ) , 
G t 1 

where 

( 2 . 7 ) M ^ u . 7 ) = u h t 7 + U . h 7X_ + V h 7 . 

I t f o l l o w s f r o m ( 2 . 6 ) t h a t 

( 2 . 8 ) / M 1 ( u , $ n ) d x d t = 0 

f o r any f u n c t i o n 

EP 
G t t 1 

P 11 .1 ( 2 . 9 ) $ p = ^ * k € H ' 6 k e W 2 ( Q t 
k»1 1 

R e l a t i o n s ( 2 . 2 ) - ( 2 . 4 ) and ( 2 . 6 ) - ( 2 . 8 ) , Lemma 4 . 2 0 of [10] and 
Lemmas 4 . 2 0 , 4 . 2 imply t h a t f o r any v e w ^ ' 1 ^ ;H) we have 
M 1 ( u , v ) € L 1 ( G t ) and 1 

( 2 . 1 0 ) j / M.J ( u , v ) d x d t < || u h t l l 2 , G t ' I * " * p l l 2 . 0 t
 + 

S 
1 U1 

+ l | u l i h l l 2 , G t i ' l | v X i - $ p X i | | 2 f G t i + l l ' o h l l q ^ . Q i ' - M q ' , , r ' 1 . G t
 + 
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Linear parabolic equation UL 

where q£1 + q'k~1 = 1, r£ 1 + = 1 for k=1,2. Since, 
by Lemma 4.17, the set of a l l functions (2.9) i s dense 'in 
Wg'^G^ ;H) therefore the inequality (2.10) yie lds the equa-
l i t y 

J M̂  (u,v)dxdt = 0, v e w J ' 1 ( G t ;H) 
% 

and consequently 

/ M1(u,uh)dxdt = 0. 
Gt 

1 

Proceeding further like in the proofs of re lat ions (2.24)-
-(2.26) of [10] and using products of norms similar to those 
occurring on the right-hand side of (2.10) we c'onclude that 

-1 / u 2 ( x , t ) d x + J M0(u,u)dxdt = 0. 
G G+ 

Now, as in [10] (p.119), th i s equality implies (2 .1 ) , which 
completes the proof. 

Using Lemma 2.1, assumptions (A) and Lemmas 4.20, 4.1, 
4.2 and arguing as in the proof of Lemma I I I . 2 . 1 of [ 5 ] one 
can prove the following theorem. 

T h e o r e m 2.1. I f assumptions (A) are s a t i s f i e d , 
° 1 0 

then for any weak solution ueVg' (GT;H) of the problem 
(0 .1) , (0.2) holds the estimate 

H ^ t 0 ) < * [ M + ( 2 « f i » i , G T ) 1 / 2 + » f o l l q i , r 1 t G T ] . 

where c i s a positive constant depending only on n, fi, 
}J1 and q. 
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12 H.Ugowski 

3. Existence and uniqueness of weak solutions 
T h e o r e m 3*1« I f assumptions (A) are sa t i s f i ed , O A A 

then there ex is ts a unique solution ueVg' (G ĵiH) of the 
problem ( 0 . 1 ) , ( 0 . 2 ) . 

P r o o f . The uniqueness of solutions i s an immediate 
consequence of Theorem 2 . 1 . In order to prove the existence 
of a solution mentioned l e t us f i r s t consider the equation 

(3 .1) Mu = 0 in Gt 

under condition ( 0 . 2 ) . By (1 .4) and Lemma 4.7 there ex i s t s 
a sequence of functions 

h 
(3 .2) ipk(x) = 2 ' d k i € H » 

i=1 

such that 

(3 .3) lim | V - V k | 2 f Q = 0. 

I t follows from S e c . I I I . 4 of [ 5 ] that the scalar problem 
Mufci = 0 in u k i | s = 0, u k i ( x , 0 ) = H»kl(x), 

T 01 0 
possesses a unique solution uk^e Vg' (GT). Hence, by ( 3 . 2 ) , 
the function 

u k ( x , t ) = ^ d k i u k i ^ x » t ' ' k = 1 f 2 » " » 
i=1 

01 0 belongs to V^' (GT;H) and i s a solution of the problem 

(3.4) Muk = 0 in G t , i k | s = 0, uk(x,0) = y k ( x ) , x e G . 

According to Theorem 2.1 we have 

K - %12/J < C K -Vm||2,G, k,m= 1, 2 , . . . 

