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SUR L’APPLICATION DE LA METHODE HOMOTOPIQUE
ET D’UN CRITERE D’'UNIVALENCE DANS LA CLASSE
DES FONCTIONS CONVEXES VERS L’AXE IMAGINAIRE

1. Désignons par S0 la classe des fonctions holomorphes
et univalentes dans E = E,, ou E, ={z : | z|<r}, et soit
SCISo la classe des fonctions de la forme £(2) = z + 852" +eeey
z €XE,

Le domaine D # € est dit convexe vers l'axe imaginaire, si
pour tout couple de points W,» W, appartenant & ce domaine
et tels que re w, = re W, le segment d'extrémités Wy Wy est
contenu dans D.

Soit T la classe de ces domaines. Posons encore

3, ={fes, : £(®er}, J={f:rel ns}

Robertson [6] a donné en 1936 une condition & laguelle
satisfont les fonctions de la classe J qui vérifient alterna-
tivement certaines hypothéses supplémentaires. Ce résultat
peus &tre énoncé comme il suit. .

Théoréme 1.1. Supposons que £f€S satisfait a
lt'une des conditions
(a) feJ et f est holomorphe dans E = EU3E,

(b) il existe un §, 0 < 6=6(f), tel que f(Er)G T pour

T e(1-6;1)|;
alors il existe des nombres réels W, ¥, OKp<¥, 0<V<m,
tels que
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2 Cz.Burniak, .Z.Lewandowski, J.Pituch
(1.1) re {-:’.el"(’l - 2cos ¥ ez 4+ e'2l“z2)f’(z)} > 0.

Dans le m8me travail [6] il a été aussi démontré que les
fonctions holomorphes dans E, qQui satisfont 4 la relation
(1.1), sont vnivalentes dans E.

Hengartner et Schober [3] ont étudié en 1970 la classe J,
en admettant une normalisation différente de celle qui a été
adoptée dans [6]. Les conditions £(0) = 0, £'(0) = 1 y ont
été remplacées par la suivante: 1l existe des suites { n}
{zn} n = 1,2,e.4, de points. du cercle E telles que
o) zl'l—>1, zr'l'———‘l, ou B) zn——>1, zn —=1, Oou %) 21'1'—’ -1,
z1'1' — -1, les relations

lim re f(z') = sup re £(z), 1lim re f(z") = inf re f(z)
n -»o0 zeB n-+oo Z€R :
ayant lieu dans chacun de ces cas. Les auteurs ont obtenu,
dans le trois cas considérés, des conditions nécessaires et
suffisantes pour qu'une fonction £ holomorphe dans E appar-
tienne & la classe J,. Ces conditions ménent & des cas parti-
culiers de l'inégalité (1.1). Ce résultat a été établi sans
utiliser les hypothéses restrictives (a) ou (b).

En profitant des résultats du travail [5] et en appliquant
une transformation de Mobius convenable, Royster et Ziegler
[7] ont obtenu une condition nécessaire et suffisante pour
qu'une fonction f holomorphe dans E appartienne & la classe
J e Cette condition est identique & l'inégalité (1.1) pour
pe| f0,2n], v €[0,x]+ De méme que dans [3], ces auteurs ont
donné une interprétation géométrique des paramétres p et V.
Le théordme principal établi dans [7] sera cité ici comme
théoréme 3.1.

Les démonstrations des théorémes fondamentaux dans [ 3]
sont difficiles et exigent une discussion de plusieurs cas
pour chacune des variantes o), p) et ¥); la démonstration in
extenso n'y a été donnée que dans le cas o). Pour ne pas trop
ellonger le travail, les auteurs se sont bornés a indiquer la
mgthode utilisée dans la démonstration des autres cas.

- 310 -



Za méthode homotopique 3

Dans le présent travail nous allons démontrer le théoré-
me 3.1 autrement que dans [ 7], c¢'est-a-dire sans en appeler
au résultat de [3]. Notre méthode est différente de celle de
[3], elle est élémentaire, unlfbrme et consiste uniquement
& appliquer les simples méthodes mentionnées dans le titre du
travail: la méthode homotopique et une certaine condition
suffisante d'univalence.

2. Avant de formuler et de démontrer le théoréme 3.1 nous
établirons dans ce chapitre quelques théorémes dont nous pro-
fiterons dans la suite.

