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SUR L'APPLICATION DE LA MÉTHODE HOMOTOPIQUE 
ET D'UN CRITÈRE D'UNIVALENCE DANS LA CLASSE 

DES FONCTIONS CONVEXES VERS L'AXE IMAGINAIRE 

1_. Désignons par SQ la classe des fonctions holomorphes 
et univalentes dans E = B^, où Bp = { z : | z|< r|, et so i t 
SCS0 la classe des fonctions de la forme f ( z ) = z + a2z^ + . . . , 
z €B. 

Le domaine D ^ C est d i t convexe vers l ' axe imaginaire, s i 
pour tout couple de points w^, wp appartenant à ce domaine 
et t e l s que re ŵ  = r.e w2 l e segment d'extrémités ŵ  , w2 est 
contenu dans D. 

Soit T la classe de ces domaines. Posons encore 

J 0 = { f € S 0 : f (E ) € T } , J = { f : f € J 0 n s } . 

Robertson [ 6 ] a donné en 19J6 une condition à laquelle 
sat is font les fonctions de la classe J qui v é r i f i en t alterna-
tivement certaines hypothèses supplémentaires. Ce résultat 
peut être énoncé comme i l su i t . 

T h é o r è m e 1.1. Supposons que f e S s a t i s f a i t à 
l 'une des conditions 
(a ) f eJ et f est holomorphe dans I = Eu3E, 
(b ) i l existe un 6, 0 < 6 = ô ( f ) , t e l que f ( E r ) e T pour 

r e(1-6}1)|, 
alors i l existe des nombres rée'ls p, *J, 
t e l s que 
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2 Cz.Burniak, ,Z.Lewandowskit J.Pitueh 

(1.1) re { - i e ^ d - 2cos s> e'^z + e"2l^z2)f' (z)} > 0. 

Dana le môme travail [ôj il a été aussi démontré que les 
fonctions holomorphes dans E, qui satisfont à la relation 
(1.1), sont univalentes dans E. 

Hengartner et Schober [-3] ont étudié en 1970 la classe JQ, 
en admettant une normalisation différente de celle qui a été 
adoptée dans [6]. Les conditions f(0) = 0, f'(0) = 1 y ont 
été remplacées par la suivante: il existe des suites {z^}, 
{zn}' 21 = ''i2»"*» â e points-du cercle E telles que 
a) z^ — 1 , — - 1 , ou (è) — 1 , — 1 , ou ï) z; — - 1 , 

—•• -1, les relations 

lim re f(n') = sup re f(z), lim re f(z") = inf re f(z) 
n -*ck> zeE n-»oo zeE 

ayant lieu dans chacun de ces cas. Les auteurs ont obtenu, 
dans le trois cas considérés, des conditions nécessaires et 
suffisantes pour qu'une fonction f holomorphe dans E appar-
tienne à la classe JQ. Ces conditions mènent à des cas parti-
culiers de l'inégalité (1.1). Ce résultat a été établi sans 
utiliser les hypothèses restrictives (a) ou (b). 

En profitant des résultats du travail [3] et en appliquant 
une transformation de Mobius convenable, Royster et Ziegler 
[7] ont obtenu une condition nécessaire et suffisante pour 
qu'une fonction f holomorphe dans E appartienne à la classe 
J Q. Cette condition est identique à l'inégalité (1.1) pour 
pej[0,27r], V e [o,jt] . De même que dans [3], ces auteurs ont 
donné une interprétation géométrique des paramètres p et •) . 
Le théorème principal établi dans £7] sera cité ici comme 
théorème 3.1. 

Les démonstrations des théorèmes fondamentaux dans [3] 
sont difficiles et exigent une discussion de plusieurs cas 
pour chacune des variantes «), fi) et y); la démonstration in 
extenso n'y a été donnée que dans le cas <*). Pour ne pas trop 
allonger le travail, les auteurs se sont bornés à indiquer la 
méthode utilisée dans la démonstration des autres cas. 
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La méthode homotopique 3 

Dans le p r é sen t t r a v a i l nous a l l o n s démontrer le t h é o r è -
me 3 .1 autrement que dans [ 7 ] , c ' e s t - à - d i r e sans en appeler 
au r é s u l t a t de [3]« Notre méthode e s t d i f f é r e n t e de c e l l e de 
[ 3 ] ; e l l e e s t é lémenta i re , uniforme e t cons i s t e uniquement 
à appl iquer l e s simples méthodes mentionnées dans l e t i t r e du 
t r a v a i l : l a méthode homotopique e t une c e r t a i n e condi t ion 
su f f i sa in te d 'un iva lence . 