- 452 -



Linear parabolic equation 11 

which, by (3*3)» implies that (u.) is a Cauchy sequence in 
® 1 o 
V^' (GT;H). In virtue of Remark 4 . 3 there exists a function 
u € V ^ ' ° I ( G T } H ) such that 
(3.5) lim |uk - u | ^ 0 ) = 0. 

Applying Definition 1.3 to the problem (3.4) we get the equa-
lity 

" / V?tdx<3t + / [(aijukx, + aiuk,?xi
 + (-biukxi-auk)?]dxdt = 

= f y k(x)i^(x,0)dx 
G 

for any function 17 e^' 1(G T) vanishing for t = T. Hence, 
using relations (3.3) and (3.5), assumptions (A) and Lemmas 
4.20 and 4.1 we conclude that 

- / u?tdxdt + / + +(-b.ux - autyldxdt = 
Gt Gt

 3 1 1 

= /V(x)7(x,0)dx. 
G 

So u ia a solution of the problem (3.1), (0.2). 
Proceeding similarly as above and using (1.3) and Lem-

ma 4.10 for functiojns fm ( m=0,1,... ,n) we obtain a solution 
v € V ^ » ° ( G T ; H ) of the problem 

Mv = fQ in Gt, v|s = 0, v(x,0) =0, x€G 

and a solution wm€V2,0(GT;H) of the problem 
df_ 

I i w m = " ^ i n wm | s T = wm(x,0) = 0, x e G. 
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14 H.Ugowaki 

n 
It i s c lear that the function u + v + > ^ wm belongs to 

$2 , 0(G t ;H) and i s a solution of the problem (0 .1 ) , (0 .2 ) , 
which completes the proof. 

4. Lemmas 
In th i s section we state lemmas which were used in the 

previous sect ions. We re ta in notation concerning functional 
spaces introduced in Sec.1. 

l e m m a 4.1. Let u, e l „ _ (G.), i = 1 , , , . ,s-1 (s > 2) i q - p ^ i 
and u e L_. (GmjH), where 

8 q s ' r s 1 

s s 
(4.1) q t > 1 , q"1 2 r i > 1 ' r " 1 = 2 r i 1 < 1 -

i=1 i=1 

Then 
s a s 

TT u i e L q , r ( G Ti H > a n d T T U i q,r ,GT<TT K l q ^ p ^ G , , , . 
i=1 i=1 i=1 

This lenima eas i l y follows from inequality ( I I .1 .8 ) of [ 5 ] . 
L e m m a 4.2. Let u. e l _ (G^jH), i=1,2, where 

1 q i ' r i 1 

q i f r^ s a t i s f y conditions (4.1) with s = 2. Then 

€L q j r (G T ) and 

(4.2) l l t t lMq,P,G I<ll a l lq 1 fP 1 fG i r ' lu2l lq 2 fP 2 fa i | ! -

For the proof i t su f f i ces to observe that 

K | € L (Gm), i - 1 , 2 
^ i ' i 

and next to'apply Schwarz inequal ity in H and inequal i ty 
(4.2) for sca lar functions. 

Now l e t us put 

(4.3) P = <<x1tp1> X...X <*k ,Pk> t 
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Linear parabolic equation 11 

where 

( 4 . 4 ) 0 < P i - « i <1 , i k 

Take a rectangle p' = <0^ , > x . . . x<c<jc,/î^> c in t P, where 
int P denotes the i n t e r i o r of P. For a function f e C(PjH) 
we introduce T o n e l l i ' s polynomials 

Arguing l ike in S e c . I I . 2 of [ 6 ] one can prove the fol low-
ing two lemmas. 

L e m m a 4 . 3 . I f f e C ( P ; H ) , then l k k l x l - f f x ) 
j . -

= 0 uniformly in P . 
L e m m a 4 . 4 . I f f e C s ( P ; H ) ( S > 1 ) and 

Dmf(x) = 0, x e 3P, m = 0 , 1 , . . . , s - 1 , 

then DmTi ( m = 0 , 1 , . . . , s ) i s the i - t h T o n e l l i ' s polynomial 
for Dmf and 

lim I D®!.(x) - Dmf(x)| = 0 , m = 0 , 1 , . . . , s 
l-»Oo I -1- I 

uniformly in P ' , where Dm i s the d i f f e r e n t i a l operator 
defined by (1.1 J and 3P i s the boundary of P. 

