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ON WEAK SOLUTIONS OF A LINEAR PARABOLIC EQUATION
IN A HILBERT SPACE

This paper deals with weak solutions of the linear para-
bolic equation

(0e1) Mu Ea?{—i [aij(x,t)uxj + ai(x,t)u] + bi(x,’c)uxi +

af. M
1
+ a(x,t)u - ut = fO +7—J§_
in a bounded cylinder Gp = G x(0,T) with GeR™  under the
initial-boundary condition :

(0.2) ulsT =0, ul(x,0) =y(x), =xeaq,

where Sp denotes the lateral boundary of GT'. In the above
problem the coefficients of M are real-valued functions,
whereas the functions f; (i=0,1,¢eeon), y and u take va-
lues in a Hilbert space H, We consider weak solutions of
the problem (0.1), (0.2) which belong to Sobolev’s space
V;’O(EGT; H)2 o At first we derive some a priori estimate

of this solutions in the norm of the space V;’O(GT;H). This

1) Throughout this paper we shall use the summation conven-
tion.

2) This space and the weak solution are defined in Sec.1.
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2 H,Ugowski

estimate enablés us to prove the existence and unigueness of
the solution mentioned. The last section of the paper contains
a number of lemmas which have been used in the previous sec-
tions,

The results of Sections 2 and 3 of this paper constitute
an extension of corresponding ones concerning the scalar case
(included in [5]) to the case of any Hilbert space.

In paper [ho] there was considered the problem (0.1), (0.2)
in the particular case where H was a Hilbert space of random
variables., However in [10] the coefficients of M were random
functions.Therefore the results of this paper conoerning the
problem (0.1), (0.2) do not imply those obtained in [10].

* 1. Definitions and assumptions
In this paper H denotes a real Hilbert space with a
scalar product uv and a norm jul| = ()2 o (u2)1/2, 1et
E<:Rk be & bounded domain, For any nonnegative integer s
we denote by CB(E;H) the set of all functions u:E —=H

continuous in E together with all their derivatives Dmu,
mg 8, where

(1.1) DPa(x) =.—_EQEEL§lE_., My + ees + My = m3).

1 k
ax1 ...axk

We abbreviate C°(E;H) = C(E;H). Iet

oo
=(g;u) = () cS(z;m).

8=1
By (.JS(E;H) (0 s o°) we denote the subset of CB(E;H)
consisting of those functions which have a compact support
in E, :

By LP(E;H) (1¢ p€ =°) we denote the set of all func-

tions u:E—+H which are Bochner measurable and have the fi-
nite norm

3) The continuity and partlal derivatives zre understood
in the strong sense.
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Linear parabolioc equation 3

Haly,g=( flutx)| Pax ['/P 12 1< p <00, u]eo g =088 sup [u(x)].
Py % ’ xeE

LP(E;H) is a Banach space (see Sec. IV.3 of [3]4)). Note that
L2(Edﬁ1) is a Hilbert space with the scalar product

(u,v)z,E = f u(x)v(x)dx.
_ E
We introduce the following definition of weak derivatives
of functions with values in H {cf. [1], p«179).
Definition 11« Let functions u,v:E —H
be locally integrable on ES). If for every function
Qe ém(E) (m being positive integer)s) we have

fv(x)¢(x)dx = (-1)0 f u(x)D"(x)ax,
E E

then v 1is called the weak m~-derivative of u in E. We
write v = D®u (see (1.1)).

It easily follows from Lemma 4.12 that weak derivatives
are 'l.miquely determined. Since for any ueCS(E;H) and
¢ € C°(E) we have

fDmu(x)(p(x)dx = (-1)mfu(x)Dm<p(x)dx, mgs,
B E

therefore the classical derivatives Dmu, mgs of a function
neC®(E;H) are weak m-derivatives of u in Z.

4) In this paper referring to the monographs [1]-[3],
[5]-[9] we denote by a Roman numeral the chapter number.

5) Integrals of functions with values in H are always
understood in the Bochner sense,

6) By C®(E) and C®(E) we denote the space (.Jm(E;R) and
C®(E;R), respectively.
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4 H.Ugowski

Let W)(B;H) be the set of all functions ueL,(E;H)
which have weak derivatives uxie L2(E;H), i=1,¢.0,ke By

Lemme 4.14 Wh(E;H) is e Hilbert space with the scalar pro-
duct ‘

(00§01 = (0,9, 5 + (ug, Ve, 2,50

It follows from the previous considerations that 01(E;H)C
[-]
c W;(E;H). Moreover, we introduce the space W;(E;H) defined

as the closure of the set éN(E;H) in the space W;(E;H).
Now we introduce various spaces of functions defined on
the domain Gp = G x(0.T) with velues in H (e¢f. [10] and
Sec.I.1 of [51).
By Lq’r(GT;H) {(g,r € {1,90)) we denote the set of all
functions u:GT—-’H which are Bochner measurable and have
the finite norm

