DEMONSTRATIO MATHEMATICA
Vol. XVI No2 A <

Nguyen Van Mau.

CHARACTERIZATION OF POLYNOMIALS
IN ALGEBRAIC OPERATORS WITH CONSTANT COEFFICIENTS

In this paper a characterization of polynomials in alge-
braic operators with constant coefficients is given, We solve
two types of operator equations which will be called linear
algebraic equations, neamely equations of the form

P(X) =Y and P(A)X - XQ(B) =Y,

where P(t} and Q(t) are polynomisls; & and B are alge-
braic elements.

1e Let X be an algebra (a linear ring) with unit I
over the field of complex numbers. Let A Dbe an algebraic
element in X with the characteristic polynomial

. : n
(101) 0 = [] (6t0™, ¢ # 5y, 143,
J=1

‘31+02+000+°n=N.

(cf. [11),

The element A has the following properties important in
our further considerations:

Proposition 1.1. Let A be an algebraic
element with the characteristic polynomial (1.1) and let Q;(%)
be a polynomial in variable t with complex coefficients,
sctisfying the condition
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2 Nguyen Van Mau

(1.2) Qu(ty) # 0.

o

If Nt):(h¢ﬂ:%ﬂth 0Ky <v;, then P(4) # 0.
Proof, Suppose that there exists a polynomial
Q; (t) and an integer o in the interval Oy <
3o 3o . 3o <V3

such that
°a
(1.3) Bt) = (4-ty ) “°qy (t) and B(4) = O,
O (o]

Without loss of generality, we osn admit

J'l
- )
oy (80 =[] (w=ty) dat)
3#3,
whera Q(tj) # 0, j = 1,2,.00,11, 'J >V .

Thus the element [Q(A]] -1 exists (cf. [11). Thus,
P(A) = 0 if and only if P1(A) = 0, where

’

« 9
Py(t) = (b=t ) %o [1 =153,
° 34,

Consider the polynomial

Pz(t) = P1(t) + PA_(t).
We know from the above discussion that

Pp(4) = 0,

3 3
Py(t) = (t=ty ) °° [1 (et 3P3(t),

- 343,
wher:
V5,74 ¥y=3
Py(t) = (t-tjo) ° o, [-1 (6-%5) 39,
3#3,
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Characterization of polynomials 3

For each j.‘l(tJ(n we have P3(tj) # 0, Hence P3(A)
is invertible, Thus P2(A) = 0 if and only if

P4(A) =0

where

3 3
By t) = (t=t, ) O[] (s-vy) 3,
4 do - i
i#i,

On the other hand, deg P4(t)<deg PA(t), which contra-
dicts our assumption,

Lenmma 1.1, Let 4 be an algebraic element with
the characteristic polynomial (1,1} and let G(t) = gots +,
+ g1ts"1 + eee + 85 beoa polynomial of degree s in t,
satisfying the conditions

6(ty) £ Gt;), 143
(1.4) |
G’(tj) # 0, i,j = 1,2,..0,110

If V = G(4) then

n ’)j
(1.5) B, (t) = :[;]1 (t - o(ty)) 9,

B
Proof. Wite P(t) = ﬁ1 [t - G(tj)] J, Then’

n n n
9 2
P(V) = [] [6(4) - (4] 1= (a- 851) 0[] [e(a,t4)] %,
j=1 j=1 j=1
where
16) G(tyty) = o0 (085048405 (b, 5] 400 iveg (G (t,ty)
Oy (tyt3) = £k 4 tjtk'1 $oeee + t?.
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4 Nguyen Van Mau

Thus the characteristic roots of the element V = G(4) are
G(ty)y Glty)g000,G(ty). o

J
Let Q(t) = [(1: - G(tj )] ° G;(t) and Q(V) = 0, wners
0 .
Q1[G(tjo)] £ 0, oty €95 3, fixed, 0<3,<n.

Without loss of generality we can admit
=% - - \E '
Q(t) = [¢ G(tjo] |—| [t - 6(s50] 9, >
J Jo
then

(V) = [ola) - G(tjo)I} [_| {[A - $,1]G(4,1 ,} 3
i,

3 Ay % o
: 3
= (4-ty 1) ° | | [a-t,1) [G(A,tjo)] ° f [ [G(a,65)] ¢
34, 343,

where G(t, t ) are given by formula (1.6}.
‘We put

dj o
G, (t) = [G(t,tj ] 0[] Cots,s] 2.
° %3,
We shall show that
(1'7) G1(tp) ¥ 0,_ p= 1,2,...,1’1.