L e m m a 4 . 5 . Let Q'eRk be a closed rectangle with 
faces para l l e l to the coordinate planes. Then f o r any.function 
f ec(Q' ;H) there e x i s t s a sequence of polynomials W ^ — • • H, 
i = 1 , 2 , . . . uniformly convergent to f in Q' . 

P r o o f . Take an arbi trary closed rectangle Qc Ra 

with faces p a r a l l e l to the coordinate planes such that 
Q'cint Q. By Theorem V . 2 . 3 of [2] there e x i s t s an extension 
F€C(Q;H) of f . Now we introduce new var iables 

P 

where 
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16 H.Ugowski 

y-j = d jXj , ( d j > 0 ) 

such, that the rectangle P defined by (4 .3 ) , (4.4) is the 
image of Q. Then Lemma 4.5 easily follows from Lemma 4.3. 

L e m m a 4.6. For an arbitrary positive integer s 
every function w e C ^ G j j H ) can be uniformly approximated 
in C S(G T;H ) by functions 

k i ¿0 
w ± ( * t t ) = 2 2 c i d k w i j k { x ' t ) ' i = 1 . 2 , . . . 1 0 ) 

k=1 j.=1 

where c i j i c e H> w i j k € ^ ^ ^T^ ' ^i s o m e positive integer 
depending only on i ind j i s some positive integer depend-
ing only on Ĝ  and a. 

P r o o f . Proceeding l ike in the proof of Lemma I of 
[ 4 ] , Sec.259 we extend the function w to W € C®(<5, n jH) 
I« J o a | p 
where « € ( - 1 , 0 ) , (i € (T,2T) are arbitrar i ly f ixed numbers. 
Then there exist open rectangles P 1 , . . , f P i such that 

0 

1 the sides of P^ are paral le l to the coordinate axes 
and their length is less than 1; 

2 ° V ^ " G t ^ * » w h e r e s « (j i s the la -
teral boundary of the cylinder G^ » = G x (a ,p ) { 0 ' 

3 the system P 1 , . . . , P . i s a covering of the support 
Jo 

of the function w denoted by supp w. 
Now choose open rectangles P^, 3=1 , . . . , j Q possessing 

properties 1°-3° and such.that P!.cp... There are functions 
Aj € c f t G ^ p ) ( j = 1 , . . . , d 0 ) such that 

supp L c p , , A , ( x , t ) = 1 for any ( x , t ) e p ' . 

^ I.e. for any £ > 0 there ie such that 

|lAr {x , t ) - iAfj^ (x , t )| < £, (x,t)€GT, m=0,1,... ,s. 
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The functions X-"! L ( 3 = 1 » « . . » 3 , J s a t i s f y assumptions of 3 |i?3 o 

Lemma 4 .4 . Thus for any T> > 0 there i s i such that 

(4 .5) | T)\(x , t ) - D0^. . (x , t ) | < V 

f o r 3 = 1 » . . . » 3 0 > m=0,1 a, ( x , t ) e P^ \ g t > 

where T^ ^ i s the i Q - th T o n e l l i ' s polynomial f o r the func-

t ion • By theorem on the par t i t ion of unity (see e . g . 
Sec .XVIII .4 J of [7p) there ex i s t functions ^ € C ° ° ( R n + 1 ) , 
3 = 1 » • . . , 3 0 such that 

0 < 9 j ( x f t ) < f t ( x , t ) € R n + 1 , sUPPVJCP'J 

and 

2 <f>3^x,t^ = ( * » t ) e s u p p w . 
3=-1 

So we have 

(4 .6) w(x , t ) = 2 <f* j (x,t)w(x,t) , ( x , t )€G r j ? . 
3=1 

Since 
j o k i 

2 « f 3 u . t ) i i 3 ( « . t ) = 2 2 « i a k ' i j k ^ » * ) 
3=1 3=1 k=1 

therefore r e l a t i o n s (4 .5)» (4 .6) imply the condition stated 
10 ) in the footnote This completes the proof. 

