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ON FUNCTIONALLY COMPLETE MODAL ALGEBRAS 
RELATED TO M AND S4 

The f i n i t e simple modal algebras are f u n c t i o n a l l y comple-
t e , a property which they have common with the two element 
Boolean a lgebra . Hence there are sublogics of M and of S4, 
where every proposit ion corresponds to a polynomial funct ion 
of a modal a lgebra . Vice versa every funct ion of B 
corresponds to a proposit ion which may contain constant sym-
b o l s . We charac ter ize the f u n c t i o n a l l y complete algebra by 
a f ixpoint property. 

1. Motions 
D e f i n i t i o n 1 . 1 . The algebra j i = ( B ; A , V , x , 0 , 1 

i s ca l led a modal a lgebra i f 
1) ( B ; A , V , \ 0 , 1 ) i s a Boolean a l g e b r a , 
2) x i s an unary operation such that 

* (1) = 1, 
T (x Ay) = <t(x) A T (y) . 
Furthermore an modal a lgebra J } i s of the c l a s s M i f 

r ( x ) i x holds . In t h i s case J/r i s connected to the modal 
l o g i c M. 

The modal a lgebra X} i s of the c l a s s S4 i f and o 
t ( x ) S r ( i ) . In t h i s case Jfi i s connected to the modal l o -
gic S4 . p 

POT the c l a s s S4 we have obviously % (x) = T(X) . An 
equivalence r e l a t i o n 8 on B compatible with the operations 
of the algebra J f i s ca l led a congruence r e l a t i o n of . 
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i s simple i f only the ident i ty r e l a t i o n and the a l l r e l a -
t ion are the congruence r e l a t i o n s of J& . These congruence 
r e l a t i o n s are cal led t r i v i a l . Gratzer [4] . 

D e f i n i t i o n 1 .2 . The element b € B i s ca l led 
a f ixpoint of the modal algebra $ i f * ( b ) = b. The f i x -
point b i s ca l led nontr iv ia l i f b f £ { o , l } . 

L e m m a 1.3. For every modal a lgebra £ with a 
non- t r iv ia l f ixpoint b the r e l a t i o n 8 defined by c 8 d 
i f f c A b = dAb i s a non- t r iv ia l congruence r e l a t i o n . 

P r o o f . I t i s easy to see that 8 i s a l a t t i o e 
congruence. We show that 8 i s a l so compatible with ' and 
Let us consider c 8 d. We have c Ab = dAb und therefore 
( c A b ) v b ' = (dAb) V b ' . I t fol lows c v b ' = dVb 1 and hence 
c ' Ab = d' Ab, i . e . c ' 8 d ' . The compability with the opera-
t ion t holds by the f ixpoint property. I f c 8 d, then 
c A b = dAb and t ( c A b ) = <(d A b ) . Therefore t (c) A b = 
= <(d) Ab and henoe -t(c) 8 t ( d ) . I t i s obvious that X i s 
n o n - t r i v i a l . 

L e m m a 1.4« I f the modal algebra & i s of the 
c l a s s M then the f i xpo in t s of & form a sub l a t t i ce of 
(B,A,V). 

P r o o f . Let 138 f i x p o i o t s . A s = 

= r(b. j ) A t ( b 2 ) = b1 Ab2 tiv;:- b1 Ab2 i s a f i x p o i n t . For 
b. jVb 2 we have t ( b 1 V b 2 ) £ t ( b 1 ) V t ( b 2 ) r because f i s an 
order preserving function™ Moreover % € M thus we have 
r ( b 1 V b 2) j£ b1 V b 2 and bance t (b1 V bg) S" t (b 1 ) V x (bg) . 

L e m m a 1*5* Let S& be a f i n i t e algebra of the 
c l a s s M. To every congruence r e l a t i o n 8 corresponds a f i x -
point b and conversely. 

P r o o f , By Lemma 1,3 we have that to every f ixpoint 
b corresponds a congruence r e l a t i o n 8 defined by c 0 d 
i f f c Ab = d A b . Now we have only to show that f o r a con-
gruenoe r e l a t i o n 8 there e x i s t s a f ixpoint b such that 
c 8 d i f f c Ab = d Ab, We consider i n f { x | x 8 1 } = b. 
Thus we have b 8 1} hence r ( b ) 8 1 and b ^ t ( b ) . As 

e M, -e(b)i^'b and b i s a f i x p o i n t . I t fol lows from c 8 d 
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that c v d ' 9 1 and therefore b S p V d ' . Similarly we obtain 
b S d V o ' . Hqnce ( b A c ) v ( b A d ' ) = ( b A d ) v ( b A c ' ) . We con-
clude b A c £<b A d) V (b A c* ) . Thus b A c S b A d , because 
(b Ac) A (bA c' ) = 0 . Furthermore we obtain also that 
b A d ^ b A c . Conversely, i f c A b = dAb and b = i n f { x | x 8 l } , 
then we have b 9 1 and therefore c A b 6 c and d A b 8 d. 
Thus c 6 d. 