2. Avant de formuler e t de démontrer le théorème 3*1 nous 
é t a b l i r o n s dans ce chap i t r e quelques théorèmes dont nous p ro -
f i t e r o n s dans l a s u i t e . 

T h é o r è m e 2 . 1 . So i t $ ( z , t ) = a , | ( t ) z + a 2 ( t ) z + . . . 
pour t o u t t f i x é , t e [ t ^ , t 2 ] » t / ) < t 2 » une f o n c t i o n un iva-
l en t e dans E admettant pour t o u t z é E f i x é une dér ivée 
continue dans l ' i n t e r v a l l e [ t ^ t g ] . Si pour t ou t couple de 
p o i n t s t , t ' 6 [ t , , , t 2 ] t e l s que t < t ' on a $ ( E , t ) c $ ( E , t ' ) » 
l ' i n é g a l i t é su ivante a l i e u 

(2 .1 ) r e —— pour t e f t ^ t » ] , z e E. 
z $ z ( z , t ) 

D é m o n s t r a t i o n . 1° Supposons d 'abord que 
a , j ( t ) > 0 pour t e f t ^ p t g ] . Dans ce cas l e théorème 2.1 a 
é t é énoncé e t é t a b l i dans 

2° Bejetons maintenant l ' hypo thèse a < | ( t ) > 0 . Alors on a 
évidemment a , j ( t ) £ 0, puisque pour t o u t t 6 , t 2 ] l a f o n c -
t i o n $ ( . , t ) e s t univalente dans 5 . So i t a rg a^(0) l ' a rgument 
p r i n c i p a l . Par hypothèse a^ e s t une f o n c t i o n d i f f é r e n t i a b l e 
par rappor t à t . Formons l a chaîne 

F ( z , t ) = * ( z e " i , a r S ^ C ^ . t ) = | a ^ ( t ) | z + . . . 

- i a rg eu ( t ) 
e t posons ze = v . On o b t i e n t 

. d „ î t Ç i i î i 
z P U z . t ) = dt a rg + V ( v , t ) • zx 

t 
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Pour F ( z , t ) on a le oas 1 ° , donc le premier membre de la der-
nière égal i té a une partie r é e l l e non négative. De l à on t i r e 
l ' i n é g a l i t é ( 2 . 1 ) , ce qui é t a b l i t le théorème 2 .1 . 

Le théorème suivant ( t h . 2 . 2 ) concerne une extension du 
principe de correspondance des bords que vo ic i . Soient D et 
D des domaines simplement connexes l imités par des courbes 
de Jordan 0 et C , et supposons que D soi t un domaine borné. 
S i une fonction f , analytique dans D et continue, dans 
D = DuC, représente biunivoquement 0 sur 0 * en conservant 
l e sens de parcours des bords, la fonction f effectue la r e -

£ présentation univalente de D sur D . 
Dans ce c r i t è r e se trouve étendu au cas où 0 * est un 

contour non borné et où.w = 0 0 est un point-frontière simple, 
le contour C étant borné. 

On peut considérer le cas où w = 0 0 est un point - front iè-
re de mult ipl ic i té n du domaine D . Soient (î^îr, 0 < < 2 , 
l e s mesures des angles entre les asymptotes du contour 0 * 
qui correspondent aux différents sommets w^, au point w = 00 , _ 
k = 1 , 2 , . . . , n . Admettons que l 'appl icat ion w = f ( z ) f a i t cor-
respondre aux sommets ŵ  lesj ' points sur l a courbe 0 et 
que oi^Jr, O^cx^^ 2, es t la mesure de l 'angle entre 

tangen-
tes au contour 0 au point k = 1 , . . . , n , et enfin que f 
détermine une correspondance biunivoque entre les contours 0 
et 0 . Alors on a le théorème^ que vo ic i . 

T h é o é è 1 e 2 .2 . Soi t f une fonction holomorphe 
dans D et continue dans D sauf aux points k = 1 , . . . , n , 
et so i t pour ? € D 
(2 .2 ) lim | f ( z ) ( z - ^ k ) ' t k J . = Ajj., * k > 0 , Ak ^ , k = 1 , . . . , n . 