Théoréme 2.1. Soit ®(z,t) = aq(t)z+aa(t)z2+...
pour tout t fixé, teft,st,]y t4<t,, une fonction univa-
lente dans E admettant pour tout z €E fixé une dérivée <I>t(z t)
continue dans l'intervalle [t,l,ta] Si pour tout couple de
points t,t' e[t,],tzj tels que t<t' ona $(E,t)cd(E,t'),
1'inégalité suivante a lieu

2.1) r Fyzrt) 20 t €[t ,t,], 2z €B
. e — pour .
z ¥ (z,8) ~ 1072l

Démonstration. 41° Supposons d abord que
a4(£)>0 pour e[t,],tz] Dans ce cas le théoréme 2.1 a
été énoncé et établi dams [‘l].

2° Rejetons maintenant 1l'hypothése a1(t)> 0. Alors on a
évidemment a,](t) # 0, puisque pour tout te[tq,ta] la fonc-
tion &(.,t) est univalente dans EB. Soit arg a,(0) 1'argument
principal. Par hypothése a, est une fonction différentiable
par rapport & t. Formons la chatne

P(z,t) = <lb(ze'i'ars a’l(t),t) = | aﬂ(t)| Z + eoe

-1 arg &, (%) )
et posons ze = vs On obtient

Folz,8) 4 $,(v,t)
Z FR(2,8) -1 3t o8 8,(t) + 3 v(Vet) °

’
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4 Cz.Burniak, Z.Llewsndowski, J.Pituch

Pour F(z,t) on a le cas 1°, donc le premier membre de la der-
nidre égalité a une partie réelle non négative. De 1la on tire
1'inégalité (2.1), ce qui établit le théoréme 2.1. '

Le théoréme suivant (th.2.2) concerne une extension du
principe de correspondance des bords que voici. Soient D et
D* des domaines simplement connexes limités par des courbes
de Jordan C et C*, et supposons .que D* soit un domaine borné.
Si une fonction £, analytique dans D et continue dans
D = Du(, représente biunivoquement C sur c* en conservant
le sens de parcours des bords, la fonction f effectue la re-
présentation univalente de D sur ¥,

Dans [5] ce critére se trouve étendu au cas ou C* est un,
contour non borné et ol w =oo est un point-frontidre simple,
le contour C étant "borné. ,

On peut considérer le cas ol w =©© est un point-frontié-
re de multiplicité n du domaine D*. Soient By T 0<[5k<2,
les mesures des angles entre les asymptotes du contour o¥*
qui correspondent aux différents sommets Ws 8 point w = oo, _
k = 1,2,400yn. Admettons que l'application w = £(2) fait cor-
respondre aux sommets W les’_? points t:k sur la courbe C et
que o, I, Oy €2, est la mesure de l'angle entre 1ee{ tangen-
tes au contour ¢ au point &xr k= 1,000,n, ot enfin que f
détermine une correspondance biunivogue entre les contours C
et C*. Alors on a le théoréme que voici.

Théo€beéme 2.2. Soit f une fonction holomorphe
dans D et continue dans D sauf aux points Syr kK = 1,000,0,
et soit pour z €D

, Ty '
(2.2) lim {f(z)(z—z;k) }: Ak’ T o, Ak £ 0,00, k=1,00,,0.
z*;k

Si l'on a, sous ces hypothéses, 1l'inégalité

n n
(2.3) 2 <Dy - D Be<2,
' =1 k=
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La méthode homotopique 5

la fonction f effectue la représentation biunivoque de D
sur D*. .
Démonstration. Nous allons procéder comme
dans [5], ow w =00 était un point-frontiére simple du domaine
o*. Soit 3’%, pour r sutiisamment petit, l'arc de circonfé-
rence |z - 3, | = ¢ contenu dans D, D, = D\U E (&), ou

E,3,) ={z 2]z -8,]<r} et soit C, c\kgl E.(3,). Bvi-

n
- k . L e
demment aDr = Cr ulgzjq Tpe Ces constructions sont légitimes,

puisque par hypothése C est un contour.

Si woeD*, lthypothése: £(z) — oo 51 z — Srs k=1500.04n,
entraine que r peut &tre choisi assez petit pour gue la
partie retranchée du domaine D ne contienne pas de wo-points
de la fonction f, c¢'est-a-dire de points 2z qui satisfont
a4 ltégquation f£(z) = W,e Par conséquent le nombre N(wo) des
wo-points de la fonction f %st le m8me pour les domaines D

et D, On sait que

N(w,) =%_§A3Dr arg{f(z)-wo} =

n
=%EAG arg{f(z) wo}+ o Z A,‘k arg{f(z)-w } .

