DEMONSTRATIO MATHEMATICA

Vol. XVI No 2 1983

D. Schweigert, M. Szymarnska

ON FUNCTIONALLY COMPLETE MODAL ALGEBRAS
RELATED TO M AND &4

The finite simple modal algebras are functionally comple~
te, a property which they have common with .the two element
Boolean algebra. Hence there are sublogics of M and of 54,
where every proposition corresponds to a polynomial function
of a modal algebra o . Vice versa every function of B
corresponds to a proposition which may contain constant sym-
bols, We characterize the functionally complete algebra by
a fixpoint property.

1. Notions ‘

Definition 1.1. The algebra & = (B;A,V,%,0,1,7)
ig called a modal algebra if
1) (B3A,v,",0,1) is8 a Boolean algebra,

2) « 18 an unary operation such that

v (1) =1, °

v(xAy) = 2(x)Arx(y). ‘

Purthermore an modal algebra o is of the class M if
v(x)S x holds., In this case % is connected to the modal
logic M,

The modal mlgebra 2 is of the class S4 if «~(x)sSx and
v(x)S+°(x). In this case % is connected to the modal lo-
gic S4.

For the class S4 we have obviously v2(x) = v(x). An
equivalence relation 6 on B compatible with the operations
of the algebra .# is called a congruence relation of #.
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% is simple if only the identity relation and the all rela-
tion are the congruence relations of % . These congrusnce
relations are called trivial, Grdtzer [4].

Definition .1.2. The element b € B is called
a fixpoint of the modal .algebra & if ~(b) = b, The fix-
point b is called nontrivial if b¢{0,1}.

Lemma 1630 For every modal algebra £ with a
non-trivial fixpoint b +the relation 6 defined by ¢ 8 d
iff ¢Ab = dAb is a non-trivial congruence relation.

Proof, It is easy to see that 6 is a lattice
congruence. We show that © is also compatible with ' and <.
Let us consider ¢ 8 do We have ¢ Ab = dAb und therefore
(cAb)vd = (dAb)VDb'. It follows cvb'=dVb' and hence
¢'Ab =d"'Ab, 1.8, c'®d'., The compability with the opera-
tion 7 holds by the fixpoint property. If ¢ © d, then
cAb=dAb and *{(cADb) = t(dAb). Therefore <x(c)Ab =
= 2(d) Ab and hence <«fc) 8 v(d). It is obvious that 7 is
non~-trivial.

Lemma 1,4, If the modal algebra <& is of the
class M then the fixpoints of £ form a sublattice of
(ByA,V).

Proof. ILet b,,b, be the fixpoints. 4s -1:(‘:;1 Abz) =
= 'c'(b1) A‘r(bz) = b1 Ab2 thes b1 Ab-2 ig a fixpoint., For |
b1 vb2 we have 1:(b1 Vbz)gr(b1) v'c(bz)_, because v is an
order preserving functior, Moreover J €M thus we have
(b, vb2)j§b1 Vb, and bance. 7(byVby)Sw(by)Vr(byl.

Lemma 1.5¢ Let £ be a finite algebra of the
class M, To every congruence relation 6 corresponds a fix-
polnt b and conversely.

Proof, By Lemma 1.3 we have that to every fixpoint
b corresponds a congruence relation 6 defined by ¢ 8 d
iff ¢ Ab = dAb., Now we have only to show that for a con-
gruence relation @ there exists a fixpoint b such that
ced 4iff cAb=dAb, We consider inf{x|x @ 1} = b,
Thus we have b © 13 hence t(b) 8 1 and b Zx(b). As
< €M, ¢(b)jEb and b is a fixpoint. It follows from ¢ & d
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that c¢vd'e1 and therefore b=c¢Vd'. Similarly we obtain
bsdve'. Henoe (bAc)v(bAd') = (bAd)v(bAc')., We con-
clude bAc={bAd)V(bAc'). Thus bAcsbAd, becauss
(bAc)A(bAc') = 0O, Furthermore we obtain also that
bAdSbAc, Conversely, if cAb = dAb and b = inf{x|x 01},
then we have b & 1 and therefore cAb 8 ¢ and dAb © d.
Thus ¢ 6 d.

By Lemma 1.5 it follows

Theorem 1,6, The finite modal algebra % of
the class.M is simple if and only if &£ has only trivial
fixpointsa,

An algebra & 18 subdirect irreducible if it has a least
non-trivial congruence relation.