Si l ' on a, sous ces hypothèses, l ' i n é g a l i t é 

n n 
(2 .3 ) - 2 < 2 «k^k ~ 2 P k < 2 ' 

k=1 k=1 
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La methode homoto pique 5 

la fonction f effectue la représentation biunivoque de D 
sur D*. 

D é m o n s t r a t i o n . Nous allons procéder comme 
dans r5 ] , où w =00 était un point-frontière simple du domaine 
* k 

D . Soit pour r suiïxsamment pet i t , l 'arc de circonfé-
rence | z - Çjj. | = r contenu dans D, Dr = D\^J Ê r (Çk ) , où 

W = { z : I z - < r ) e t s o i t °r = ° \ U V ^ P * E v i -
n k 

demment 3D„ = C_uL J Ces constructions sont légitimes, 
r r ¿si r 

puisque par hypothèse C est un contour. 
Si W Q 6 D * , l'hypothèse: i ( z ) - » O O si z — k = 1 , . . . , n , 

entraîne que r peut être choisi assez pet i t pour que la 
partie retranchée du domaine D ne contienne pas de wQ-points 
de la fonction f , c 'est-à-dire de points z qui satisfont 
à l'équation f ( z ) = wQ. Par conséquent le nombre N(wQ) des 
wQ-points de la fonction f ffest le môme pour les domaines D 
et Dp. On sait que 

N<wo> = - f e A 3D r a r g { f ( z ) - w 0 } = 

n 
= feACT, a r g { f ( z ) -w 0 } + - ^ 2 A v arg { f ( z ) -w 0 } . 

kr=1 6T 

En faisant 
un raisonnement analogue à celui de ( [5] p.108)|»on 

obtient les égalités 

(2.4) Aq arg{f (z)-w)0 } = A * arg(w-wQ) = (2 - ^ P k V + » 
r °r \ k=1 / 

(2.5) A k = dktk3T + O(r) , 

où G* = f (C ) et 0 (r ) — p o u r r —»0 . 
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Des considérations précédentes, a ins i que de ( 2 . 4 ) e t 
( 2 . 5 ) i l r é s u l t e que 

( 2 . 6 ) N(w0) = 1 + 2 - V J ; <xktk - 2 P k V 
\k=1 k=1 / 

Des r e l a t i o n s ( 2 . 3 ) e t ( 2 . 6 ) i l s ' e n s u i t que 0 < N ( w o ) < 2 , 
d'où N(wQ) = 1 , c ' e s t - à - d i r e que toute valeur wQ e D*" es t 
admise exactement une f o i s dans D par l a fonct ion f . 

S i ŵ  es t un point extér ieur du domaine D*, l a formule 
( 2 . 4 ) prend l a forme 

n 
( 2 . 7 ) A 0 a r g { (z) - W<1 } = - * 2 + 

r k=1 

et a lors 

( 2 . 8 ) N(w,) = 2 - 1 ( 2 « k * k - 2 PkV 
\k=1 k=1 / 

En tenant compte de ( 2 . 3 ) , on en déduit que -1<N(w^) < 1 , 
d'où N(w^) = 0 . Le domaine D ne contient donc pas de w^-points 
de l a fonct ion f . Le théorème 2 . 2 se trouve a i n s i démontré. 

R e m a r q u e . La n é c e s s i t é d'énoncer e t de démon-
t r e r le théorème 2 .2 décioule du f a i t que son analogue de [ 5 ] 
(p.109) es t faux. Le théorème, qui y es t énoncé, affirme aue 
si w = 00 es t un point f r o n t i è r e de m u l t i p l i c i t é n do-

* . • • Pk + 2 • maine D , i l s u f f i t que l a condition |tk< s o i t remplie 

au moins par un sommet pour que l a fonct ion f e f fec tue l a 
* 

représentat ion univalente de D sur D . A t i t r e de contre-exem-

ple on peut c i t e r l a fonct ion f : f ( z ) = -—5- . 1 + 2 ( 1 - z ) 2 

_3. Les r é s u l t a t s de [ 3 ] » [ 7 ] » peuvent ê t re énoncés sous 
l a forme du théorème suivant qui f igure comme théorème 1 
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dans [7]; nous allons le démontrer à l'aide d'une méthode 
uniforme et par une voie différente. 