The proofs are based on the identity

rtk+1 - tk+1

—E-'U—-—-_tj— when P, # ,'j
B 3

Gk(tp’tj) =<

(k+1)tj when | = J.

.
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Characterizztion of polynomials -5

By (1.4)

G(tpptj) £0 if 1i# J
and /
G(tj,tj) = G (tj) £ 0,

therefore {1.7) holds.
Thus the element G1(A) is invertible and Q(V) =0
{or # 0} if and only if

o
(4 - tj I) Jo ,—I (a4 - th)oj = 0 (respectively # 0},
° I3,
By Proposition 1.1 this implies that (V) = 0, which-
contradicts our assumption,
Lemna T1e2e Let A be an algebraic element with
the characteristic polynomial (1.1). et G(t) = g t° +

+ g1t9'1 + eee + 8y Dbe a polynomial, satisfying the condi-
tions |
(1.8) o(t;) #6(t5), 143

: (s:) (s:+1)

(1.9) 6'(t5) = ees =& (1) =0, 0 I (51 A0

j = 1’2’0.0,110

If V = G(A), then
n §
(1.10) B(t) = [] [+ - 6(t] 3,
. j=1

where

ej when 83 is an integer

[ej] +1 otherwise
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6 Nguyen Van Hau

and
AR

ej =#—1, j=1,2,-oo,no

Proof. The method of proof is similar to that of
Lemma 1.1. From (1.8) =~ (1.9} we obtain

6(t,ty) = (t-tj)jGj(t,tj), where
(1.11)

Gj(t tj) # 0, '.l,j = 1,2,000,11.

P’
Thus G(A,tj) = (&4 - th)stj(A,tj), where elements GJ(A,tj)
are invertible,

n . ol )
write E{t) = [ 't - G(t4)] J. Then

=

n . n n
[ Ceta) - G(tj)T]da - [ (AthI)o‘j I-_][G(A,tj)]uj =
3=1 3=1 3=1

P(V)

(1+sj)a

n j n . dj
= ﬂ (& - +51) ﬂ Gyla,t5) 7.

| n o
By (1.11) the elemsnt J‘| [o(a,t5]] 3 1s invertible,
=1

From the above discussion we conclude that P(V) = 0 if
and only if
n
(1'”53”;] ~

ﬂ (4 - t41) =0,

J=1
By Proposition 1.1 we know that (1+sjlay > V53
J = 1,2400090s Thus «Jzaj, J = 152,000,500 This implies
formula (1.10). . ' .
Cor-ollar; 101. Let G(ti) #G(tj); i# 3.
Then » .

ngdeg_P,v(t)QN, v = G(a)
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Characterization of polynomiels 7

and

deg Py(t) = n if only if 84+1 )\)j

deg Py(t) = N when “ﬁ =1, J = 1,2,eee,h 0n G'(tj) £ 0,
j = 192’.;0,n0

Lemma 1e¢3e Let A Dbe an algebraic element with
the characteristic polynomial (1,1) and let

G(t) = gots + 81ts-1 + e e + gs

be a polynomial gatisfying the conditions
G(t1) = G(tn)’

(1.12) G(t;) # G(tj) when 1 # j and (i,j) # (1,n) .
G‘(tj) # 0, j = 1,2,..|,no

If V = G(A) then
. o n-1 D
Rplt) = [8 - 6(s)] ' [] [t - 6(t,] 9
j=2

where oy = max(01, On).
Proof. According to the assumption {(1.12) we have

(1.13) G(t) = G(ty) = (¢ = £)(t = £ )G(t,t,,%,)

"where

G(t,t1,tn) = gods_z(t,t1,tn) + 8165-3(t’t1’tn) + oo +

uttp‘; O'k(t,t1) G'k(t,tn)
LRl ren il S
n 1 n

+ B o0 {tytysty) = ;

x+p+y=

Uk(t'tj) given by the formula (1.6).
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8 Nguyen Van Mau