Theorem 1+7. Let of be a finite modal algebra
of the class M which is not simple. &% is subdirectly irre-
ducible if and only if there is a non-trivial fixpoint b
such that for every fixpoint ¢, ¢ #1, we have c=b,

Proofa. Let J£ be subdirectly irreducible. Then
there exists a least non~trivial congruence relation 6. Let
b = inf{x| x 8 1}. For every other non-trivial congruence
relation 7 we have 6 S and c&b, where ¢ = inf{x | % 171}.
On the other hand, if there exists a greatest non-trivial
fixpoint b then 6 defined by u e v iff uAb = v Ab
is a least non-ftrivial congruence relation.

2+ The classes of simple and of subdirect irreducible
algebras of the class S4

A lattice f= (L,A,V,0) with the least elemsnt O is ato-
mistic if every non-zero element of L is « Join of atoms,

Theorem 2.1« Let & be an atomistic algebra
of the class S4., $ is simple iff < (a) = 0 for every ele~
ment a € B-{1}. '

Proof.,. Assume b = «(a})>0 for an element a £ 1,
We have ¥(b) = v2(a) = v(a) = b and b is a non-trivial
fixpoint, Then by Lemma 1.3 % 1is not simple. Now let T(a)=0
for every element ae B-{1} and assume that © is a congruence
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relation which is not the identity. As £ is atomistic, then
there exists an atom e€B with e ©0. Therefore e'81 and
<{e') 81. Thus we obtain 061 and 6 is the all relation.

There are two extreme cases for finite subdirectly irre-
ducible algebras of the class S4, Let b be the greatest
non-trivial fixpoint. The first case is that every element ¢
with ¢ <b 1is also a fixpoint. We call algebras of this kind
of the class P, The other case is that for every element ¢,
c <b, we have <(c) = 0. Algebras of this kind are called
of the class D,

Theorem 2,2 The algebras of the class P are
subdirectly irreducible., The operation v can be defined by
%(x) = xAb for every xce€(B-{1}.

Proof, It follows by Theorem 1.7 that the algebras
of the class P are subdirectly irreducible., If we define
z(x) = xAb for xeB-{1}, we have t(b) = b, 12(x-) = X
and T(c) = ¢ for every c sb.,

Similarly, by Theorem 1,7 we obtain

Theorem 2.3 The algebras of fthe class D are
subdirectly irreducible.

Morepver, as tz(x) = ¢(x), each ¢{(x) have to be a fix-
point. Therefore for the algebras of the class D we have
(1) =1, x(x) =b for bsx<1, and <(x) = 0 otherwise,

3. Punctionally complete algebras of M and S4

The underlying structure of a modal algebra is a Boolean
algebra., As the Boolean algebrac Jcrm ah arithmetical wvariety
the class of modal algebras is also an arithmetical variety
(Pixley [8]). In an arithmetical variety W +the algebra %
is functionally complete if and only if % is finite and
simple, Furthermore, every functionally complete algebra ¥
in Y generotes a subvariety which can be finitely axiomatiz-
ed (Baker [1]).

. ¥le will not follow these considerations of universal alge-
‘bra but prove in detail that the finite simple algebras of
the class 34 ere functionally complete.
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A finite non-trivial algebra $ is functionally complate,
if for every na1, each function £f:B"—2 is a polyno-~
mial function.

Theorem 3.1, Every finite simple algebra % of
S4 is functionally complete. s

Proof. Let £ be finite and simple of S4., Then
7(1) =1 and t(u) = 0 for every u€B-{1} by theorem 2.1.
Consider two elements c¢,deB and the function tcd(x) =
=v[(xve*')A(x*vc)] Ad. We have that t s(c) = d and
tc,d(v) =0 for v # c. Obviously LY is a polynomial .
function of B 1i.e. tc,d ig composed by projection, ~an-
stants and the operations A,V,',r. If f:B—=B is a func-
tion and if wenput bi = f(ai), B = {a1,...,an } then we
have f(x) = ;!q taibi(x). Therefore every 1-place function
is a polynomial function and hence also every n-plsce func-
tion. .

Pinally we notice that these algebras give further possi=~
bilities to find switching algebras for multivalued logic func-
tions {Troy, Cemalle, Irvin [11]).
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