T h é o r è m e 3.1. Soit f une fonction holomorphe 
dans E et non constante. La relation f ej Q a lieu si et 
seulement s'il existe des nombres ^ et -3 , 0 4|i4 2ir, 
0 < V <ir, tels que 

( 3 . 1 ) re{-iei^(1-2COS-) e _ 1H z + e"2lHz2)f'(z)} > 0 , z€E. 

R e m a r q u e . Le théorème énoncé dans [7] donne 
aussi une interprétation géométrique des extrémités simples 
f(9i(y-^))||e(eij(H+'J))t p0ur cette interprétation nous ren-
voyons le lecteur aux remarques finales qui suivent la dé-
monstration du théorème 3.1, 

D é m o n s t r a t i o n . 1° Soit f e SQ et f(E)eT. 
Sans nuire ¿L la généralité nous admettrons dorénavant que 
f(0) = 0. Il existe donc une suite de domaines contenant 
l'origine tels que chacun d'eux s'obtient du plan en en retran-
chant un nombre fini de demi-droites parallèles à l'axe imagi-
naire, suite qui converge vers le noyau D = !F(E) au sens 
de Garathéodory. Oette simple construction a été donnée dans 
la démonstration du Lemme 1 de [2] (p.3-4); c'est pourquoi 
nous ne nous en occuperons pas. Dans cette partie de la dé-
monstration on peut donc admettre que D = f(E) est un do-
maine obtenu du plan <E en en retranchant un nombre fini 
de demi-droites parallèles à l'axe imaginaire. Nous allons 
approcher le domaine D par une suite ascendante de domaines 
limités par des courbes de Jordan telles que chacune d'elles 
a deux points communs au plus avec chaque droite parallèle 
à l'axe imaginaire. Supposons que 3D aoit composé de demi-
-droites fermées g^ »ggt» • • »gjj de sommets resp. w^ ,wof... tW^ 
dirigés vers le bas, et de demi-droites fermées éLj ,d2i... »d^ 
de sommets resp. v^ jVg v^ dirigés vers le haut. Admettons 
que re w^ < re w2 < ... < re et re v^ < re Vg < • • • < re v^. 
Il existe un nombre 1k > 0 tel que la bande |ïm w|<Mi con-
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tient tous les sommets w^ ,... tv/ĵ v̂  ,... Désignons par 
wo »wi 'w2 ' * * ' ,wk l e s P°;'-n"t;s d e l a â^oite 1m w = M^ tels que 
re w's = 2 (re wg + re wg+/]), s = 1,...,k-1 et wQ' = rew^-1 + 
+ iM^ , w^ = re wk + 1 + iM^. D'une manière analogue définis-
sons les points v£ sur la droite Im w = -M^. For-
mons la ligne brisée fermée r̂  dont les sommets consécutifs 
sont: -M^»vo,V1,VÎ'* * " , V 1 , V 1 ' w k , w k ' w k - 1 • • • • , W 1 » w o * L a 

construction de la courbe r̂  se rapporte aussi au cas où 3D 
contient au moins une demi-droite de sommet dirigé vers le bais 
et au moins une demi-droite de sommet dirigé vers le haut. Si 
3D ne contient pas de demi-droite de sommet dirigé vers le 
haut, on entend par r̂  la ligne brisée dont les sommets 
consécutifs sont : -M^ -iM^ ,M,j ,w^ ,...jW^,w^ . 
D'une façon analogue, si .3D ne contient pas de demi-droite 
de sommet dirigé vers le bas, on entend par f\| la ligne 
brisée dont les sommets consécutifs sont -M^ ,v,j ,vjj »Vg» •.. 
... ,v^,v£,M,| ,-M^. Le nombre M^ peut être choisi assez 
grand pour que la ligne brisée rVj soit le bord d'un domaine 
de Jordan D^ e t et OeD^. Gela résulte directement de la 
construction. Il en résulte aussi que si le point y décrit la 
courbe r̂  , en parcourant le domaine D^ dans le sens posi-
tif du point M^ au point -M^, re décroît. Il s'ensuit 
que D^eT. 

