

Wiesław Chromik

THE SUM OF A DOUBLE SYSTEM OF GRAPHS

By a graph we shall mean a symmetrical graph i.e. $G = (V, R)$, where V is a non-empty finite set and R is a binary relation on V satisfying the following condition

$$\bigvee_{u, v \in V} [u R v \Rightarrow v R u].$$

We admit loops in G . Let $G_1 = (V_1, R_1)$ and $G_2 = (V_2, R_2)$ be graphs.

Definition. A mapping φ of the graph G_1 into the graph G_2 is said to be a homomorphism if

$$\bigvee_{a, b \in V_1} [a R_1 b \Rightarrow \varphi(a) R_2 \varphi(b)].$$

The mapping φ will be called a strong homomorphism if

$$\bigvee_{a, b \in V_1} [a R_1 b \Leftrightarrow \varphi(a) R_2 \varphi(b)].$$

A quadruple $A = (G_1, G_2, \varphi, \psi)$ will be called a double system of graphs $G_1 = (V_1, R_1)$ and $G_2 = (V_2, R_2)$ if φ is a strong homomorphism of G_1 into G_2 , ψ is a strong homomorphism of G_2 into G_1 and $V_1 \cap V_2 = \emptyset$.

For universal algebras similar systems were introduced by E. Graczyńska in [1]. Some general constructions of this kind for relational systems were introduced by J. Płonka in [3].

A. Kościński in [2] considered also 2-component systems of graphs, however, he used not strong but simple homomorphisms. We construct a family of graphs in the following way. We define a mapping $h: V_1 \cup V_2 \rightarrow V_2$ putting $h(v) = \varphi(v)$ for $v \in V_1$ and $h(v) = v$ if $v \in V_2$. Further we define a mapping $g: V_1 \cup V_2 \rightarrow V_1$, putting $g(u) = \psi(u)$ for $u \in V_2$ and $g(u) = u$ if $u \in V_1$.

Let $f(x_1, x_2)$ be a boolean formula constructed from the variables x_1 and x_2 by means of logical functors \wedge, \vee, \sim . For any such formula f we can construct a graph G_f putting $G_f(\mathcal{A}) = (V_1 \cup V_2, R_f)$, where

$$\bigvee_{a, b \in V_1 \cup V_2} [a R_f b \Leftrightarrow f(h(a) R_2 h(b), g(a) R_1 g(b))].$$

The graph $G_f(\mathcal{A})$ is said to be the sum of a double system of the graphs G_1 and G_2 according to the formula f . We say that a graph $G = (V, R)$ is the sum of a double system of graphs $G_1 = (V_1, R_1)$ and $G_2 = (V_2, R_2)$ according to the formula f if $V_1 \cup V_2 = V$, $V_1 \cap V_2 = \emptyset$ and if there exists a strong homomorphism of G_1 into G_2 and a strong homomorphism of G_2 into G_1 such that $G = G_f(\mathcal{A})$, where $\mathcal{A} = (G_1, G_2, h, g)$.

For example, the graph G in the figure 1 is the sum of a double system of graphs $G_1 = (V_1, R_1)$ and $G_2 = (V_2, R_2)$ according to the formula $f_1(x_1, x_2) = x_1 \vee x_2$, where $V_1 = \{a, b\}$, $V_2 = \{c, d\}$, $R_1 = \{(a, b), (b, a)\}$, $R_2 = \{(c, d), (d, c)\}$, $h(a) = c$, $h(b) = d$, $g(c) = b$, $g(d) = a$. Observe that if f_1

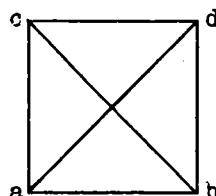


Fig. 1

is equivalent to f_2 , then $G_{f_1} = G_{f_2}$ (the sets of vertices of G_{f_1} and G_{f_2} are equal and $R_{f_1} = R_{f_2}$). Let $[f(x_1, x_2)]$ be the class of formulas equivalent to $f(x_1, x_2)$. Put $\chi([f]) = G_f$. It follows from the last observation that χ is well defined. Denote

$$G_{[f]} = G_f$$

hence

$$\chi([f]) = G_{[f]}.$$

Let $\mathcal{B}(x_1, x_2) = (F, \wedge, \vee, \sim)$ be a free Boolean algebra on generators x_1 and x_2 (see [4]).