L e m m a 4 .7 . I f f e L (GjH), 1 < q < =*>, then there 
e x i s t s a sequence of polynomials W :R n —»H, m=1 ,2 , . . . con-
vergent to f , i . e . 

l i m HWm " fHq,G = 

P r o o f . Take an arbi t rary closed rectangle P, 
G c p c Rn 'with f aces para l l e l to the coordinate planes. The 
function f 1 : P —» H defined by formula 
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(4 .7) f . , (x) = 
f ( x ) , x e G , 

0 , x eP \G 

belongs obviously to Lq(P;H). Take an arbitrary £ > 0 . Then, 
by Theorem V I I . 4 . 3 of [ 8 ] , there i s <5 >0 such that for any 

(4 .8) PCP, | P | n < 6 1 1 ) 

we have 

(4 .9) / | f 1 ( x ) | q d x < l 3 - q e - q . 
P 

In view of Theorem V.6*6 of [ 2 ] for t h i s 6 there e x i s t se t 
(4 .8) and a simple funct ion f 2 : P — • H such that 

(4.10) f 2 ( x ) = 0, x e P , 

(4.11) | ^ ( x ) - f 2 ( x ) | < 1 £ (21 P l n ) " 1 / q , X € P \ P . 

Relations ( 4 . 9 ) - ( 4 . 1 1 ) e a s i l y imply the inequal i ty 

(4 .12) || f 1 - f 2 | | q f P < - f . 

Let us put 01= sup | f 0 ( x ) | . I t s u f f i c e s to consider the case 
x® P 

a > 0 . By Theorem V. 6 .7 of [ 2 ] there i s a closed set P ^ p 
such that 

(4.13) | P \ P 1 | n < ( l £ « - 1 ) q 

and the funct ion f g j p continuous. In v irtue of Theo-

rem V.2.3 of [ 2 ] for the funct ion f 2 | p there e x i s t s a con-

11 ) 
' By |B | S we sha l l denote the s-dimensional Lebesque 

measure of a set B. '7e assume, of course, the measurability 
of B y;ith respect to t h i s measure. 
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tinuous extension f^sP—^H such that |f^(x)|<ot for x ep. 
So we have 

f 2 ( x ) = f 3 ( x ) for x e P 1 and | f 2 ( x ) - f 3 ( x ) | < 2 * f o r x € P \ P r 

Consequently, by ( 4 . 1 3 ) , we get 

(4 .14 ) ||f2 - f3llq,P<f • 

According to Lemma 4 .5 there ex is ts a polynomial W:Rn —»-H 
satisfying the inequality 

(4 .15 ) ||f3 - W||q ) P<f . 

Relations ( 4 . 7 ) , ( 4 . 1 2 ) , (4 .14) and (4 .15) immediately imply 
that ||f-W||q G < E, which completes the proof. 

L e m m a 4 . 8 . Let (fm) be a nnnnegative sequence 
of functions belonging to Lq r ( G T ) , q , r 6 < 1 , o © ) . I f ( f^) 
i s convergent a . e . in GT to a function f e L q r ( G T ) , then 

Hfm " fllq,x.,GT = 

This lemma can be proved in a similar manner as Theorem 
X I I . 2 . 6 ( i i ) of [ 9 ] . 

L e m m a 4 . 9 . Let f € Lq r ( G T ; H ) , q , r €<- l ,«*>) . 
Then for any £ > 0 there e x i s t s <5 > 0 such that 

l l M l q , r , G T < * 

f o r any set F c G^, |P|n + i <<5f where i s the c h a r a c t e r i s -
t i c function of P. 

P r o o f . The argumentation i s s imilar to that used 
f o r Theorem V I I . 4 . 3 of [ 8 ] . So l e t us take- an;? £ > 0 and de-
note 

f m = ain(m,| f | ) , m = 1 , 2 , . . . 
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20 H.Ugowski 

By Lemma 4*8 there e x i s t s ai such that 
" o 

Hence, taking any set 

we get 

I V l q . r V 1 1 ' 1 - fmollq,r,GT + MI%P»q ,r ,GT < 

Using Lemma 4.9 in tead of Theorem VII .4 .3 of [ 8 ] and 
prceeding l ike in the proof of Lemma 4.7 one can prove the 
following lemma. 

L e m m a 4.10. I f f 6L_ _(Gm»HJ, q , r 6 < 1 ,«*>), 

then there e x i s t s a sequence of polynomials Wm:Rn+"'—»-H, 
m=1,2 , . . . convergent to f , i . e . 

lim IIW - fll „ r = 0 . 

