

D. Schweigert, M. Szymańska

ON FUNCTIONALLY COMPLETE MODAL ALGEBRAS
RELATED TO M AND S4

The finite simple modal algebras are functionally complete, a property which they have common with the two element Boolean algebra. Hence there are sublogics of M and of S4, where every proposition corresponds to a polynomial function of a modal algebra \mathcal{L} . Vice versa every function of B corresponds to a proposition which may contain constant symbols. We characterize the functionally complete algebra by a fixpoint property.

1. Notions

Definition 1.1. The algebra $\mathcal{L} = (B; \wedge, \vee, \neg, 0, 1, \tau)$ is called a modal algebra if

- 1) $(B; \wedge, \vee, \neg, 0, 1)$ is a Boolean algebra,
- 2) τ is an unary operation such that

$$\tau(1) = 1, \quad \bullet$$

$$\tau(x \wedge y) = \tau(x) \wedge \tau(y).$$

Furthermore an modal algebra \mathcal{L} is of the class M if $\tau(x) \leq x$ holds. In this case \mathcal{L} is connected to the modal logic M.

The modal algebra \mathcal{L} is of the class S4 if $\tau(x) \leq x$ and $\tau(x) \leq \tau^2(x)$. In this case \mathcal{L} is connected to the modal logic S4.

For the class S4 we have obviously $\tau^2(x) = \tau(x)$. An equivalence relation θ on B compatible with the operations of the algebra \mathcal{L} is called a congruence relation of \mathcal{L} .

\mathcal{L} is simple if only the identity relation and the all relation are the congruence relations of \mathcal{L} . These congruence relations are called trivial. Grätzer [4].

Definition 1.2. The element $b \in B$ is called a fixpoint of the modal algebra \mathcal{L} if $\tau(b) = b$. The fixpoint b is called nontrivial if $b \notin \{0,1\}$.

Lemma 1.3. For every modal algebra \mathcal{L} with a non-trivial fixpoint b the relation θ defined by $c \theta d$ iff $c \wedge b = d \wedge b$ is a non-trivial congruence relation.

Proof. It is easy to see that θ is a lattice congruence. We show that θ is also compatible with ' and τ . Let us consider $c \theta d$. We have $c \wedge b = d \wedge b$ and therefore $(c \wedge b) \vee b' = (d \wedge b) \vee b'$. It follows $c \vee b' = d \vee b'$ and hence $c' \wedge b = d' \wedge b$, i.e. $c' \theta d'$. The compatibility with the operation τ holds by the fixpoint property. If $c \theta d$, then $c \wedge b = d \wedge b$ and $\tau(c \wedge b) = \tau(d \wedge b)$. Therefore $\tau(c) \wedge b = \tau(d) \wedge b$ and hence $\tau(c) \theta \tau(d)$. It is obvious that τ is non-trivial.

Lemma 1.4. If the modal algebra \mathcal{L} is of the class M then the fixpoints of \mathcal{L} form a sublattice of (B, \wedge, \vee) .

Proof. Let b_1, b_2 be the fixpoints. As $\tau(b_1 \wedge b_2) = \tau(b_1) \wedge \tau(b_2) = b_1 \wedge b_2$ then $b_1 \wedge b_2$ is a fixpoint. For $b_1 \vee b_2$ we have $\tau(b_1 \vee b_2) \geq \tau(b_1) \vee \tau(b_2)$, because τ is an order preserving function. Moreover $\mathcal{L} \in M$ thus we have $\tau(b_1 \vee b_2) \leq b_1 \vee b_2$ and hence $\tau(b_1 \vee b_2) = \tau(b_1) \vee \tau(b_2)$.

Lemma 1.5. Let \mathcal{L} be a finite algebra of the class M . To every congruence relation θ corresponds a fixpoint b and conversely.