Let
o n~1
Py() = [ = 6(e,)] " [] (% - 6lty)] 3,
j=2
From (1.13) we obtain
n-1 n-1
J-‘
P (V) =[(a-t,T) (A=t 1)] ﬂ (a-t41) j[G(A tyety )] ﬂ [6(ayt )] -

i=2

Thus P1(V) = 0. By Proposition 1.1 we know that,
for each Pz(t) with deg P2(t) <deg.P1(t) we have Pz(A)z’
Without loss of generality we can admit
o n-1
oy
P,(t) = [t-G(t,)] ﬂ [t-6(t5)] “, a2 ¥y, oy <oy
=2
Let P2(V) = 0, Hence

n-1
0 = [a(s) - a(t,)] L ﬂ [e(a) - &(t )I_']d:'
J=2

4I n-1 , n-1

= (A—t11f(1(A-tnI)u1 [ (A—t,.j‘I)uj[G(A, bty 7" ﬂ [ata,ty]] %,
o=2 4

When 1< j<n and

G(t )-G(t )
( j' 1pt ) ——1_ [G(tj’t )'G(t ot )]"(tj-t )(t.']-t )

If j =1, then

' | ¢’ (t,)
G(t,,%,0%,) =+ T [G(t,l,t ) = G(t,,8,)] = T_"" O
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Charascterization of polynomials 9

Similerly, if. j = n, than

( ) -t
G(t ,t.,% = .
n*"1*’n t‘l-tn
Thus G(A,t1,tn) is invertible.

According to the proof of Lemma 1.1 we ... that G(4,%.),
J = 2435ee.40~1, are invsrtible, Hencs PZ(A) = 0 if and
only if

! o n~1 o
1 1 - 3
(a-¢0 o= [ a-513 =0
=2
which contradicts our assumption.

Lemna 1.4, Let & be an algebraic element with
the characteristic polynomial

Ryt =[] (5 - 45079,
J=1

Let G{t) = gots + g1te'1 + s + g5 be a polynomiel sa-
tisfying conditions:

1) 6(t,) = Glt,),
(1.14) 2) G(t,) # G(tj) #6(ty), 1 #3, 1,] = 2,3,000,n=1
3) 6'(ty)= ...=G(83’(tj)= 0, G(sii“)(tj) {0,
J = 1525e0a4she
If V = G(A), then
o n=1 5.
(1.15) Polt) = [t - 6(t)] " [—L [+ - as50] 9,
j=

where

8, when e, is an integer

[91]+1 when 8, is not an integer
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10 ' Nguyen Van Mau

) ~
1 ) n
01 = MNax (81 +1 ] 8 +1)

n
and
85 when @, 1s an integer
(1.16) 8y = .
[91]+1 when 93 otherwise
3 = 2,3y000,0-1y,
where

y
83 =T_’1‘T'

3

Proof. According to ‘Lemma 1.2, if 36{2,3,.’..
...,n-1}, then (Sj is given by the formula (1.16).
By Proposition 1.1 there is an integer o such that
P(V) = 0 where '
n-1

p(t) = [t - a(t,)]" H [t - al(t,)] %,
According to the proof of the Lemma 1.3, for 1<j<n -

G(tj,t.l,tn) #0
end from (1.14)
‘ ' 81 Sn
G(t,t1,tn) = (% - t1) (t - tn). G1(t,t1,tn)
G1(tj,t1’tn) # 0, j = 1,2,00.,[10

Thus G1(A,t1,tn) is invertible. This implies that P(V) =
if erag only if
n=-1
oS
[{a=t,1) (amt I)] (4-%,1) 1(A-tnI) H (a-t3I) K 0,
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Characterization of polynomiszlg : 11

Hence ol satisfies the conditions

2V,

o+ as or

1

oA+ &8sy >0n

and

From thie o= oy and the proof is complete,
For the general case we prove the following theorem.
Proposition 1.2 Let A be an algebraic
element with the charscteristic polynomial

n
n 1 i3,
(11 pe) =[] [] ¢ - tig, ) tag # o
i=1 Ji=1

whenever (i,j) # (V,p).