L e m m a 4.11. The space C(S;H) i s dense in L p(B;H), 
1 « P < 

This lenaa eas i ly follows from Lemma 4.7 and Theorem H.2.13 
of [ 1 ] . 

L e m m a 4.12. Let u:B — H . be a loca l ly integrable 
function on E. I f for any function <peCm(B) (m being a 
nonnegative integer) we have 

(4.16) J <*>(x)u(x)dx = 0, 
¿i 

then u(x) = 0 e . e . in 13. 
P r o o f . 7a sha l l use the following remark. 
R e m a r k 4 .1 . Por functions with values in H we 

introduce mol l i f ica t ions in the same manner as in Lec . I I . 2 .17 
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of [1 ] . Using Lemma 4.11 one can extend Lemma I I .2 .18 of [ l ] 
to the functions with values in H. 

Now take an arbitrary domain B^, g > 0 such that E^cE 
and the distance from E„ to the boundary of B i s l e s s 

— 1 r t 
than q . Retaining notation of Sec . I I .2 .17 of [1 J and sub-
s t i tut ing 

cp(y) = J £ ( x - y ) , £ € (0 ,q~ 1 ) , x e E ^ 

in (4.16) we get J £ * u(x) = 0. Hence, using Lemma 11.2.18(c) 
of [ 1 ] and Remark 4.1, we find that 

II1111.1 Eg, = i * 0 ' = ^ a , e ' i n 

According to the above considerations for any positive in-
teger m there ex i s t s a set 

P c E , IE \ F I, = 0 m m' • m N mlk 

such that u(x) = 0 for any x e i ^ . So we have 

oo 

{ x e E : u(x) 4 0} c | J ( B m \ P n ) . 
m=1 

This re la t ion and the equality 

U ( B » x v 
m=1 

= 0 

imply that u(x) = 0 a . e . in B. 
L e m m a 4.13. Let functions i ^ e L ^ E f H ) , m=1,2, . . . 

posses weak derivatives u_ „ eL^fBsH) ( i € < - | , k > being ar-mx̂  i 
b i t r a r i ly f ixed) . I f sequences (un) and (umY ) are con-mx. 
vergent to functions u and v^, respectively, then there 
ex i s t s a weak derivative u. 

c i " i 
The proof i s the same as that for real-valued functions. 

-x, a n d V . = v i ' 
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22 H.Ugowski 

K e m a r k 4 .2 . Observe that Lemmas 4 .1 , 4 .3 -4 .7 , 
4 .9-4.13 regain true in the case where H i s a Banach space. 

L s m m a 4.14. XV J * 0 f G,r;H) and wJ'1(GT}H) 
2i"i Hilbert spaces . 

I t s u f f i c e s to prove completeness of t h i s spaces . However 
th i s property ea s i ly follows from Lemma 4.13. 

L e m m a 4.15. V,,(GjjH) i s a Banach space. 
? r o o f . I t s u f f i c e s to prove the completeness. So 

le t (u ) be a Cauchy sequence in V2(GT ;H). Therefore (um) 
1 0 i s a Cauchy; sequence in the space as wel l . Conse-

1 () 
quently, by Lemms 4.14 there e x i s t s a function u e T ^ ' (GT;H) 
such that 

(4.171 ^ H u . - u » ^ = 0. 

One can find that urn(">'fc)> • , t ) e L^i GjH) fo r almost a l l 
t e < 0 ,T>. ¡.loreover, r e l a t i o n (4.17) and Theorem XI I .2 .5 
of [9l imply the existence of a subsequence (u ) such that 

k 

(4.13) lim || ll, ( . , t ) - u ( . , t ) | | „ r = 0 
k-o® " 

for almost a l l t € < 0 , T > . 
According to the above considerations there e x i s t s a s « t 

i T c < o , T > , 1^1,1= T such that (4.18) holds f o r t e 71 and 

(4.19) lim (sup ||u (• , t ) - u (* , t) | | 2 Q) = 0. 
m, p — t e T v ' 

Take any £ > 0 . Then, by ( 4 . 1 9 ) , there i s kQ such that 

Hence, in view of (4.18) for t e T , we have 

II % ( ' , t ) - u ( . , t ) | | 2 > Q < £ , t e r , k > k Q . 
k ' 
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Consequently, by (4 .17) , we get 

U€V 2 (G t ;H) , k l j £ | % k - u | 2 , G t -

ThiB eas i ly implies that 

lim Iu — u | 0 r = 0 , 

which completes the proof. 
1 fi L e'm m a- 4.16. Vg' (G^jH) i s a Banach space. 