Proof. By Lemma 1.3 we have that to every fixpoint b corresponds a congruence relation θ defined by $c \theta d$ iff $c \wedge b = d \wedge b$. Now we have only to show that for a congruence relation θ there exists a fixpoint b such that $c \theta d$ iff $c \wedge b = d \wedge b$. We consider $\inf\{x \mid x \theta 1\} = b$. Thus we have $b \theta 1$; hence $\tau(b) \theta 1$ and $b \leq \tau(b)$. As $\mathcal{L} \in M$, $\tau(b) \leq b$ and b is a fixpoint. It follows from $c \theta d$

that $c \vee d' \theta 1$ and therefore $b \leq c \vee d'$. Similarly we obtain $b \leq d \vee c'$. Hence $(b \wedge c) \vee (b \wedge d') = (b \wedge d) \vee (b \wedge c')$. We conclude $b \wedge c \leq (b \wedge d) \vee (b \wedge c')$. Thus $b \wedge c \leq b \wedge d$, because $(b \wedge c) \wedge (b \wedge c') = 0$. Furthermore we obtain also that $b \wedge d \leq b \wedge c$. Conversely, if $c \wedge b = d \wedge b$ and $b = \inf\{x \mid x \theta 1\}$, then we have $b \theta 1$ and therefore $c \wedge b \theta c$ and $d \wedge b \theta d$. Thus $c \theta d$.

By Lemma 1.5 it follows

Theorem 1.6. The finite modal algebra \mathcal{L} of the class M is simple if and only if \mathcal{L} has only trivial fixpoints.

An algebra \mathcal{L} is subdirectly irreducible if it has a least non-trivial congruence relation.

Theorem 1.7. Let \mathcal{L} be a finite modal algebra of the class M which is not simple. \mathcal{L} is subdirectly irreducible if and only if there is a non-trivial fixpoint b such that for every fixpoint c , $c \neq 1$, we have $c \leq b$.

Proof. Let \mathcal{L} be subdirectly irreducible. Then there exists a least non-trivial congruence relation θ . Let $b = \inf\{x \mid x \theta 1\}$. For every other non-trivial congruence relation η we have $\theta \leq \eta$ and $c \leq b$, where $c = \inf\{x \mid x \eta 1\}$. On the other hand, if there exists a greatest non-trivial fixpoint b then θ defined by $u \theta v$ iff $u \wedge b = v \wedge b$ is a least non-trivial congruence relation.

2. The classes of simple and of subdirect irreducible algebras of the class $S4$

A lattice $\mathcal{L} = (L, \wedge, \vee, 0)$ with the least element 0 is atomistic if every non-zero element of L is a join of atoms.

Theorem 2.1. Let \mathcal{L} be an atomistic algebra of the class $S4$. \mathcal{L} is simple iff $\tau(a) = 0$ for every element $a \in B - \{1\}$.

Proof. Assume $b = \tau(a) > 0$ for an element $a \neq 1$. We have $\tau(b) = \tau^2(a) = \tau(a) = b$ and b is a non-trivial fixpoint. Then by Lemma 1.3 \mathcal{L} is not simple. Now let $\tau(a) = 0$ for every element $a \in B - \{1\}$ and assume that θ is a congruence

relation which is not the identity. As \mathcal{L} is atomistic, then there exists an atom $e \in B$ with $e \neq 0$. Therefore $e' \neq 1$ and $\tau(e') \neq 1$. Thus we obtain $0 \neq 1$ and θ is the all relation.

There are two extreme cases for finite subdirectly irreducible algebras of the class $S4$. Let b be the greatest non-trivial fixpoint. The first case is that every element c with $c < b$ is also a fixpoint. We call algebras of this kind of the class P . The other case is that for every element c , $c < b$, we have $\tau(c) = 0$. Algebras of this kind are called of the class D .

Theorem 2.2. The algebras of the class P are subdirectly irreducible. The operation τ can be defined by $\tau(x) = x \wedge b$ for every $x \in B - \{1\}$.

Proof. It follows by Theorem 1.7 that the algebras of the class P are subdirectly irreducible. If we define $\tau(x) = x \wedge b$ for $x \in B - \{1\}$, we have $\tau(b) = b$, $\tau^2(x) = x$ and $\tau(c) = c$ for every $c \leq b$.

Similarly, by Theorem 1.7 we obtain

Theorem 2.3. The algebras of the class D are subdirectly irreducible.