En faisant un raisonnement analogue & celui de ([5] p.108), on
obtient les égalités

n
(2.4) Acr arg{f(z)—vqo} =AC* arg(w—wo) = (2 - 2 pk>1r+ o(r),
T k=1

(2.5) A k =dk'fk7|'+ 0(x),
B

ouG _f(c) et O(r) —=0 pour r —=0.
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6 Cz.Burniak, Z.lewandowski, J.Pituch

Des considérations précédentes, ainsi que de (2.4) et
(2.5) il résulte que

n n
(2:6) N(w,)) =1 + 2"'<2 ATy = D pk>.
i k=1 k=1

Des relations (2.3) et (2.6) il st'ensuit que O~<N(wo)< 2,
d'ol N(w,) = 1, c'est-a~dire que toute valeur woeJD* est
admise exactement une fois dans D par la fonction f.

Si w, est un point extérieur du domaine D*, la formule
(2+4) prend la forme

n
(2.7) Acrarg{‘ (z) -~ wy }= -'J!z Py + O(z),
k=1

et alors

_ ' | n 'n
(2.8) N(w,) = 2"‘(2 o = O pk).
_ k=1 k=1

En tenant compte de (2.3), on en déduit que -1'<N(wh)-<1,

d'ou N(wa) = 0. Le domaine D ne contient donc pas de wh-points

de la fonction f. Le théoréme 2.2 se trouve ainsi démontré.
Remar que. La nécessité d'énoncer et de démon-

trer le théoréme 2.2 décbule du fait que son analogue de [ 5]

(p.109) est faux. Le théoréme, qui y est énoncé, affirme gue

si w = o0 est un point frontiére de multiplicité n 4du do-
B +2

™S

maine D*, il suffit que la condition'pk< soit remplie

au moilns par un sommet pour que la fonction f effectue la
représentation univalente de D sur D¥. A titre de contre~exem~

ple on peut citer la fonction f: £(z) =-¢%— --ZJET;?.
1~z

3. Les résultats de [3], [7], peuvent &tre énoncés sous
la forme du théoréme suivant qui figure comme théoréme 1
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La méthode homotopique 7

dans [7]; nous allons le démontrer & l'aide d'une méthode
uniforme et par une voie différente. .
Théoréme 3.1s Soit f une fonction holomorphe
dans E et non constante. La relation £ €J, a lieu si et
seulement s'il existe des nombres y et 3, O<p<2m
V€W, tels que

(3.1) re{-ieip('l ~2cos¥ o~ily 4 e'aipzz)f’ (_z)} >0, zE€E,

Remarque. Le théoréme énoncé dans [7] donne
aussli une interprétation géoméfrique des extrémités simples

f(ei(""))) (ei'(‘“o)) Pour cette interprétation nous ren-
voyons le lecteur aux remarques finales qui suivent la dé-
monstration du théordme 3.1.

Demonstratlon. 1° Soit fes, et £(E)eT.
Sans nuire A la générallté nous admettrons dorenava.nt que
£(0) = 0. Il existe donc une suite de domaines contenant
ltorigine tels que chacun d'eux s'obtient du plan en en retran-
chant un nombre fini de demi-droites paralléles & l'axe imagi-
naire, suite qui converge vers le noyau D = F(E) au sens
de Carathéodory. Cette simple construction-a été donnée dans
la démonstration du Lemme 1 de [2] (p.3-4)j c'est pourquoi
nous ne nousg en occuperons pas. Dang cette partie de la dé-
monstration on peut donc admettre que D = £(E) est un do-
maine obtenu du plan € en en retranchant un nombre fini
de demi~droites paralléles & l'axe imaginaire. Nous allons
approcher le domaine D par une suite ascendante de domaines
limités par des courbes de Jordan telles que chacune d'elles
a deux points communs au plus avec chaque droite paralléle
4 l'axe lmaginaire. Supposons que 4D soit composé de demi-
-droites fermées 81180900098y de sommets resp. Wy oWopeee )W,
dirigés vers le bas, et de demi~droites fermées dqrdsyeeesdy
de sommets T'eSPe V,sVpyeessVy dirigés vers le haut. Admettons
que re W, <re w,<...<re w et re v,<re Vy<ses<TO Vyo
Il existe un nombre M,>0 tel que la bande [Im w|<Mq con-
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8 Cz.Burniak, Z.Lewandowski, J.Pituch