Soit M^ < Mg < Mj < ... et supposons que M n ~ 0 0 pour 
n —»-©o . La suite {Dn}» D Q 6 T , des domaines construits de 
môme qu'auparavant en remplaçant M^ par M n est une suite 

O O 

ascendante de domaines et-j D = D = f(E). Par conséquent 
D est le noyau au sens de Carathéodory de la suite x^j* Dé-
signons par {fn}i n = 1,2,...if la suite des fonctions f

n
e S Q 

telles que fn(0) = 0, arg f^(0) = arg f'(0), où fn(E) = Dn. 
En vertu du théorème de Carathéodory, il s'ensuit que f n — f 
et que la convergence est uniforme sur tout sous-ensemble 
fermé du cercle E. 
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La méthode homotopique 1 

I l e x i s t e des nombres r é e l s tp^ e t 8 n , V n > ® n » 

0 < V n - Q a < 2 î r » * , t e l s * u e f n ( e = V V ® 1 ^ = " V 0 n 

peu t admet t re que 6 n = Vn = o ù c ( û > t 0 > 
f 4 n G ( 0 , 2 j r ) . 

Formons, pour t o u t n f i x é , l ' h o m o t o p i e 

$ n ( z , t ) = f Q ( z ) + t h ( z j j i n , V n ) , t > 0 , z € B , 

où 

h ( Z 5 | , W ) = [1 - z e - ^ K i - z e " ^ ^ ] ' 

La f o n c t i o n h ( . j p » ^ ) > q u i s ' o b t i e n t simplement de l a f o n c -
• 2 • t i o n x- , e s t une f o n c t i o n u n i v a l e n t e e t 

1 - 2z cos -i + z 
é t o i l é e dans E e t C \ h ( E j n , < J ) e s t composé de d e m i - d r o i t e s 
d i s j o i n t e s a p p a r t e n a n t à l ' a x e i m a g i n a i r e > e t ne c o n t e n a n t pas 
l ' o r i g i n e . On v o i t sans ç e i n e que Im h C e 1 ^ } ^ , ^ ) > 0 pour 
<p e t Im h C e ^ i n , ^ ) < 0 pour (p e(ji+-?,n->)+2ir) , 
f i € (0 ,2 i r ) e t € ( 0 , i ï ) . Des p r o p r i é t é s des f o n c t i o n s f Q 

e t de l a d é f i n i t i o n de $ n ( z , t ) i l r é s u l t e quô s i z d é c r i t 
l a c i r c o n f é r e n c e u n i t é dans l e sens p o s i t i f , du p o i n t 
J i ^ n Vn a u p o i n t r e ^ ( e 1 * ^ ) d é c r o i t de Mn 

à -M^ e t $ n ( e 1 < i P , t ) d é c r i t un a r c de Jo rdan r * ( t ) q u i 
s ' é t e n d j u s q u ' à l ' i n f i n i e t dont l e s asymptotes son t l e s d r o i -
t e s r e w = -M, r e w = M. S i z d é c r i t l a o i r c o n f é r e n c e u n i -

t é 3E dans l e sens p o s i t i f , du p o i n t e au p o i n t 

e
i ( M n _ > ( n + 2 l l ) , r e $ n ( e i v , t ) c r o î t de à e t $ n ( e i ( i , , t ) 

d é c r i t un a r c de Jordan r ^ ( t ) q u i s ' é t e n d j u s q u ' à l ' i n f i n i 
e t dont l e s asymptotes son t l e s d r o i t e s r e w = ¿11. S i r n ( t ) = 
= r~(t)|U r * ( t ) , r n ( t ) e s t l e bord du domaine D n ( t ) e t 
$ n ( z , t ) d é f i n i t une cor respondance b iunivoque e n t r e l a c i r -
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conférence unité 3E et l a courbe r n ( t ) respectant le sens 
de parcours de E et D n ( t ) . La fonction $ n ( . , t ) es t ho-

iCHn-O 
lomorphe dans E sauf aux points = e , Ço = 

+ O 
= e n n e t tend vers l ' i n f i n i pour -z — - 4 i e ' t z — 
Le point w =ck> est un point front ière double du domaine 
DQ ( t ) . Dans ce cas, en vertu tu théorème 2 .2 , on a ot/j = 
= tt2 = Pi = 02 = r 1 = fg = ' e t 1 1 inégal i té (2 .5 ) se trouve 
s a t i s f a i t e . Du théorème 2 .2 i l résulte donc que $ n ( z , t ) 
effectue la représentation univalente de E sur Î5n(t) ET. 
Si . t ~ 0 , on a Dn(t) — 1 D n au sens de la convergence 
vers le noyau. De la construction i l résulte directement que 
pour 0 < t / ) < t 2 on a ^ ( E . t ^ ) c $ n ( E , t 2 ) . La fonction 
$ n (*» ' t ) s a t i s f a i t aux hypothèses du théorème 2 . 1 . De l ' inéga-
l i t é (2 .1 ) on t i r e donc 

(3 .2 ) re - 2 2 - J S = r e r n n > 0 , zeE. 