T
I u"q’r’GT ={f[f ] u(X)qux]r/th}1/r if "g,r € <1,00),
0 G

T

= r,.l1/
|||,1||‘>‘,’r'(1,'T -{{[esgegup fu(x,t)]] dt} if re<1i,o00),

u = @88 8U f u(x,t) qu1/q if ¢ € <1,o00)
" "q,ooGT 1:€<0,T§[GI ’ I ] ’ ’

a = egs sup (ess sup jul(x,t}[.
20, on,c, = 328,080 [o08 oup [utx,tl]

One can prove that if

"u"oo, OO,GT < o2y

then

u =ess‘sup u{x,t)
[k, = 822 mp lulx,c)]
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Linear parabolic eguation

is finite and
1200s, 0,y = 20on, 0"

L, ,r(GT;H)' like LP(E;H), is a Banach space.

By W;’o(:GT;H) we denote the set of all functions
u €Ly(Gp;H) which have weak derivatives u, eL2(GT;H)
(i=1,+0.,n)s Introducing in W;’O(GT;H) the scalar product

(u,v)ézé;)) = (u,v)2’GT + (uxi’vxi)z’GT

we obtain & Hilbert space (see Lemma 4,14).
By V2(GT;H) we denote the set of all functions

ueW%’O(GT;H) which have the finite norm

l“lz,GT = !luHQ,oo,GT + “xng,GTv

where

n

' 2 2
U = (ux1""’uxn)’ Ilux“2,GT = 121 “uxi“’c“,GT‘

In virtue of Lemma 4.15 V2-(GT;H) is a Banach space.
V;’O(GT;H) is defined as the set consisting of those
functions ueVe(GT;H) which are continuous with respect to

the variable t € ¢0,T) in the space L2(G;H), i.e.

1i *,t+4A8) - ot =0 f y t € > .
Abtm [fufe,t+A8) - u(., )"2,(} O for any <0,T>

Introducing in V;’O(GT;H) the nora

a(1,0) _ .
|“|2,éT = 0252‘1‘ flu -“"2,3 + Huxllg,%

we obtain, by Lemme 4,16, a Banach space,
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6 H.Ugowski

Finally, let us define

So W;’1(GT;H) is a Hilbert space with the scalar product

(1,1) (1,0)
)5 = (u, ) , .
{u,v GT (u V)Q,GT + (ug vt)2,GT

Definition 1.2, Let us denote by C7 (Gp;H)
(@T being the closure of GT) the set of all functions
llecco(GT;H) with support contained in ET\5§T' where §T =

§ x<0,7> and S 1is the boundary of G. By Wy'O(Gp;H),

% (G sH) v%1'0(d sH) and %1’1(G sH) we denote the closure
AR S T 2 T?

of C:°(§T;H) in spaces W;'O(GT;H), V2(GT;H), V;’O(GT;H)

and W;’1(GT;H), respectively.

We shall consider the problem (0.1), (0.2) under the
following assumptions, denoted collectively by (4):

The coefficients 8y 3 (i,3=15eee,n) are real-velued
functions defined in Gy and setisfy almost everywhere in

GT the conditions

3|8 1%< < ay5(x, )8k ‘f‘l§|2 E= (Eqyeeerbplel

[£12 - 2 83,

i=1
where B>V are positive constants. Moreover, we assume that

{1.2) 82

i, bi, aGLq’r(GT) (i=1,-00,n)7),

7) Throughout this paper we shall use ihe spaces L (G),

(6o, W (e, vIOtan), #10M(eg) ans V10Vay) derined

1n [5] (p.12 15)a
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Linear parabolic equation 1

-{1.3) £; €L,(GpsH)  (i=1,...,n), foeLq1’r1(GT;H)
and
(1.4) Y €L2(G;H),
where GsTyqq,Ty ale constants satisfying the following con-
ditions
1 I B S 2
Tt 59 = 1, T, + 2q1 =1+ 7

ge(f 2>, re<i,0) if n32,
Q €¢1,°°)>, r €1,2> if u=1,

2n

9, €52 s 2},:‘-1 €¢1,2) if n33,

q1€(1,2>, ry €<1,2) if n =2,

9, € <1,2>, v, €<1,4/3) if n=1,

It follows from (1.2) that

n n
. 2
chrvGT i ” 2 bil
i=1

(1.5) ”2 a]?_l

q,7yGp’ "a"q,r,GT< M1

Hq being a positive constant.
Like in [5] (3ec.III.1) we introduce the following defini-
tion of a weak solution of the problem (0.1}, (0.2).
Definition 1.3, 4 function ueV)rO(Gp;H)

is called a weak solution of the problem {(0.1), (0.2) if
ue¥3s0(GosH) and if the equality
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8 H.Ugowski

(i.6) - f u P, dxdt +./ Lio(u,r))dxdt = fw(x)p(x,o)dx
GT GT G

holds for esny function ) EW1 1( T) vanishing for t = T,
whers

(1.7) K (u,?) = (a1J Xa+aiu'fi)vj§i+ (-biuxi-au+fo)y.