Let G(t) be a polynomial in the variable t withk com-
plex coefficients satisfying the conditions

~

G(tkjk) = nk, k=1,2,0.-,m, _jk=1,2,...’nk’
’ (Bkjk)
(1.18) < €'(ty5 ) =eee=C (tkjk) = 0, k=1,2y00.,m,
¢ jk=1’2’ooc,nk,
.G(Ekjk+1)(t 4o

"If V = G(A), then

m
8
(1.19) Polt) =[] (v =ep)®
g . i=1
where . s s
. o waen «; 1is an integer,
(1.20) ~ai =

[ey]#1 otherwise,
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i1 iz i

+ 1 '812+1 o0 sini+1
Proof. By the hypothesis (1.18) we obtain the cha-

racteristic roots of V are 'r1,r2,...,rm. Hence the cha-

racteristic polynomial of' V 1is a polynomial of the form

9 3 Vin,
where o, = max .
1 [ 811 ]

m
P (t) = ﬂ (t -y *.
i=1
" According to Lemma 1.4 and Proposition 1.1 we have

f ' R
& + 61511 )411,
éi_ + 6;512 )Qiz, i = 1,2,.oo,m

8 + 6ls. DV, .
i iini/ ini

This implies

6’ S 011
12T ¥ 85, °
Yo

1
61) + 512 ’ 1 =1,2,00eym

¥
in
6’_ >____l_.
i“1 + sini

Hence 6'1 = 61.
Corollary 1.2. Let A be an algebraic ele-
ment with single characteristic roots, .i.e.

I‘1=1‘2=o..=1' =1

§
i
|
-

1

ct

H.
<.



Characterization of polynomials 13

Let G(t) be a polynomial satisfying the conditions

G(t11) = eee = G’(t1n1) = n11
Gltpg) = eee = Glton,) = n,,
G(tm1) = eee = G(tmnm) =. nmo

If V = G(A), then V is an algebraic element with
_eipgle characteristic roots and

m
By (t) = H (t - ty).

Proof . According to Proposition 1.2 Pv(t) is
a polynomial of the form

m 6
Py (t) = I—] (¢ - r) J,
3=1

From (1.20) we obtain Jj = 1y J = 1,2,000,M
Corollacry 1¢3. Let A be an algebraic slement
with single characteristic roots. Then there exists a polyno-
mial Go(t) such that Vy = GO(A) is an involution of or=-
der N. N .
Proof. Let PA(t) = [ﬂ (t - tj). Denote € =

J=1
= exp 2N‘xi and we take
N X 3
[ 3 (t -~ tg)
Glt) = X [] — -,
j=1v=1 Y
v#]

By the Lagrange interpolation formula

N
on(t) = ﬂ (t - ¢g9) = tP= 1.
3=1

Hence Vg = 1 and Vo is an inyolution of order N.
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14 Nguyen Van Mau

Corollary 1.4, Let 4 Dbe an algebraic element
with the characteristic polynomial

n 9s
plt) =[] (¢ -5
J=1

let G(t) Dbe a polynomial catisfying the conditions

G’(tj) = n’ J = 1,2,...,n,

, (sj) ) (sj+1)
-G (tj) = vee = G (tj) 0, G (tj) # 0.

®aan

rye) = (v -2, v =)

s J

- . 9. R}
o 1 2 n
6.."“[81 O M PAE I A e 1]'
Qhe'proof follows immeaiztely from Propositien 1.2.
Ths . cerrespdniing rselltc for an arbitrary fanction fol-
lov: immediately by virtus of the Hermite interpolation for-
wule .,

s re6nozition 1.3 et A Dbe an algebraic
elemard with the charatteristic polynomial

s B4 Ay
Bt =[] [ - tig,) e by e (1,3) 4 Qap.
1-’-’1 3‘1"

Let tis functien gl{t) has the (oij - 1)~th derivative
’ i

in pointe tg. (& = 1,2,...,m, § = 1,2,...,0;) and satisfies
J4
conditions
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Characterization of polynomials 1E

& tkjk) = Ny,

(skj )
(1021) gl(tkji) = eee = 8 k (tkak) = 0
(skjk+1)
g (tkjk) # O, k=1,2,... y ity jk=1’2""’nk’
where 0g skjks ijk_1,
If U =g(4)€Z, then
o 8.
i i=1
where
oy when oy 1is an integer
61 =
[e4]+1 otherwise
snere

3.
o = max] 11, i i
i~ B.. ¥ 1'8,, + 1 1°°°*3 + 10"
i1 iz ini
Proof. The Hermite interpolation formula (cf. [1])
znd our assumptions together imply :hat there is a polynomial
G{t) such that

G(a) = gla).