Moreover, as $\tau^2(x) = \tau(x)$, each $\tau(x)$ have to be a fixpoint. Therefore for the algebras of the class D we have $\tau(1) = 1$, $\tau(x) = b$ for $b \leq x < 1$, and $\tau(x) = 0$ otherwise.

3. Functionally complete algebras of M and $S4$

The underlying structure of a modal algebra is a Boolean algebra. As the Boolean algebras form an arithmetical variety the class of modal algebras is also an arithmetical variety (Pixley [8]). In an arithmetical variety \mathcal{W} the algebra \mathcal{L} is functionally complete if and only if \mathcal{L} is finite and simple. Furthermore, every functionally complete algebra \mathcal{L} in \mathcal{W} generates a subvariety which can be finitely axiomatized (Baker [1]).

We will not follow these considerations of universal algebra but prove in detail that the finite simple algebras of the class $S4$ are functionally complete.

A finite non-trivial algebra \mathcal{L} is functionally complete, if for every $n \geq 1$, each function $f: B^n \rightarrow B$ is a polynomial function.

Theorem 3.1. Every finite simple algebra \mathcal{L} of S_4 is functionally complete.

Proof. Let \mathcal{L} be finite and simple of S_4 . Then $\tau(1) = 1$ and $\tau(u) = 0$ for every $u \in B - \{1\}$ by theorem 2.1. Consider two elements $c, d \in B$ and the function $t_{cd}(x) = \tau[(x \vee c) \wedge (x' \vee c)] \wedge d$. We have that $t_{cd}(c) = d$ and $t_{c,d}(v) = 0$ for $v \neq c$. Obviously t_{cd} is a polynomial function of B i.e. $t_{c,d}$ is composed by projections, constants and the operations $\wedge, \vee, ', \tau$. If $f: B \rightarrow B$ is a function and if we put $b_i = f(a_i)$, $B = \{a_1, \dots, a_n\}$ then we have $f(x) = \bigvee_{i=1}^n t_{a_i b_i}(x)$. Therefore every 1-place function is a polynomial function and hence also every n -place function.

Finally we notice that these algebras give further possibilities to find switching algebras for multivalued logic functions (Troy, Camalle, Irvin [11]).

BIBLIOGRAPHY

- [1] K.A. Baker : Finite equational basis for finite algebras in a congruence-distributive equational class, Advances in Math. 24 (1977) 207-243.
- [2] W.J. Blok : Pretabular varieties of modal algebras, Studia Logica, 2/3 (1980) 101-124.
- [3] W.J. Blok : The lattice of modal logics, an algebraic investigation, J. Symbolic Logic, 2(1980) 221-236.
- [4] G. Grätzer : General lattice theory. Birkhauser Verlag, Basel, 1978.
- [5] D.C. McKinsson : Some embedding theorems for modal logic, Notre Dame J. Formal Logic 12 (1971) 252-254.

- [6] L.L. M a k s i m o v a : Pretabular extensions of Lewis S4, *Algebra i Logika*, 14 (1974) 28-55.
- [7] L. M a n n a , A. P n u e l i : The modal logic of programs, *Proceedings of the International Conference on Automata, Languages and Programming*, Graz, Austria, July 1979, pp.385-409.
- [8] A.F. P i x l e y : Completeness in arithmetical algebras, *Algebra Universalis* 2 (1972) 179-196.
- [9] W. R a u t e n b e r g : *Klassische und nichtklassische Aussagenlogik*, Friedr. Vieweg & Sohn, Braunschweig, 1979.
- [10] D. S c h w e i g e r t , M. S z y m a ń s k a : A completeness theorem for correlation lattices, submitted in: *Z. Math. Logik Grundlagen Math.*
- [11] H. T r o y , Jr. N a g l e , B.D. C a m a l l , J.D. I r v i n : *An introduction to computer logic*. Prentice-Hall, N.J., 1975.

FB MATHEMATIK, UNIVERSITAT KAISERSLAUTERN, D-675 KAISERSLAUTERN,
W. GERMANY;

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW,
00-661 WARSZAWA, POLAND

Received July 15, 1981.