Lemmas 4.20, 4.1 and assumptions (4) imply that

upy, M (u,p) e L,(GnsH), wpl+,0)€ L, (G3H)

Q .
for any ueV,(Gp;H) and D ew)''(Gy). So the integrals

occuring in {(1.6) exist.

2., 4 priori estimate of weak solutions

In order to obtain a priori estimate of weak solutions of
the problem (0.1), (0.2) in the norm [ |2 ) we need the
following lemma.

Lenmma 2,1, Let assumptlons (A) be satisfied and
suppose that a function ue€ V;’ (GT;H) is 8 weak solution
of the problem (0.1), (0.2). Then for any t,,t, € 0,1,

¥, < t, holds the equality
| o 'l?:'(:2 : .
(2.1) né(x,t)dx "+ Mo(u,u)dxdt =0,
G =% 6,
T45%5
where i, is defined by (157) and Gt1,t2 = G x(t1, 2).

Proof ., - Let us put

(2.2) Uj = 8y35Uy + 85U - fi, V= w=bju  ~-au+ f.
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Linegr perabolic equation 9

In view of Leammas 4,20, 4.1 and assumptions {A) we have
(2.3) U; € L,(GpiH),

(2.4) biuy auequ’rz(GT;H), f, €L

(Gm3H),
i 7if)

99274
where q, = 2q(q+1)"1, T, = 2r(r+1)'1. Using Lemmas 4,21~
-4,23 of [1'0] , Definition 1.3 &snd Green’s theoram and arguing
as in tie proof of relation (III.2.,1) of [5] (p.166, 167)

we get

(2.5) f (u s 7+ Uih'_)xi + Vppldxdt = o).
YDah
for any function ¥ e’.‘l;n(c_h'T) vanishing for t<0 and
£ 1-n),
Let us introduce the functions ny (k>%l-) given by for-
mula

'q(x,t)xk(t), (x,t) EGt )
Nz, t) = 1
O, X€G, t € (-h,0) U<t1nT>'

where 1) e%;_."‘(Gt ) and
1 .

0, %<0

Kt, 0<t <k

Tlt) =31, Kl<tgt, - k7
-1
_ k(t1-t), t, -k i<t<ty,
0, t>t,.

~

8) Tne symbols u,, Uy, and V, denote Stekloff’s mollifi-

cations of functions u, U; and V, respectively (see (4.15)
of [10]). .

9) This argumentation is correct because Lemmas 4.6,
4,20-4,25 of paper [10] remain true if we replace L_(2) and
L,(8) by EH. P
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10 H.Ugowskl

Taking '17 =7 in (2.5) we obtain the equality

'[ (a4 + UsnPix, + VP )dxd® = O.
G
tq
Hence, using Lemma 4.1 and Lemmas 4.6, 4,20, 4.24 of [10}

(see 9)) and proceeding like in [10] (p.114-116) one can
obtain the egquality

(2.6) f M, (u,9)dxdt = 0, 9 6%;’1((}1;1),
G
¥
where
(2.7) M1(u.v) = W + Uy in + V7.

It follows from (2.6) that

(2.8) f M1(u,§p)dxdt =0
G
%y
for any function

p °
(2.9) Qp = 2 818y ;keH', ngW;91(Gt1).
k=1

Relations (2.2)-(2.4) and (2.6)-(2.8), Lemma 4,20 of [10] and
» 2

Lemmas 4,20, 4.2 imply that for any veW%"'(Gt 3sH) we have

M1(u,v)€L1(Gt1) and 1

{2.10) j M1(u,v)dxdt

. Gt

< “htllz,Gt1’||V - ‘1’p||2,c;,61 +
1. ]
+l Ul1h||2,Gt1'||in"I’pxiH2,Gt1 + “f°h"q1’1‘1’Gt1.”v-°p"q’1,rf,,Gt1 +

# (g, +au)lg Ilv—épuqé,ré,%,

- 450 -
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Linear parabolic equation 11

where q£1 + dk’1 =1, r;1 + r£-1 =1 for k=1,2. Since,

By Lemma 4.17, the set of all functions (2.9) is dense ‘in
W;’1(Gt ;H) therefore the inequality (2.10) yields the equa~
1

1ity

f M, (u,v)dxdt = 0, veWi''(c

2 ;H)
G

ty

y

and consequently

M1(u,uh)dxdt = 0.