So F consists of 16 classes of equivalent formulas, namely

$$\begin{aligned} & [x_1 \wedge x_2], [x_1 \wedge \sim x_2], [\sim x_1 \wedge x_2], [\sim x_1 \wedge \sim x_2], \\ & [x_1 \wedge x_2 \vee x_1 \wedge \sim x_2], [x_1 \wedge x_2 \vee \sim x_1 \wedge x_2], \\ & [x_1 \wedge x_2 \vee \sim x_1 \wedge \sim x_2], [x_1 \wedge \sim x_2 \vee \sim x_1 \wedge x_2], \\ & [x_1 \wedge \sim x_2 \vee \sim x_1 \wedge \sim x_2], [\sim x_1 \wedge x_2 \vee \sim x_1 \wedge \sim x_2], \\ & [x_1 \wedge x_2 \vee x_1 \wedge \sim x_2 \vee \sim x_1 \wedge x_2], \\ & [x_1 \wedge x_2 \vee x_1 \wedge \sim x_2 \vee \sim x_1 \wedge \sim x_2], \\ & [x_1 \wedge x_2 \vee \sim x_1 \wedge x_2 \vee \sim x_1 \wedge \sim x_2], \\ & [x_1 \wedge \sim x_2 \vee \sim x_1 \wedge x_2 \vee \sim x_1 \wedge \sim x_2], \\ & [x_1 \wedge x_2 \vee x_1 \wedge \sim x_2 \vee \sim x_1 \wedge x_2 \vee \sim x_1 \wedge \sim x_2], \\ & [x_1 \wedge \sim x_1 \vee x_2 \wedge \sim x_2]. \end{aligned}$$

Moreover, for any $[f_1], [f_2] \in F$ we have

$$[f_1] \wedge [f_2] = [f_1 \wedge f_2], [f_1] \vee [f_2] = [f_1 \vee f_2], \sim [f_1] = [\sim f_1].$$

Let $\mathcal{G} = \{G_{[f]} : [f] \in F\}$.

We form an algebra $\mathcal{D} = (\mathcal{G}, \cap, \cup, \prime)$, where if $G_1 = (V_1, R_1)$, $G_2 = (V_2, R_2)$ are graphs, then

$$G_1 \cap G_2 = (V_1, R_1 \cap R_2), \quad G_1 \cup G_2 = (V_1, R_1 \cup R_2), \quad G_1' = (V_1, V_1 \times V_1 \setminus R_1).$$

Theorem. The mapping χ is a homomorphism of the algebra \mathcal{B} onto the algebra \mathcal{D} .

Proof. Obviously χ is a function onto. We show that χ is a homomorphism. Let $[f_1]$ and $[f_2] \in F$, we have

$$\begin{aligned} \chi([f_1] \vee [f_2]) &= \chi([f_1 \vee f_2]) = G_{f_1 \vee f_2} = G_{[f_1 \vee f_2]} = \\ &= \chi([f_1]) \cup \chi([f_2]) = G_{[f_1]} \cup G_{[f_2]} = (V, R_{f_1}) \cup (V, R_{f_2}) = \\ &= (V, R_{f_1} \cup R_{f_2}) = (V, R_{f_1 \vee f_2}) = G_{f_1 \vee f_2} = G_{[f_1 \vee f_2]}. \end{aligned}$$

Similarly

$$\begin{aligned} \chi([f_1] \wedge [f_2]) &= \chi([f_1 \wedge f_2]) = G_{f_1 \wedge f_2} = G_{[f_1 \wedge f_2]} = \\ &= \chi([f_1]) \cap \chi([f_2]) = G_{[f_1]} \cap G_{[f_2]} = (V, R_{f_1}) \cap (V, R_{f_2}) = \\ &= (V, R_{f_1} \cap R_{f_2}) = (V, R_{f_1 \wedge f_2}) = G_{f_1 \wedge f_2} = G_{[f_1 \wedge f_2]} \end{aligned}$$

and

$$\chi(\sim[f]) = \chi([\sim f]) = G_{\sim f} = G_{[\sim f]},$$

$$[\chi([f])]' = (G_f)' = (V, R_f)' = (V, V \times V \setminus R_f) = (V, R_{\sim f}) = G_{\sim f} = G_{[\sim f]}.$$

So

$$\chi([f_1] \vee [f_2]) = \chi([f_1]) \cup \chi([f_2]),$$

$$\chi([f_1] \wedge [f_2]) = \chi([f_1]) \cap \chi([f_2]) \quad \text{and}$$

$$\chi(\sim[f]) = [\chi([f])]', \quad \text{concluding the proof.}$$

Corollary 1. The algebra $\mathcal{D} = (S, \cap, \cup, ')$ is a Boolean algebra.

Corollary 2. The graphs $G_{[x_1 \wedge x_2 \vee x_1 \wedge \sim x_2]}$, $G_{[x_1 \wedge x_2 \vee \sim x_1 \wedge x_2]}$ are generators of the algebra \mathcal{D} .

REFERENCES

- [1] E. Graczyńska : On the sums of double systems of some algebras I, Bull. Acad. Polon. Ser. Sci. Math. Astronom. Phys., 23 (1975) 509-513.
- [2] A. Kośliński : O rozbiciach grafów na sumy systemu prostego i rozbiciach normalnych drzew, (doctoral thesis), Komunikat Instytutu Materiałoznawstwa i Mechaniki Technicznej Politechniki Wrocławskiej, Nr 211 (1978) p.53.
- [3] J. Płonka : On the sums of direct system of relational systems, Bull. Acad. Polon. Ser. Sci. Math. Astronom. Phys., 21 (1973) 595-597.
- [4] T. Traczyk : Wstęp do teorii algebr Boole'a. Warszawa 1970.

INSTITUTE OF MATHEMATICS, PEDAGOGICAL UNIVERSITY,

45-256 OPOLE, POLAND

Received November 18, 1981.