En passant à l a l imite avec t —••0, on obtient de ( 3 . 2 ) 

h(z;n ) 
(3 .3 ) re , D > 0 , z 6E. 

En tenant compte des notations introduites plus haut, on t i r e 
de (3 .3 ) 

r iH„ -i(i_ o -2iu (3 .4 ) r e j - i e a (1 -2e ncos ^z+z^e n ) f ^ ( z ) | > 0 , z € E . 

Puisque f tend vers f uniformément sur tout E r , 
reC0,l|) , et que les suites {^n} son 'k bornées, i l 
existe une suite p a r t i e l l e de 1'ensemble N t e l l e 
que 1 1 n n — » - p » —»-V. L ' inégal i té (3-4) pour 

le le 
n = n^ donne, avec k — , l a re la t ion ( 3 . 1 ) . Des l imi-
tations auxquelles sat is font pn e t i?n i l résulte que 
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La méthode homotopique 11 

f j e [ 0 , 2 i t ] , V e [ 0 , i r ] , Comme tout domaine de l a c lasse T 
peut, a i n s i que nous l 'avons d i t , ê tre approché au sens de l a 
convergence vers le noyau par des domaines canoniques t e l s 
que le domaine D, i l résul te du théorème de Oarathéodory, en 
passant encore à l a l imi te , comme précédemment, que s i f eS Q 

et f ( E ) e T, i l ex is te des nombres (a et s a t i s f a i s a n t à 
l ' i n é g a l i t é ( 3 . 1 ) e t t e l s que |je[0,27r], Ve[o , i r ] , Le cas 1° 
du théorème 3 .1 e s t a ins i é t a b l i . 

2° Supposons maintenant que l ' i n é g a l i t é ( 3 . 1 ) s o i t v é r i -
f i é e pour une fonction f non constante dans E. Dans ce 
cas aussi on ' ne nuira pas à l a général i té en admettant que 
f ( 0 ) = 0 . Dans ce t te part ie de la démonstration nous d i s t i n -
guerons deux c a s : 

a.) Supposons que dans ( 3 . 1 ) l ' é g a l i t é a i t l i e u en un point 
z € E . En vertu du principe de l'extrémum pour l e s fonctions 
harmoniques, on obtient 

En intégrant e t en tenant compte de l a condition f ( 0 ) = 0 , on 
obtient 

±>our = 0 ou J = v i l faut prendre pour f l a foncti on 

l imite donnée par l a formule f ( z ) = - 2 - 2 — . 
1-zo " 

Par consequent f (E ) est une bande v e r t i c a l e pour 
6(0,or) ou un demi-plan à bord v e r t i c a l pour = 0 ou =ir, 

donc f ( E ) € t e t l a représentation ( 3 . 6 ) es t univalente. 

- i e l f i ( 1 - 2cos Ve_1Hz + e ~ 2 l M z 2 ) f ' ( z ) = - c i , c e R = ( -oo .oo) , 

d'où 

( 3 . 5 ) f ' ( z ) = 

- 31S -
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(î) Supposons maintenant que l ' i n é g a l i t é (3.1) a i t l i eu 
pour pe[o^2ï r ] , e sans q u ' i l y a i t é g a l i t é . Alors on a 

(3.7) r e j - i e ^ d - 2cos V e - ^ z .+ e - ^ z ^ f ' C z ) } > 0 , z € E . 