G
Ty

Proceeding further like in the proofs of relations (2.24})-
-(2.26) of [10] and using products of norms similar to those
occurring on the right-hand side of (2.10) we clonclude that

t=t1

$=0 +f Mo(u,u)dxdt = O,

G

-;— /uz(x,t)dx
G

ty

Now, as in [10] (p.119), this equality #mplies (2.1), which
completes the proof. ‘

Using Lemma 2.1, assumptions (4) and Lemmas 4,20, 4.1,
4.2 and arguing as in the proof of Lemma III.2.1 of [5] one
can prove the following theorem.

The oren 2¢%e If assumptions (A) are satisfied,
then for any weak solution u.e%;’o(GT;H) of the problem
(0e1), (0.2) holds the estimate

n
(1,0) _ 2 \1/2
I, < °["W"2,G o N £ *1folq, 2.6,
T &, T 117120p

where ¢ 1s a positive constant depending only on n, Vv, i,
Hy and Q.
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12 , H.Ugowski

3., Existence and uniqueness of wesk solutions

Theoremn 3.1, If assumptions (A) are satisfied,
then there exists a unique solution ue\ol;’o(GT;iH) of the
protlem (U.1), (0.2).

Proof., The uniqueness of solutions is an immediate
consequence of Theorem 2,1. In order to prove the sxistence
of a solution mentioned let us first consider the eguation

{3.1) Mu =0 1in Gy

under condition (0.2). By (1.4) and Lemma 4.7 there exists
a sequence of functions

1y

(3.2)  wlx) = 3 dpw(x), dg €H, yyy€c(d)
i=1

such that

(303) k]:i-i "q"‘ vk"Z,G = Oo

It follows from Sec.III.4 of [5] that the scalar problem
Muyy = 0 in Gg, uklls = 0, uki(x,o) =y,y(x), xe€6

possesses a unique solution u,4€ V;’o(GT). Hence, by (3.2),

the funciion
T

uk(x’t) = Z dkiuki(x,t), k=1,2,oc.
i=1

[+]
belongs to V;’O(GT;H) and is a solution of the problem
(3.4) Mu, =0 in G, ukIST = 0, ul(x,0) =y, (x), xea,

dccording to Theorem 2.1 we hava

)

1,0
Iy - umlg,,j}T < c gy, "‘Pm||2,c;' k,m=1,2,..0
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Linear parabolic equation 13

which, by (3.3), implies that (uy) 1is a Cauchy sequence in
[+]
V;' (GT;H). In virtue of Remark 4.3 there exists a function

ue%;’OI(GT;H) such that
. ' - (1,0) -
(3.5) klii fu, u"2,GT =0

Applying Definition 1.3 to the problem (3.4) we get the equa-
1lity

- j u,Dedxdt + f [(aijukxj + aiuk)?xi + ('biukxi'auk)'?] dxdt =
G G .
T T

= /vk(x)p(x,o)dx
G

for any function 70 e%;"_l((},r) venishing for t = T. Hence,
using relations (3.3) and (3.5), assumptions (A) and Lemmas
4,20 and 4.1 we conclude that

-‘G/; u 9y dxdt +{r [(ai;]uxj+aiu)?xi+ ('biuxi - au)r)] dxdt =

=/w(x)7(x,0)dx.
G

So u 1is a solution of the problem (3.1), (0.2),

Proceeding similarly as above and using (1.3) and Lem-
ma 4.10 for functions f (m=0,1,4..,n) we obtain a solution
v ev" O(GT;H) of the problem

Mv = £, in Gp, VIST =0, v(x,0) =0, x€@C

.
and a solution me_V;’O(GT;H) of the problem

of
=_ﬁ3 in Ggp, wmlST = 0, wyp(x,0) =0, xeG
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14 H.Ugowski

n
It is clear that the function u + v + W belongs to
m=
¥1¢0(Gy;H) and is a solution of the problem (0.1), (0.2),

which completes the proof,.

4., Lemmas

In this section we state lemmas which were used in the
previous sections. We retain notation concerning functional
spaces introduced in Sec.1.

Lemma 4.1, Let u,€l (Gn)y i=1y00ey8=1 (83 2)
i q i T .

irT

and u € Lqé,rs(GT‘H)’ where

. s 5
(4.1) 421, g7 q£1<1, 21, 1 - Z r;1<1.

i=1 i=1

Then
8 s 8
TT uiELq,r(G'NH) and 4y q,r,GT<ﬂ "ui"qi,l‘i,GT.
i=1 i=1 i=1

This lemma eesily follows from inequality (II.1.8) of [5].