Cn she other hand, according to Proposition 1.2, we can
admit in (1.20) without loss of generality that 843 satisfy
conditions

Blji + 1S~7iai (i = 1,2....,(11, ji = 1'2’."’ni)

[¥e]
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i.e. Siji< Jiji - 1 (in the case where Sidi>'oiii -1,
s

- i i

Biji + j

we can admit equal 1).

2. Examples of applications .
In this section we shall solve the equation

where P(t) is a polynomial in the Variable t with complex
coefficients and the equation

(2.2) iX=-XB=C

in the case where A, B -are algebraic operators.

The matrix equation (2.2) was solved by Rosenblum [ 3] (see
also Bellman [4]). In the case where A and B are algebraic
operators with simple characteristic roots, the equation (2.2)
was solved by Przeworska-Rolewicz [1].

We generalize these results to a larger class of equa-
tions .

(243) ' f(A)X =Y

(2.4) f(A)X - Xg(B) =

in the case where f and g are polynomials with complex
coefficients,
Write

8. when 8 1is an integer

[e]+1 otherwise.,

In the sequel we assume that P(t) is a polynomial in
variable ¢t with complex coefficients.
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Characterization of polynomials 17

Theorem 2.1« Let V be an algebraic element
with the characteristic polynomial

o )
P, (t) = [‘] (t - rj) 3,
3=1

Let tj’ J = 1,25eeeym, 8atisfy the equations

P(tj) = 1‘3,

’ (
P,(tj, = 400 = P s'j (tj) = 0,

1
P(sj+ )(tj) £ 0.

Then the solution of the eguation

P(X) =V

is an operator with the characteristic polynomial of the form

3,
- y)
(t - %)

(2.6) Py(t) =
j=1

J

where Qj is the smallest number @, for which

m

<Ej_gT>= 8;;’

Proof. wet 1 be the characteristic roots of the
operator X. According to tihe Proposition 1.2, the numbers
P(tj) are the characteristic roots of the elemsnt P(X).
Thus '

Fron (2.7) we heve ¥y # tj if 1 # 3.
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7

Applying Lemma 1.2 we obtain (2.6).

In the particular case P(t) = t%, we have

Ytheorem 2,2, Let V be an clgebraic element
with the characteristic polynomial

m
4
Py(t) = [—] (t - x5) 9, x5 #0.
J=1 .
Let ty, J = 1,2,...,m, satisfy the equations

tg =Ty, Ty is on integer.
Then the solution of the operator equation
*=v

is an algebraic operator with the characteristic polynomial
of the form

m 8.
Py(t) = [7] (t - t) J,
3=1

Froof., Write G(t) = [—] (t - tj) J and Xj =

= Xg'1 + tjxg"2 + aoey t§'1I, where X, has the characte-
ristic Toots, ty,tpsees, by, x® = vV, 4ccording to Proposi-

tilon 1.2, the characterictic wants of Xj are numbers of the

forn

otherwise, where “,j = 1,2,0044il
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Characterization of polynomials 19

Thus Xj (J = 1425004,m) are invertible., Hence Q(XU)= 0

if and only if

m m 8
!—] (% - “I) 4 = H (v - nj) J o= By(V).

Thus @(t) = Py (t), which completes the proof.

For (2.3) we have
Lemmaa 2.1, Let
the characteristic polynomial

4 be an algebraic element with

m
Qs
P, (t) = |—]1 (t - 35) J, 5 #0, 3= 1,2,0.0,n
J:

then 4 1is invertible and
(2.7) LR
where

. Pé(t) - PA(O)
= 5 .

(2.8) Q

From (2.8) we obtain P;(t) ;'PA(O) =

. -1+ Gu(d)
By assumption PA(O) £ 0 znd A =-§XT6T .
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Corollary. 2.1« Let A and G(t) satisfy all
assumptions of Proposition 1.2. ’ .
If =0, J = 1,2,e0sym (cf. the formula (1.19)), then
the element V = G(A) 1is invertible and

: P (t) - Py(0)
(209) v =qyla), where GQy(t) = T—p—.