P r o o f . I t s u f f i c e s to prove the completeness. So 
1 o 

l e t (um) be a Cauchy sequence in V^' (GT;H). Consequently 
(um) i s a Cauchy sequence in V^iG^jH), whence, by Lem-
ma 4.15, there e x i s t s ueVgiG^jH) such that 

(4.20) lim |u_ - u|o P = 0. 
m-o» m , 2 ' G T 

This implies the existence of a set i T c < 0 , T > , [ JT| ^ = T such 
that sup^ || u( • , t )Jj 2 G < oo and 

(4.21) lim (sup ||u ( • , t ) - u ( . , t ) | | 9 r ) = 0. 
t€7 m ^ 

Take an arbitrary t e < o , T > \ 7 ' . Let t f c e T, k = 1 , 2 , . . . 
be a sequence convergent to t Q . Taking into account (4.21) 
and the uniform continuity of functions um with respect 
to t ( in the space LgiGjH)) one can prove that ( u ( « , t k ) ) 
i s a Cauchy sequence in L 2 ( G j H ) . This implies the existence 
of a l imit 

lim u.(.,tv.). 
k—00 * 

One can prove that the above l imit i s independent of the se -
quenoe ( t ^ ) . So there e x i s t s a l imit 

lim u ( * , t ) . 
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2 4 H.Ugowski 

Now le t us put 

(4.22) v ( . , t ) = -
u ( » , t ) , ter, 

lim u( • ,-e), t e </0,T>\ T . 
r « - 1 

Using (4.21) and the continuity of functipns um with res-
pect to t we get 

(4.23) l i n ( sup ||um(.,t) - v(.,t)|| ? r ) = 0. 
m-oo t€<0,T> m ^ 

Hence i t fol lows the continuity of v with respect to t 
( in the space L 2 ( G J H ) ) . This fact and relations ( 4 . 2 0 ) , 

( 4 . 2 2 ) , (4.23) imply that v e V ^ » ° ( G T ; H ) and 

(1,0) _ lim lu - ul i = 0, 

which completes the proof. 
R e m a r k 4.3. Lemma 4.16 and Definit ion 1.2 easily 

imply that V^' (GQ,;H) is a Banach space. 
L e m m a 4.17. The set of a l l functions 

2 K±&±> P = 1 ' 2 " 
i=1 

is dense in the spaces 

w1»0^- .H» v v1 «0/ ^ ' U ( G T j H ) , V 2 ( G T ; H ) , V ^ » U ( G T ; H ) and wJ ' 1 (G t jH ) . 

This lemma follows immediately from Definit ion 1.2 and 
Lemma 4.6. 

L e m m a 4.18. I f ueW^EjH), then u€Lp (E;H) 
and 

( 4 . 2 3 ) 
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where 

= ( V , ux, lluxll|,B = 2 II axJI 2 ,E ' 1 i=1 1 

p € < 2 , 2 k ( k - 2 ) ' 1 > i f k > 3 , p e < 2 , « ] i f k=1, d = | -
and ji i s a constant depending only on p and k . 

P r o o f . Take any f u n c t i o n u€C°°(E;H) and denote 

vm(x) - | u ( x ) | < m + 1 > / m = ( u 2 ( x ) ) ( m + 1 > / 2 m , m= 1 , 2 , . . » 

One can e a s i l y check tha t vm have continuous d e r i v a t i v e s 
( i = 1 , . . . , k ) def ined by formula 

(1+HT 1)|U(X ) | m"1~1u(x)u_ (x) i f u(x) 4 0 , 

mxi 

nix. (x) = 
0 i f u{x) = 0 . 

Now consider the f u n c t i o n v defined by formula 

v(x) = I u(x) | x eB. 