Lemma 4.2, Let uieLq.,r.(GT;H)’ i=1,2, where
1171
94, Ty satisfy conditions (4.1) with s = 2. Then u1u2€

€ Lq,r(GT) and
(4.2) ” U, u2”q.,r,GT < " u1"q1 Ty ’GT. """2"q2,r2,GT'

For the proof it suffices to observe that

]ui|eLq.

l,ri(GT), i=1’2

and next to apply Schwarz inequality in H and inegquality
(4.2) for scalar functions.
Now let us put

(4.3) P = <°(1v‘31>x"'x <°‘k’Fk>'
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Linear parabolic equation 15

where
(404) ' 9] (pi-di <1, is= 1,.-.,kn

Take a rectangle P' = CURY T PP X <oty B> € int P, where
int P  denotes the interior of P, For a function fe€ C(P;H)
we introduce Tonelli’s polynomials

Ti(x) = [ f(y)ti(y1-x1)...ti(yk-xk)dy, i=1,2,004
P

where
- 1 Y
ti(s) = (1—82)1 f (1-0°)Ydu -1,
-1

Arguing like in Sec.II.2 of [6] one can prove the follow-

ing two lemmas. :
Lemma 4.3, If feC(P;H), then lim Ti(x)-f(x) =

j ~»oco
= 0 uniformly in P'.

Lemma 4.4. If feCS(P;H) (s21) and

D™f(x) = 0, x€3P, M= 0y1,000,8=1,

then DmTi (m=0y1y00ey8) 1is the i~th Tonelli’s polynomial
for D®f and

lim DmTi(x) - d%¢(x)] = o, D=0,1,000,8

11— 0o
uniformly in P', where D™ is the differential operator
defined by (1.1) and 3P 1is the boundary of F.

Lemma 4.5. Let Q'ch be a closed rectangle with
faces parcllel to the coordinate planes. Then for any .function
f €C(Q’ ;H) there exists a sequence of polynomials Wi:Rk——H,
i=1,2,... uniformly convergent to f in ¢'.

Proof. Take an arbitrary closed ractangle Qch
with faces parallel to the coordinate planes such that
Q'cint Q. By Theorem V.2.3 of [2] there exists an extension
FeC(Q;H) of f. Now we introduce new variasbles
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16 H.Ugowski

yj = djxj, j=1,..o,k (dj>0)

such that the rectangle P defined by (4.3), (4.4) is the
image of &. Then Lemma 4.5 ealily follows from Lemma 4.3.

Lenna 4,6, Por an arbitrary positive integer s
every function we C:"(ET;H) can be uniformly approximated
in CS(ET;H’) by functions

ki jo

wi(xvt) = 2 2 cijkwijk(x’t)’ i=1’2’°0'10)
k=1 j=1

where ¢4k € H, Wijke C?(ET), k; is some positive integer
depending only on 1 1ind jo is some positive integer depend-
ing only on GT and v,

Proof., Proceeding like in the proof of Lemma I of
[4], Sec.259 we extend the function w %o Wecg('éu’ ;H)
where « €(-T,0), p €(T,2T) are arbitrarily fixed numbers.,
Then there exist open rectangles P1,...,Pj0 such that

1° the sides of P:j are parallel to the coordinate axes
and their length is less than 13 ‘
[0 By ~ = >
2 ch Gu,p\sa, , P{in Gp # ¢, where S, p is the la-
teral boundary of the cylinder de = G x(a,p;;
’

3° the system P1,...,P.j is a covering of the support
o
of the function w denoted by supp w.

Now choose oven rectangles P., j=1,...,]. possessing
3 0

properties 1°.3% ang such that P.c P.. There are functions
AJGC“(Gq’p) (j=1,ooo’jo) Such that

supp 1Jc Pj' J\j(x,t) = 1 for any (x,t)e?’j.

10) I.e. for any €>0 there is Wi, such that
'D'%(x,t) - D"ii (x,t)l <g, (x,t)e ('}T, 0=0,7y00095e
o
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Linear parabolic squation 17

Thé functions lj'-f.'lp (j=1,...,j°) satisfy assumptions of
J

Lemma 4,4. Thus for any 7 >0 there is io such that

(4.5) ]Dn\av(x,t) - Dm'.[‘ioj(x,t)l <7

for j=1,...,j0, 0=0,1,e0049, (x,t)e'fa.\ET,

where T4 j ig the io—th‘Tonelli’s polynomial for the func-
o

tion AW|p . By theorem on the partition of unity (see e.g.

Sec.XVIII.4 of [T]) there exist functions 7 ec°°(Rn+1),
j=1,ooc,j° Such that

O<¢3(X,t)$1', (x,t) € ™, supp (pjcP'j

and

Jo
(pj(x,t) =1, (x,t)e€supp w.
=1

J
So we have
jo
(4.6) wix,t) = z (pj(x,t)w(x,t), (x,t)ef‘;,D,
=1

Since

jo jo ki
z cpj(x,t)Tij(x,t) = 2 2 cijkwijk(x't)
Jj=1 J=1 k=1
therefore relations (4.5), (4.6) imply the condition stated
in the footnotew). This completes the proof.
Lemma 4.7. If feLq(G;H), 1€ g < oo, then there
exists a sequence of polynomials Wm:Rn—> i, m=1,2,... con-
vergent to f, 1i,e,

lim |[W - T = 0,
LY LA

Proof., Take an arbitrary closed rectansle P,
GcPcR® with faces parallel to the ccordinate planes. The

function f,:P—= H defined by formuls
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18 ) HoUpowski

(x), x €G,

07 f()=
(4.7) 1E 0 , xeP\G

belongs obviously to Lq(P;H). Take an arbitrary & >0. Then,
by Theorem VII.4,3 of [8], there is § >0 such that for any

(4.8) pcp, |F|, <5

we have .