Lemma 2.2 Let A4 be an algsbraic element with
the characteristic polynomial

ne1

w, ¥
(2.10)  P,(t) = ﬂ (t-t4) tyn t4#0, 3=1,2,000,0-1, t,=0,

n

Then a necessary condition for the equation
(2.11) AX = Y

to have a solution, is

1

-
(2012) (A ] tnI) PﬂY = Oo

Proof . The equation (2.11) is equivalent to the
.8ystem of independent equations '

AP4X = PyY, § = 1,2,000,n (cf. [2], Theorem 5.1).
Thus
provided that Xj = PjX is a solution of the eqhation ij =
= PjY.

For J =n
2 -1

n

n
4 P X =4 PY=0 (cf. [1] and [2]).

Yence the condition (2.12) is necessary.
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Characterization of polynomials 21

Lemma 243 Iet conditions (2.10) and (2.12) be sa-
tigfied. Then the equation

X =X

hes e =solution X if and only if

A=t I) 1:‘{ E —ti) (a-t,1) EY,

(2013) § (1 = 1.2,-.-,11-1, ki = 0ylheeeyd;-1)

\(A - tnI)PnX = PnY.

Troo0f . The equation (2.11) is equivalent to tihe
cyzten of the independent equations

ARy = PJ’Y, Xy = PyX, 1= 1,2,000n (cf. [2] Theorem5.1),

Let 1 be an erbitrary fixed integer in the interval 0 <i< n,
Then

X
Applying the operators (4 - tin i (k=0,1,...,01-1) to both
sides of the equation :
(4 - tiI)PiX + tiPiX = PiY

we obtain the following syétem of the equations

(2.14) ag(apxit) o 2
where
i) i)
( | Y(()l
x() : , AR I ,
(1) (1
X9;-1 l1

‘=395 -
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Y S PR 3 S R AL PRI 315 I

M 1% Ty
cnd
ti 1 () LN ] O
0 t 1 L N ] O
2 i
li(‘.) - .

The solution of the system (2,14) assumes the form

(2.15) 2o pag e e,
vhere
[ 1 1 11
1 (1)
T T2 3 N
i i ti
¥; =2
7 |0 - 'ié‘ (1) =
. -1 _ A eoe - =]
[)i(ﬂ)] = i ti ti1 .
0 0 0 vee 1
n LT

Hence conditions (2.13) follow immediately.

Conversely, suppose that there exists an element X sa-
tisfying conditions (2.13). Hence x(l), satisfy the systenm
(2.15). From (2.15) we obtain (2,14). In particular for k;=0
the equation

(A - tiI)PiX + tiPiX = PiY, i = 1;2,...,11

is satisfied. But we have supposed that the cohdition (2.12)
is satisfied., Hence X is a solution of the equation {2.11).
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Characterization of polynomials 23

For the general case we prove the following
Theorenm 230 Let 4 Dbe an. algebraic element
with the characteristie polynemial

2 1j _
2y (t) =[] [‘| (5= 2y ) 1 Sy # tgus (1,3) # ).

i=1
Let G(t) be a polynomial satisfying conditlons

(8,4 )
' L2}
G(tkjk) = nk, G (t}:jk) = eee = G (tkak) =

and
(Bkj +1)
(tkjk) .# 0’ k = 1,2,00.,"1, Jk= 1,2,.-.,nk,

where n, # ny whenever k # 1, .

If r =0 and the condition [G(A]] % R Y =0 is sa-
tisfied then the equation
(2.16) G(A)X =

has a solution X if and only if

6y -k, .
+K, -
(G(A) - nj1) iRix = E (-ni) i[G(A) - niI]J 2R

l = 1,2,.-.,m-1, ki = 0,1,000'61"1,

and

G(AJR X = R Y,

where R, ,R5,e.s,R; are the projectors associated with G(A).
The proof is immediate 1if we apply Proposition 1.2
and Lemma 2.3.
Remar k., The equation of the type (2.16) has been
considered by Przeworska-Rolewicz in [[2]. The method here is

different,
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We shall have a similar result for equations (2.2) and
(2.4).