tient tous les sommets Wareen Vs VyseseyVye Désignons par
wc’),w,a,wé,...,wlé les points de la droite Im w = M’I tels que
Te wy = 2'1(re Wg +Te W 1)y S =T,ee0,k-1 et wj = re wy-1+
+ iM,I, w]; =re w +1+ iM,]. D'une maniére analogue définis-
sons les points vc’),v,i,...,vl'_ sur la droite Im w = - 4+ For-
mons la ligne brisée fermée rh dont les sommets consécutifs
sont: 'M’I ,vo,v,] ,v,l 3ees V) ,vl ’M’I ’Wk’wk’wk qreee ,w,] ,w -M,‘. La
construction de la courbe ry se rapporte aussi au cas ou D
contient au moins une demi-droite de sommet dirigé vers le bas
et au moins une demi-droite de sommet dirigé vers le haut. Si
4D ne contient pas de demi-droite de sommet dirigé vers le
haut, on entend par T, la ligne brisée dont les sommets
consécutifs sont: -M, ~iM, M, ,w]f(,wk,w]f‘_,, ryeee Wy yWg =M.
D'une fagon analogue, si .dD ne contient pas de demi-droite
de sommet dirigé vers le bas, on entend par ry 1la ligne
brisée dont les sommets consécutifs sont =My ViV sV s Vo ee
...,vl,vi,M,],iM1,-M1. Le nombre M, peut 8tre choisi assez
grand pour gque la ligne brisée M s0it le bord d'un domaine
de Jordan D,] €T et OeD,]. Cela résulte directement de la
construction. Il en wésulte aussi que si le point n décrit la
courbe Fqs en parcourant le domaine D,] dans le sens posi-
tif du point M, au point -M,, re Vl décroft. Il s'ensuit
que’ D,,e T : : »

Soit M1< M2<M3< eee €t supposons que Mn—*°° pour
n —>oo, La suite {Dn}, D,€T, des domaines construits de
méme gqufauparavant en remplaqant M,I . par Mn est une suite
ascendante de domaines oty U D, = f(B). Par conséquent
D est le noydu au sens de IC?zaxrathéodor:y de la suite { } Dé~

signons par {fn} n = 1,2,.005 la suite des fonctions £ €8S,
telles que £ (0) = 0, arg £,(0) = arg £7(0), ou £ (E) = D .
En vertu du theoréme de Oarathéodory, il s'ensuit que fn—‘f
et yue la convergence est uniforme sur tout sous-ensemble
fermé du cercle E.
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La méthode homotopique 9

Il existe des nombres réels Vp et 0,9, {;n>en,

1en 19,
0 <y, -4,<2m" tels que fn(e ) = M, fn(e, ) =M. On
Peut admettre que O, = p =V;y Y, = Pp+dyy o0 VY €(0,m),
pp €(0,2m).
Formons, pour tout n f£ixé, l'homotopie

¢, (z,t) = £,(2) + th(zjp,,9,), t20, z€E,

ou

ie™+ Mg

[1 - ze~>(FY)] [1 - ze~ W)} °

h(zip,¥) =

La fonction h(.3p,V), qui s'obtient simplement de la fonc-
tion z 59 .est une fonction un:i_.valente et

1 - 22 cosVN + 2
étoilée dans E et C\h(E;p,«)) est composé de demi-droites

disjointes appartenant & l'axe imaginaire et ne contenant pas
l'origine. On voit sans peine que Im h(elq’;p,\’)>0 pour
(pe(p—w),pw) et Im h(ew;p,\))<0 pour @ €(p+9,u-V+27n),
pe(0,2m) et J €(0,M). Des propriétés des fonctions t,
et de la définition de Qn(z,t) il résulte que si 2z décrit

la circonférence unité dens le sens positif, du point

i (pp=vp) ) iug+vy) i

e au point e s e <l>n(e »t) décrolt de M/
& M et Qn(elq’,t) décrit un arc de Jordan r;(t) qui
s'étend jusqu'a 1'infini et dont les asymptotes sont les droi-

tes. re w = -M, re w = M. Si 2z décrit la circonférence uni-
1(pn+on) .
au point
‘el(“n'ﬂn"'a’o, re én(el",t) croit de M, a M, et bn'(el",t)
décrit un arc de Jordan r;(t) qui s'étend jusqu'a 1l'infini

té 3E dans le sens positif, du point e

et dont les asymptotes sont les droites re w = M. Si rp(t) =
= r‘;(t)‘U l‘;(t'), r‘n(t) est le bord du domaine Dn(t) et