(4.9) f|f1('x)IQGX<% 379¢™9,
F

In view of Theorem V.646 of [2] for this 6 there exist set
(4.8} and a simple furction f,:P —=H such that

(4.16) f2(x) =0, x€P,

(4.11) |2, (x)-ty(x) < Je(arel )79, xer\n,
Relations (4.9)-(4.11) easily imply the inequality

&
(4.12) Iy = 2ollg,p<5 -

It suffices to consider the case

Let us put o= sup |f,(x)
xeP

& >0 By Theorem V.6.7 of [2] there is a closed set F,CP
such that

1 o o=1)9
(4413) [B\F,| < (g ea™)

and the function fZIF is continuous., In virtue of Theo-
1

rem Vo2.3 of [2] for the function f there exists a con-
2 F1

1) By IBIs we ghall denote the s-dimensional Lebesque

meesure of a set B, We assume, of course, the measurability
of B with respect to this measure.
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‘tinuous extension fy3P —=H such that |f3(x)| <& for xeP.
So we have

f2(x) = f3(x) for xe.F‘1 and |f2(x)—f3(x)| € 20t for xEP\F1.
Consequently, by (4.13), we get

3
(4.14) £, - 230y, <3 -

According to Lemma 4.5 there exists a polynomial W:R? —=H
satisfying the inequality

&
(4.15) Ie; - Wg,p<3 -

Relations (4.7), (4.12), (4.14) and (4.15) immedistely imply
that "f"wllq,G <€, which completes the proof.

Lenma 4.8, Let (fm) be a nnnnhegative sequence
of functions belonging to Lq',r(GT)’ g,r € <1,00), If (fm)
is convergent a.e. in GT to a fanction feLq’r(GT), then

lim (£ - f = 0.
M —»oo " m' "q )r’GT
This lemma can be proved in a similar manner as Theorem
XII.2.6(11) of [9].

Lemma 4.9. Let fGLq’r(GT;H), q,r €<1,00),
Then for any € >0 there exists & >0 such that

”fo”q,r,GT< £

for ary set FCGgp, |F|
tic function of F.

Proof., The argumentation is cimilar to that used
for Theorem VII,4,3 of [8],., So let us telke any €>0 and de-
note

nsy <O where Xp is the characteris-

S ain(m, £1), m=1,2,44,

\
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By Lemma 4.8 there exists o, sucih that

&
ey - ¢ <5 .

mouq ,l‘,GT

Hence, taking any set

-_&
FC Gy, IFln+1<6’ 6—_2‘1‘_0

we get

" %Ff"q,r,(}rTsulfl - fmo"q,r,G,l. + _mo"xF"q,r,GT<s‘

Using Lemma 4.9 in tead of Theorem VII.4.3 of [8] and
prcesding like in the proof of Lemma 4.7 one can prove the
following lemma.

Lemma 4.10, If feL, .(G;H), q,r €<1,00),

then there exists a sequence of polynomials X,‘Jm:Rn""I —eH,

m=1,2,.es convergent to f, i.e.

ml_i.i"Wm - f"q 4Gy = 0.

Lemma 4.11. The space C(E;H) is dense in Lp(E;H),
Tgp <o

This lemma easily follows from Lemma 4.7 and Theorem II.2.13
of [1].
 Leama 4,12, Let u:E-=H be a locally integrable
function on E. If for any function ¢ €C™(8) (m being a
nonnegative integer) we have

(4.16) f(p(x)u(x)dx = C,

then u{x) = 0 =z.e. in I,
frroof. 72 chall use the following rzaark,

o

Xemark Lo For functions with values in H we
introduce mollificstions in the same mannsr as in fec Il 2,17
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of [1]. Using Lemma 4.11 one can extend Lemma II.2.18 of [1]
to the functions with values in H.