Lemnma '2.4. Let A and B be algebraic operators
with the characteristio polynomials

n ‘oj m pk
j=1 k‘1

Denote by P1,P2,...,Pn the projeotors associated with A,
The corresponding projectors for B will be denoted by
Q1,Q2,...,Qm. Then a necessary condition for the equation

(2.18) AX - XB =Y

to have a solution 1s
3, -1

-1
(2.19) (4 - 61) %

, H

for any i and k such that oy = ¥y - Ty = O.
Proof. Let X be a solution of the equation (2.18)
and let oy, = t; = ¥} = Ou Multiplaying both sides of the

| : -1
equation (2.18) by (4 - ¢,I) 1 P, from the left and by

-1 | -
Qk(B -‘ka)Hk from the right we obtain the equality

¥ =1 uy=1 ' ¥y=1 T
A(a=t,I) 1 R T(B-I)' L Qp - (A-t;I) 1 P,XB(B-t,I)'F q =
3;-1 ug-1

= (a=ty1) Pilr(B-'t.'kI)FIjL Q
which along with the equalities

~
(& - t,I) ipi =0, (B -'r:kI)kak =0

- 398 -



Characterization of polynomisls 25

imply that

¥ =1 Ry=1 M -1
oy (A=t,1) & BXQu(B-g 1) E = (a-t,I) PiYQk(B-t'iI)Pk
which proves the necessity of the condition (2.19). |

Theoremnm 2,4, Let the conditions (2,17) wund
(2.19) be satisfied. Then the equation (2.18) has & solution
X if and only if

J 1
[ (a-t,1) lipixnk(a-rkl) k_

~; =] ~1

1791 K7k J+1=(95+py) J+35=1
= E : (-dik) ( =ty ) x

3=1 1=1

. l+lk-1
(2,20) § = P;YQ) (B-1p I)

(1 = 152500040, k = 1,2,000,n, ji
lk = 0,1,...’Pk-1) when dik = ti -Tk # 0

= 0,1,00.,91-1,.

-

We shall prove Theorem 2.4 by means of the additional lem-
mas: .

Lemma 2.5, ILet +; be positive integers and let
Ay De dix\’i matrices

— —_ — ) -

dik 1 0 soe 0 1 0 0 eee O
0 qik 1 see 0 ¢} 1 0 000’0
(2-21) Aik= A I = Y
e 6 o o ¢ o o s o o P s e o s s ¢ o
L O O 0 L N ] dik —0 O 0 *e 0 1_J

If U ) # 0, then
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-8
(2.22) &5y =

L

LN ] ("1)

‘\)1'1 S+Qi"'1 )

4

1-8-9
i
ik

—

-8 <] -8=1
4k "7 %4k
,~5
0 -2 x

91-2 s+9i—1 -3—9;+2

se e ("’1)

(

Yy

-8
0 0 %k

%ix

3
\ i_
Proof. From (2.21) we have (Alk "“ikI) = O

Thus
-8 _ =8
Ay =gyl
v
c-o' + ("1)
This implies (2

" Lemma
and «{4,B) a

(2.23) o

where Aik are
If oy #0

[a(4,B]]7" =

- Lr e A —ay T) v
-1

8+, -1 s
i i
(b —oglt) = -

Yy

=gy, =1
4 %,
.22).
2.64

(Vypy) = (oiyik) matrix:

Aik I 0,40 0O
A,B) = 0 Aik I oo 0 .
0 0 0 LA N ] AikJ
given by the formula (2.21).

then
J I
[~ -1 =2 Hi=t =Ry
Aik "Aik [ W] (-1 ) i
o &7} (=1)
11: s 6w
0 0 eee Il
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Proof, According to Lemma 2.5 the matrix Aik is

invertible. Denote the matrix (2.24) by P(A,B); then

o(4,B)p(4,B) = p(4,B)x(4,B) = I.

Thas p(4,B) = [«(4,B)]77,

Proof of Theorem 2.4. The equation (2.18) is squi-

valent to the system of independent equations
APiXQk - PiXQkB = PiYQk

(Xik = PiXQk, i = 1,2,...,11, k = 1,2,000,m). Let i and
be arbitrarily fixed integers, such that

Ay = b5 - T # 0.