Par dé f i n i t i on de l a fonct ion h(*,(i,-i) l a fonct ion H donnée 
par l a formule 

H(z) = j - ^ d ç » 3 5 3 5 7 l a [e z _ ¿ ( p . * ) J 

représente le cerc le E sur une bande dont l e s bords sont 
p a r a l l è l e s à l ' a x e r é e l . Nous ne jugeons pas nécessai re de 
reproduire i c i en dé t a i l les oalculus qui mènent aux points 
Ai, Bi, A<B, de l ' a x e imaginaire où l e s bords de l a bande 
coupent ce t axe; nos considérat ions u l t é r i e u r e s auront un 
caractère q u a l i t a t i f . Pour tou t t e(A,B) f i x é e t s var iant 
dans l ' i n t e r v a l l e ( - 0 0 , 0 0 ) une dro i te L^: w = s+ t i e s t 
pa r a l l è l e à l ' a x e r é e l e t contenue dans l a bande en quest ion. 
La contre-image de l a dro i te L. dans l ' a p p l i c a t i o n H e s t 
un arc de Jordan z .̂ = z^_(s ) = H - ' ( s + t i ) contenu dans S e t 
dont l e s extrémités sont e 1 ^ 4 - ^ , e ( o n vo i t f a c i l e -
ment que c ' e s t un arc de cero le , mais ce la n' importe pas i c i ) . 
De l à on t i r e I ^ z ^ s ) ) = s+ t i e t H ' ( z t ( s ) ) z^(s) = 1 , 
donc 

z. (s) 
(3.8) H ' ( z t ( s ) ) =-g-

ds " t 

En vertu de l a d é f i n i t i o n de hizjfijV)!, l a condit ion (3.7) 
e s t équivalente à l ' i n é g a l i t é suivante: re{ zf'(z)/h(z,ii,>>)} > 0 
pour z €E, c ' e s t - à - d i r e à 

(3.9) re f ' >0 , z e E . 
H'(z) 
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De (J.9) et (3.8) on tire: re[f'(zt(s))
 z

t(s)] >0» donc 

( 3 ' 1 0 ) re f(zt(s)) >0,. s €(-00,00). 

Par conséquent la fonction re f(z) est croissante sur les 
courbes z^(s). Comme la fonction H est convexe, on déduit 
de (3*9) que f est une fonction presque convexe, donc uni-
valente [V]. Par conséquent, quand t varie de A à B, 
les courbes z = z^-(s) n'ont comme points communs que leurs 

extrémités e ^ - ^ et elles balayent le cercle E, 
Il résulte de ces considérations que fCDCt^ptg)) est un do-
maine convexe vers l'axe imaginaire, où- D C t / p t g ^ E désigne 
pour t^ ^ tg, typtg 6(A,B) le domaine simplement connexe 

limité par les arcs z = z. (s), z = z, (s), s 6(-00,00), 
1 2 

les points e ^ - 1 ^ y étant adjoints. De là on dé-

duit aisément que f (E) G T, c'est-à-dire f e J Q , ce qui 
achève la seconde partie de la démonstration et le théorème 3.1 
se trouve ainsi établi. 

Remarques finales. On a vu plus haut que lia hCe1^,}! ,<0 > 0 
si ip e(|j-^,n+i)) et Im hCelv,fi,V)<0 si (f e (fi+V,fJ-')+2ir). Il 
en résulte, en tenant encore compte de la relation entre h 
et H, que le bord supérieur de la bande A < I m w < B cor-
respond à l'intervalle (ji-V^+'i) ou bien le point «*> au point 
|i dans le cas où *) = 0, la bande devenant alors le demi-plan 
Im v/>A. Il découle de la définition de la fonction H que, 
si s — o n a —»- d'où, en tenant compte 
de (3.10), il résulte que fCe1^1-^') est l'extrémité sim-
ple du domaine f(E) pour laquelle sup re f(z) est réalisé; 

zeE 
cela veut dire qu'il existe une suite {z^j., E, n=1,2,..., 

z' — t e l l e que lim re f(z') = sup re f(z). D'une 
n n zcE 

façon analogue, est l'extrémité simple du domaine 
f (E) pour laquelle inf re f(z) se trouve réalisél; cela 

zeE 

- 3 2 1 -
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veut dire qu'il existe une suite zn e S> n=1»2,•••, 
telle que lim re f(z") = inf re f(z) (nor-n n-o» n zeS 

malisation de Hengartner et Schober). Cette interprétation, 
relative au cas 2°|J) se rapporte aussi au cas 2°o0, où il 
s'agit de bandes de la forme (5.6), ce qui découle immédiate-
ment de la formule (3.6) et du fait que f(E) est une bande 
verticale. 

Notons encore que la méthode appliquée dans la démonstra-
tion de la partie 2° du théorème 3.1 a mis à profit le3 idées, 
convenablement étendues, exposées dans [3j» 
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