Now take an arbitrary domain E,, @ >0 such that fch
and the distance from EQ to the boundary of E is less
than @~'. Retaining notation of Sec.II.2.17 of [1] and sub-
gtituting

-1,
¢(y) = I, (z-y), € € (0,¢7"), erg

in (4.16) we get Jgwu(x) = 0. Hence, using Lemma II.2.18(c!
of [1] and Remark 4.1, we find that

"u”1’E9 = 0, 1.6, u(x) = ¢ s.e. in Ege

According to the above considerations for any positive in-
teger m there exists a set

Fp©Bps [Bp\Fply = 0

such that u{x) = 0 for any x€F . 5o we have
o0
{x€B: u(x) # 0} c ] (B,\Fp).
m=1

This relation and the egquality

o0

(Em\Fm) k=0
1

m=

imply that u(x) = 0 a.e. in &E.
Lemma 4.13. Let functions um€L1(E;H), B=1,25000
posses weak derivatives umxie L1(E;H) (1€<{1,k> being ar-

bitrarily fixed). If sequences (um) and (n ) are con-

mX .
i
vergent to functions u and vi, respactively, then there
exists a weak derivative uxi and uxi = Vyo
The proof is the same as that for resl-valued functions.
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Remark 4.2. Observe that Lemmas 4.1, 4.3-4.7,
¢ 9=24,13 remain true in the case where H 1is a Banach space.

Leama 4014 Wp(g;H), WyrO(GpiH) and W) (Gp;H)
ers Hilbert spaces,

It suffices to prove completeness of this spaces. However
this property easily follows from Lemma 4,13.

Lenmma 4,15, V2(GT;H) is a Banach space.

Proof . It suffices to prove the completeness, So
let (um) be 2 Cauchy sequence in V2(GT;H). Therefore (um)

is a Cauchy sequence in the space ’;‘J;’O(GT;H) as well, Conse=-

quently, by Lemms 4.14 there exists a function ueW%’O(GT;H)
gsuch that

(£.17) lim o, - uu21 00 _ g,

m-—=o0a

One can find that um(',t), u(-,t)eLz(G;H) for almost all
t €<0,T), ilorcover, relaticn {4.17) and Theorem XII.2.5
of [9] imply the existence of a subsequence (ul11 ) such that

(4.18) k]...:\.:; flu, (',t) - u(',t)llg’G =0

for almost all t € <0,T).
According to the above considerations there exists a set
T c<o,Td, |3’,|1j= T such that (4.18) holds for t € T and

{4.19) lim  (sup {|u t) - a (*,t) ) = 0,
e (g el t) - bl g

Take any & > 0., Then, by (4.19), there is k  such that

”umk(',t) - ump(-,t)llz'G<€, t €T, k,p>k,.

Hence, in view of (4,18} for t €7, we have

"umk(.,t) - u(‘,t)uz’GQS, teg’, k>k0'

~ 462 -



Linear parabolic equation 23

Consequently, by (4.17), we get

€V,{(Gn;H 1i - = O.
u 2( T4 )9 k-.gilumk ulz,GT 0
Thie easily implies that

Lo Juy - afp 6 = 0
which completes the proof, :
Lemma 4,16, V;’O(GT;H) is a Banach space.
Proof. It suffices to prove the completensss. So
let (uy) bve a Cauchy sequence in V;'O(GT;H). Consequently
(uy) 1is a Cauchy sequence in V2(GT;H), whence, by Lem-
ma 4.15, there exists u.eVz(GT;H) such that

(4.20) lim Ium - ul2,GT = 0.

m—.“
This implies the existence of a set J ¢ <0,T>, |T| 4 =T such
that sup JJu(-,t) < oo and
aup [al+ 1) g

(4.21) lim (:2% flugless) = ule,tll o) = 0.

m-—=o<
Take an arbitrary t € {0,2>\ 7. Let t, €T, k=1,2,...
be a sequence convergent to to. Taking into account (4.21)
and the uniform continuity of functiore wy with respect
to t (in the space L2(G;H)) one can prove that (u(.,t,))

is a Cauchy sequence in L2(G;H). This implies the existence
of a 1limit

1i Loyt )0
k-uglﬂ u( ! k)

One can prove that the above limit is independent of the se-
quence (t,). So there exists a limit

lim  u{-+,t).
Tt --t°
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Now let us put

ule,t), te7T,
(4.22) v(s,t) =

1im ul*,®), t € <0,2>\ T.
Tax~t

Using (4.21) and the continuity of functipns uy with res-
pect to t we get

(4.23) lim ( sup u (.- t) = v(e,1t) )} = 0.
meoo teC0,T e SLEX:

Hence it follows the continuity of v with respect to $

(in the space L,(G;H)). This fact and relations (4.20),

(4.22), (4.23) imply that v eV)'O(G;H) and

; (1,0) _
m]ff:'um - “lz,éT =0,
which completes the proof.
Remark 4.3. Lemma 4,16 and Definition 1.2 easily
[+]
imply that V;’O(GT;H) is a Banach space,

Lemmna 4.17. The set of all functions
p
oo , =
2 Eigi’ P=1425000, Eieﬂ’ g;€ Co (G’l‘)
i=1

ig dense in the spaces

%49 0 ° o o
WyrO(en;H), Vo(GpsH), V1*O(an;H) ana W)''(GpsH).
This lemma follows immediately from Definition 1.2 and
Lemma 4.6.
o]
Lemma 4,18, If aeW)(E;H), then ueL (B3H)
and