By Lemma 1.5 i t follows 
T h e o r e m 1,6. The f in i te modal algebra of 

the class-M is simple i f and only i f has only t r i v i a l 
f ixpoints« 

An algebra J i s subdirect irreducible i f it has a least 
non-trivial congruenoe relation* 

T h e o r e m 1»7. Let be a f in i te modal, algebra 
of the class M which is not simple. is subdirectly i r r e -
ducible i f and only i f there is a non-trivial fixpoint b 
such that for every fixpoint c, c ^ 1, we have c ^ b . 

P r o o f * Let $ be subdirectly irreducible. Then 
there exists a least non>-trivial congruence relation 6 . Let 
b = in f { x | x 8 l } . For every other non-trivial congruenoe 
relation ij we have 6 Si| and c i b , where c = in f { x | x 71} . 
On the other hand, i f there exists a greatest non-trivial 
f ixpoint b then 8 defined by u 8 v i f f u A b = v A b 
is a least non-trivial congruenoe relation. 

2. The classes of simple and of subdirect irreducible 
algebras of the class S4 

A latt ice « # = (L,A,v.,0) with the least element 0 is ato-
mistic i f every non-zero element of L is a join of atoms. 

T h e o r e m 2.1. Let $ be an atomistic algebra 
of the class S4. i s simple i f f * (a) = 0 for every e l e -
ment a e B-{ 1} . 

P r o o f . Assume b = * ( a ) >0 for an element a 4 1. o 
We have r ( b ) = x (a ) = -t(a) = b and b is a non-trivial 
f ixpoint. Then by Lemma 1.3 is not simple. Now let r ( a ) = 0 
for every element a e B - { l } and assume that 8 i s a congruence 
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relation which is not the identity. As £ is atomistic, then 
there exists an atom eefi with e e 0. Therefore e'8 1 and 
t(e') 61. Thus we obtain 091 and 8 is the all relation. 

There are two extreme cases for finite subdirectly irre-
ducible algebras of the class S4. Let b be the greatest 
non-trivial fixpoint. The first case is that every element c 
with c <b is also a fixpoint. We call algebras of this kind 
of the class P. The other case is that for every element c, 
c <b, we have t(c) = 0. Algebras of this kind are called 
of the class D. 

T h e o r e m 2.2. The algebras of the class P are 
subdirectly irreducible. The operation * can be defined by 
t[x) = x A b for every xe(B-{l}. 

P r o t> f . It follows by Theorem 1.7 that the algebras 
of the class P are subdirectly irreducible. If we define 
*t{x) = X A b for xeB-{l}, we have t(b) = b, t2(x) = x 
and t(c) = c for every c £b. 

Similarly, by Theorem 1.7 we obtain 
T h e o r e m 2.3. The algebras of the class D are 

subdirectly irreducible. 
Moreover, as t (x) = <(x), each <c(x) have to be a fix-

point. Therefore for the algebras of the class D we have 
t(l) = 1, f(x) = b for b § x < 1 , and -t(x) = 0 otherwise. 

3. Functionally complete algebras of M and S4 
The underlying structure of a modal algebra is a Boolean 

algebra. As the Boolean algebras form an arithmetical variety 
the class of modal algebras is also an arithmetical variety 
(Pixley [8]). In an arithmetical variety W the algebra 
is functionally complete if and only if ¿6 is finite and 
simple. Furthermore, every functionally complete algebra 
in generates a subvariety which can be finitely axiomatiz-
ed (Baker [1]). 

V/e will not follow these considerations of universal alge-
'bra but prove in detail that the finite simple algebras of 
the class G4 are functionally complete. 
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A f i n i t e n o n - t r i v i a l algebra % i s funct iona l ly complete, 
i f f o r every n i l , each funct ion f : B n — » B i s a polyno-
mial funct ion . 

T h e o r e m 3 .1 . Every f i n i t e simple algebra ¿Sr of 
S4 i s func t iona l ly complete. 

P r o o f . Let $ be f i n i t e and simple of S4. Then 
f ( l ) = 1 and r (u) = 0 f o r every u € B - { l } by theorem 2 .1 . 
Consider two elements c , d e B and the funct ion t 0 ( j{x) = 
^ [ ( x V c ' l A i x 1 Vc)] Ad. We have that t Q d f o ) = d and 
t c d ( v ) = 0 for v i c . Obviously tC(j i s a polynomial 
funct ion of B i . e . t , i § composed by project ions , -on-C j a 
stanta and the operations A , V , ' , r . If f : B — B i s a func-
t ion and i f we put b^ = f i a ^ , B = - [a . . , . . . , a n } then we 

n 
have f ( x ) = \ J t . ( x ) . Therefore every 1-place funct ion 

i=1 a i D i 
i s a polynomial funct ion and hence a l so every n-place func-
t i on . 

F i n a l l y we n o t i c e t h a t t h e s e a l g e b r a s g ive f u r t h e r p o s s i -
b i l i t i e s t o f i n d s w i t c h i n g a l g e b r a s f o r m u l t i v a l u e d l o g i c f u n c -
t i o n s (Troy , Carnalle, I r v i n [ 1 1 ] ) . 
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