Observing tha t lim v (x) = v(x) f o r x e E and 
m -»-o® m 

|vm(x) | < K2 f o r x € E, m = 1 , 2 , . . . , where K = max(l ,aup | u(x)| ) 

and using Theorem X I I . 2 . 6 ( i ) of [ 9 ] we get 

(4.24) lim ||vm - v|| = 0. 
m iM ™ 

xeE 

Like as above, in t roducing the func t i ons w^ ( i = 1 , . . . , k ) g i -
ven by 

w±(x) = 
|u(x}| " 1 u ( x ) u x (x) i f u(x) 4 0 , 

we f ind t h a t 

(4.25) lim | | v _ - w 

0 i f u(x) = 0 , 

0 | x - 1^••«|k« 'nn^ " i l h , E 
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In v i r tue of lemma 4 . 1 3 i n the s c a l a r case i t fol lows from 
r e l a t i o n s ( 4 . 2 4 ) and ( 4 . 2 5 ) that are weak d e r i v a t i v e s 
of funct ion v and v_ = ŵ  ( i = 1 , . . . , k ) . Thus we have 

o -i 
proved that v e W ^ f E ) . This impl ies , by Theorem I I . 2 . 2 of 

the inequal i ty 

H p . e ^ M I E IMI^E-

Hence, in view of r e l a t i o n s 

H p , E - H p , * . H v x H 2 , E^ H uxll 2 , E ' 

the inequal i ty ( 4 . 2 3 ) holds f o r the funct ion u. O -I 

Wow take any funct ion u eW^iEjH). Then there e x i s t s a 

sequence of funct ions u n i e C (EjH), m = 1 , 2 , . . , such that 

( 4 . 2 6 ) lim K - u | | = 0 , l im IIumx~uxll2,E = 

Hence, taking into account the inequal i ty ( 4 . 2 3 ) f o r funct ions 
u m~ u l ' w e c o n c l a c ^ e "that (um) t i s a Cauchy sequence i n Lp(3;H). 
So there e x i s t s a function w eLp(E;H) such that 

lim ||u - w | | B = 0 . 
in -»OO r ' 

This impl ies , by ( 4 . 2 6 ) , that w = u, i . e . ueLp(E}H) and 

( 4 . 2 7 ) lim ||um-u|L v = 0 . 
m-»®® m lip,a 

Using i n e a u s l i t y ( 4 . 2 3 ) f o r funct ions um and r e l a t i o n s 
( 4 . 2 6 ) , ( 4 .27 ) we conclude that ( 4 . 2 3 ) holds true f o r the 
funct ion u as w e l l . This completes the proof . 

I e m m a -5.19. I f u e ° ^ ' ° ( G „ ; H ) , then u(-. , t ) e W^GjH) 
foy almost a l l t e <D,T>. 

P r o o f . One can e a s i l y f ind that f o r any funct ion 
ue : ^ ' ° ( G T j H ) we have 
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(4.28) u ( . , t ) , u x _ ( * , t ) 6 L2 (G ;H), i =1 , . . . , n 

for almost a l l t € < o , T > . 

Now let utW2 , 0 (G t ;H) . Then, by Definition 1.2, there 
OO — 

exists a sequenoe u m e C 0 (G^jH), m=1,2,... such that 

T 
lim f dt f |u (x , t ) -u (x , t ) | 2dx = 0, 

m -»oo « 0 G 

T 
lim J dt J l u ^ (x , t ) - ux (x,t)|2dx = 0, i =1 , . . . , n . 

m-« » 0 Q i i 

Hence, by Theorem XII.2.5 of [ 9 ] i i t follows the existence 
of a subsequence (um ) such that for almost a l l t e <0,T> 
we have 8 

(4.29) lim ||u ( . , t ) - u(-,t)|| Q = 0, 

(4.30) lim Iu ( - , t ) - u ( ',t)||? p = 0, i =1 , . . . , n . 
S —DO s i i ' 

Therefore, by (4.28) and Lemma 4.13, the functions u ( # , t ) 
x i 

are weak derivatives of the function u (* , t ) for almost a l l 
t e <0,T>. Moreover, relations (4.28)-(4.30) imply the asser-
tion of the lemma. 

Proceeding as in [ 5 ] , p.89 and using Lemmas 4.18 and 4.19 
one can prove the following lemma. 

L e m m a 4.20. I f ueV 2 ( G T ;H ) , then u € l Q ( G T ; H ) , 
where I + - à « £ , 

r € < 2,o°>, q £ <2,2n(n-2)"1> i f n>2 , 

r e ( 2 , o o > , q € < 2 ) i f n=2, 

r € < 4 , e » > , q € <2,«»> i f n=1. 
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Moreover, 

ll^lq.r.G^M^Is.G^ 

ji being a positive constant depending only on n and q. 
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