1=
(4.23) lullp,s < 8lugl 5 1ul 275>
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where

uX = (ux1,¢..,uxk)’ " x"2 E Z "ux I2 B

pe<2,2k(k-2)""> if k3, p e<2,°°) if k=1, o=
and f 1s a constant depending only on p and k.
Proof. Take any function ueC° (E;H) and denote

rolx
1
i

lu(x”(mﬂ)/m - E(X))(m+1)/2m

Vm(x) = (u y m=1,2,.-|
One can easily check that Yo have continuous derivatives

v (i=1,404,k) defined by formula
mX3

(1+n” )]u(x)l u.(x)ux (x) if ulx) # o,

vmx.(X) = 1
i

0 if u(x) = O.

Now consider the function v defined by formula

v(x) = |u(x)|, xeE.
Observing that lim v (x) = v(x) for x€E and

I >0

Ivm(x)| < X2 for X€E, m=1,2,.04, where K = max(1,sup Jul(x} )
xeE

and using Theorem XII.2.6(i) of [9] we get

02 li - =O‘
(4.24) vl AT PR

Like as above, introducing the functions wy (1=1,404 k) gi-‘

ven by

|u(x)|'1u(x)ux (x) if u(x) # 0,
wi(x) = 1
0 if u(x) =

we find that

(4.25) ml_j;l:o"vmxi L Wi"1’E = 0, i = 1,cco'kl
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In virtue of Lemma 4.13 in the scalar case it follows from
relations (4.24) and (4.25) that w; are weak derivatives
of funetion v - and vxi = Wy {i=1,...,k). Thus we have
proved that v eﬁ;(E). This implies, by Theorem II.2.2 of
[5], the ineguality

o 1-
"V"p,E € ﬂ"vxng,E "V"2,§£

Hence, in view of relations

"V"p,E = "u"p’E, HVXNQ,E<Hux"2,E,
the inequality (4.23) holds for the function u.
]
Now take any function u eWé(E;H). Then there exists a

sequence of functions u, € é°°(E;H), m=1,2,¢se Such that

(4.26) m{iﬂ "um'uHQ,E = 0, mEHil,umx-uxHE,E = 0.

Hence, taking into account the inequelity (4.23) for functions
n,-ty, we conclude that (um) . 1s a Ceuchy sequsence in LD(E;H).
So there exists a function w eLp(E;H) such that

lim “um'W"p,E = 0,

m =00

This implies, by (4.2¢), that w = u, i.e. ue‘Lp(E;H) and

(4.27) lim f|u 0.

m-~eoo m_u”p’E

Using ineauslity (4.23) for functions Up and relations
(£.26), (4.27) we conclude that (4.23) holds true for the
function u as well, This completes the proof.

Lemmea 4,19, If uef}?0(GyH), then uf+,t) € WA(GsH)
fop almost =211 + € (0,TD.

Proof, One can easily find that for any function
ue‘H;’O(GT;H) we heave
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(4,28) ule,t), ny, (*,%) €T,(G;H), i=1,..0,n
i

for almost all g €<0,T.
Now let ueW*O(GpsH). Then, by Definition 1.2, there

exists a sequence u, € d:’(ET;H), m=1,2,+ses 3such that

n ~--oo

T
lim I dt I |um(x,t)-u(x,t)|2dx = 0,
0]

G
7 :
1lim J dt J lumx (x,t) - n, (x,t)]zdx =0, i=1,.4e4n
M ->oo 0 G i i

Hence, ' by Theorem XII.2.5 of [9], it follows the existence
of a subsequence (u, ) such that for almost all ¢t € <0,T>

we have 8
(4.29) lim flu_ (*,%) - u(*,t) =0
S*N" mS ? ’ ”2,(} ’
(4.30) lim u (' t) - U . t) = O i=1 eseylle
s__wn mXs ' xi( ’ "2,G ! ! ’

Therefore, by (4.28) and Lemma 4.13, the functions u (=,%)
i

are weak derivatives of the function u(+*,t) for almost all
t € {0,T>. Moreover, relations (4.28)-(4.30) imply the asser-
tion of the lemma.

Proceeding as in [5], p.89 and using Lemmas 4.18 and 4.19
one can prove the following lemma,

Lemma 4,20, If ue%dGTﬁ), then uwe€lL

-

1 n 1r(GT;H)’
where }--i-—z-a =7

q

re(2,00>, ge€<2,2n(n-2)""> if n>2,
T e(2,00>, g €(2,00) if n=2,

r e (4,00, q€(2,00) if n=1,
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Moreover,

”u"q ’r’GT,< {5 IulE,GT ’

p being a positive constant depending only on n end gq.
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