»Qn(z,t) définit une correspondance biunivoque entre la cir-
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10 Cz.Burniak, Z.Lewandowski, J.Pituch

conférence unité 3E et la courbe l‘n(t) respectant le sens
de parcours de E et Dn(t). La fonction tbn(.,t) est ho-

: . i(py=vy)
lomorphe dans E sauf aux points t;,‘ E) ’

52 =
i(ynﬂ)n)
e

et tend vers l'infini pour -z —=&, et z—=3,.
Le point w =o° est un point frontiére double du domaine
Dn(t). Dans ce cas, en vertu tu théorsme 2.2, on a oAq =
=d, = !51 = pa =Tq =Ty, =1 et 1'inégalité (2.3) se trouve
satisfaite. Du théoréme 2.2 il résulte donc que q>n(z,_t)
effectue la représentation univalente de E sur Dn(t) €T,
$i .t -0, ona D (t) =D, au sens de la convergence
vers le noyau. De la construction il résulte directement que
pour 0<t,<t, ona Qn(E,t,l)cén(E,tz). La fonction
Qn(',t) gatisfait aux hypothéses du théoréme 2.1. De 1l'inéga-
lité (2.1) on tire domc

! (2,8 h(zjp. ,»
z o> 9,(2,%) 2 f’n(z)+tzhz(z;pn,vn)

Bn passant & la limite avec t —= 0O, on obtient de (3.2)

b(zsp,s9,)
(3.3) re ——Tpn——ll-zo, z €E.

. zf (z)

n
En tenant compte des notations introduites plus haut, on tire
de (3.3)
ip -i ~2i]
(3.4) re{-ie R(4-2e |‘ncos \an+z2e Pn)fL(z)})O, z€E.,
Puisque fn tend vers f uniformément sur tout ir’
rel0,1), et que les suites {F‘n}’ {On} sont bornées, il
existe une suite partielle {nk} de l'ensemble N telle
que my —*e°, gy — A, —= V. Ltinégalité (3.4) pour
k k

n = n, donne, avec k—*°°, la relation (3.1). Des limi-
tations auxquelles satisfont o et 9, il résulte que
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La méthode homotopique 11

pe[0,2x], v €[0,7]. Comme tout domaine de la classe T
peut, ainsi que nous l'avons dit, 8tre approché au sens de la
convergence vers le noyau par des domaines canoniques tels
que le domaine D, il résulte du théoréme de Carathéodory, en
passant encore & la limite, comme précédemment, que si f €5,
et f(E)eT, il existe des nombres p et 4 satisfaisant a
1'inégalité (3.1) et tels que pe[0,2r], ¥ €[0x]. Le cas 1°
du théoréme 3.1 est ainsi établi.

2° Supposons maintenant que l'1néga11te (3.1)1 soit véri-
fiée pour une fonction f non constante dans E. Dans ce
cas aussi on ' ne nuira pas & la généralité en admettant que
£(0) = 0. Dans cette partie de la démonstration nous distin-
guerons deux cas:

o) Supposons que dans (3.1) 1l'égalité ait lieu en un point
z€E. En vertu du principe de l'extrémum pour les fonctions
harmoniques, on obtient

~ie*M(1-2cos ve™Hz + e'alpza)f’(z) = «¢i, ¢ €ER = (~00,00),
d'ou

ce™H

¢ £ 0.
1 - 2cosve Hz + e—21,2

(3.5)  f£'(2) =

En intégrant et en tenant compte de la condition £(0) = 0, on
obtient

1 —2iy z - et (K+V)
(3.6) £(2z) =57 sing 1n [e m .

Pour ¥=0 ou v¥=3 il faut prendre pour f 1la fonction
-1p
£(z) =c2e
1-z0"2H
Par consequent, f(E) est une bande verticale pour
Vv €(0,x) ou un demi-plan & bord vertical pour y=0 ou v =T,
donc f(E) €T et la représentation (3.6) est univalente.

limite donnée par la formule
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12 Cz.Burniak, Z.Lewandowski, J.Pituch

B) Supposons maintenant que l'inégalité (3.1) ait lieu
pour pe€[0J2x], v€[0,x] sans qu'il y ait égalité. Alors ona