Then AP ARy = (A-—tiI)PiXQk + t;P;XQ) and P IQB =
linltiplaying both sides of the equation

(4=t TP XQ, - PyAQ)(B=7,I) + oy PyXQy = Py YQ

J4 '
by (4=t 1)+ (J5 = Os1y00ey¥;-1) from the left and by

1
(B-1ﬁl) k (lk = O,1,...,pk—1) from the right we obtain the
following system of equations

a(i,B)xltsE) o yld,x)

?

ez k)] PR
i,k i,k
Lo’ Too’
K(i’k) Y(iok)
10 10
. z{1,k) _ ¢(i,k)
X(lgl\) = :1-1(; s Y(l'k) - 71'1(;
i,k i,k
1’ Yo’
“{i,k) " (i, k)
.S vl
[ V4T | Vi1 pyt
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and

(1,k) _ 3 i
J 1
Y(i’k) = (A-tiI) iPiYQk(B-'rkI) k,
(ji=0,1,...,‘\)i—1, lk=o’1’...,“k-1).
The solution of (2.25) is assuqu to be

(2.26) xlisk) _ [o(4,B)] ~1y(,k)

where [d(A,B)]'1 ig given by the formula (2.24). Hence the
conditions (2.20) follow immediately.

Conversely, suppos that there exists an element X sa~
tisfying conditions (2.20). Hence X(i’k) satisfy the sys-
tem (2.26). Prom (2,26) we obtain (2.25), For J = 1, = O the
equation

(4-t3T)PiXQ) - ByXQu (B~ I) + (t;-7y )P XQ) = PyXQy,
(i = 1,2,...,n, k = 1,2,ooo’m)

is satisfied., But we have supposed that the condition (2.19)
is sotisfied. Henoce X is a solution of the egquation {2.,18).

Theorem 2.5 Let 4 and B satisfy the condi-
tien (2.17). Then the eguation

(2.27) 4X = XB

has a solution of the form

(2.28) X = ay0.(hy%,,B) + 8,0, _4(4,%;,B)+ «vs+a Xy, X,€X,

5 . Ko k=1, ok
(2.29) 6. (4,%,,8) = 4¥x) + a5k B + 1o 4 XB
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_ +1 <} _
E(t) = aOtF + 8417 + ee + agy
is an srbitrary polynomial satisfying the conditions

P(A) = 0y P(B) = Q.
FProof. From {2.29) we obtain

_ a8+1 k+1
Aok(A,XO,B) - ok(A,XO,B)B = A7 X, - X,B7 .

Denote the sum (2.28) by P(A,XO;B). Then

4P(4,X,,B) - P(4,X,,B)B = P(A)X,~X,P(B) = O.

Thus X = P(A,XO,B) satisfies the equation (2.27) which- com~
pletes the proof,

Let B be an algebraic element with the characteristic po-
lynomial

s Hij,
(2430) pple) = [] [] 6 -wyy) 7
i=1 §y=1 :

(Tij # %vF whenever (i,3)# (V,p))

and let F(t) Ve a polynomial in variable t with complex
coefficients satisfying the conditions:

F(Tkjk) = ek’
/
T, .

+1)

(o . |
(’ckjk) # 0, k = 1,2‘,.-',5; jk = 1,2,ooo,mkg '

.kjk
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Then, according to Proposition 1.2, we obtein

Oy

S
py(t) = [ ] (£ - 8 %, U==mB),
k=1

where 6, =(p,> (<> is defined as in (2.5)) and

o
= x| P2 km
Pk = Tpq t 1 Tyo + 1 100 Typ T 11°

k

Denote by D1,D2,...,Dm the .projeetors associated with
V = G(4). The corresponding projector for U = F(B) will
be denoted by R1,R2,..;,RS.

We have 2 similar result for the squation

(2.32) G(4)X - XP(B) = Y.

Theorem 2.6, Let 4 and B be algebraic ele~-
ments with the characteristic polynomials (1.17) and (2.30),
resp. Let G(t) and F(t) be polynomials setisfying the condi-
tions (1.18) an¢ (2.31), reep. Then the equation (2.32) has
a solution X if and only if

j 1
i k _
(v - niI) nixnk(u - 8.1 "=
-j, 0.-1
61 I3 Ok 1+1, =1

k

j+1"'( 61"%) ji" -
( Di!Rk(U- ‘ekl) R

. J+
= (-ni+ Gk) V-niI)

j=1 1=1

1= 1,2,000,8 K= 1,2,000,8, 35 = Oy1,000,8-1, 1 =
é 0,1,0.0,0’1{"1, if ni # . ek,

(v - hiI)DiXRk - DiXRk(U - ekI) = DiYQk if ny = ek’
where V = G(4), U = F(B),
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The proof is immediate if we apply Theorem 2.4 to the ele-
ments V = G(4) and U = P(B),
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