(3.{'7) re{-iéip(1 - 2cos ¥ e"i"'z.+e'aipz2)f’(z)} >0, z€E,

Par définition de la fonction h(*,p,v) la fonction H donnée
par la formule

Z . .
H(z) =I h(q‘;) @ = ooy lﬁ[G-aio z - el(P-H’)J
0

z - etW=Y

représente le cercgle E  sur une bande dont les bords sont
paralléles a 1'axe réel, Nous ne jugeons pas nécessaire de
reproduire ici en ‘détail les calculus qui ménent aux points
4i, Bi, A<B, de l'axe imaginaire ou les bords de la bande
coupent cet axe; nos considérations ultérieures auront un
caractére qualitatif. Pour tout t € (A,B) fixé et s variant
dans l'intervalle (-oco,o0) une droite Lyt w = s+ti est
paralléle & l'axe réel et contenue dans la bande en question.
La contre-image de la droite L, dans l'agpplication H est
un arc de Jordan zy = z.(s) = H’1(s+ti) contenu dans E et
dont les extrémités sont ei(“")), eiq“w) (on voit facile-
ment que c'est un arc de cercle, mais cela n'importe pas ici).
De la on tire H(z,t(s)) = s+tl et H'(zt(s)) %—5 zt(s) =1,
donc )

(3.8) B (24(8)) =g—— .
t ’as"zt(s>

En vertu de la définition de h(z;p,”), la condition (3.7)
est équivalente & l'inégalité suivante: re{zf’(z)/h(z,p,\))} >0
pour zZ€E, c'lest-a-dire a

(3.9) re ﬂEl)O, zeE.
Hl(z).
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La méthode homotopique 13

De (3.9) et (3.8) on tire: re[f’ (zt(s)) % zt(s)] >0, donc

(3.10) 4 re £(2,(8)) >0, s €(-00,00).

Par conséquent la fonection re £(z) est croissante sur les
courbes Zt(s)' Comme la fonction H est convexe, on déduit
de (3%3.9) que f est une fonction presque convexe, donc uni-
valente [4]. Par conséquent, quand t varie de A 4 B,

les courbes z = zt(s) n'ont comme points communs que leurs

‘extrémités eéi('“.v), ei(F'v) et elles balayent le cercle E,
Il rés_ulte de ces considérations que 1’(D(1:,I ,ta)) est un do-
maine convexe vers l'axe imaginaire, o D(t4 ,tZ)CE désigx}e
pour %, # YRR €(A,B) le domaine simplement connexe
limité par les arcs z = z, (8), z = th(s)’ 8 €(~00,00),

1
les points ei(“"")), il -Y) y étant adjoilnts. De la on dé-
duit alsément que f£(E)e€T, clest-a-dire- feJ,, ce qui
achéve la seconde partie de la démonstration et le théoréme 3.1
se trouve ainsi établi, .

Remarques finales. On a vu plus haut que Im h(el¢,p,0)>0
si @e(u=v,y+v) et Im h(el“’,p,v)< 0 51 ¢e(u+v,p-d+2x). Il
en résulte, en tenant encore compte de la relation entre h
et H, que le bord supérieur de la bande A<Im w<B cor-
respond & l'intervalle (u~v,M+V) ou bien le point oe au point
p dans le cas ou 4 = 0, la bande devenant alors le demi-plan
Im w>A. Il découle de la définition de la fonction H que,
y On a zt(s)—> el(""o) d'ol, en tenant compte -
de (3.10), il résulte que f(el("'\) ) est l'extrémité sim-
ple du domaine f£(E) pour lagquelle s:g re £(z) est réalisé;

b

Sl S —» co

cela veut dire qu'il existe une suite {z'n}, Zrl1€ E, n=1,25000,

zﬁ—»el(}"” telle que 1lim Te f(zﬁ) = sup re £(z). D'une
: n ->oso 2€B

fagon analogue, f(el("‘”)) est l'extrémité simple du domaine
£(E) pour laquelle inf re f(z) se trouve réalisé; cela
2€E
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veut dire qu'il existe une suite {;g , z;tsE, N=1,250004
zg-—»-el(H+°>, telle yue lim re f(zg) = inf re £(z) (nor-
n--oe bA 3

malisation de Hengartner et Schober). Cette interprétation,
relative au cas 2°p) se rapporte sussi au cas 2°%), ou il
stagit de bandes de la forme (3.6), ce qui découle immédiate-—
ment de la formule (3.6) et du fait que f£(E) est une bande
verticale.

Notons encore que la méthode appliquée dans la démonstra=-
tion de la partie 2° du théoréme 3.1 a mis & profit les idées,
convgnablement étendues, exposées dans [ 3].
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