

Bożena Szkoipińska, Janusz Jaskuła

ON SOME PROBLEM OF MARCUS

In this paper we present a solution to the following problem, raised by S. Marcus in [2]: does there exist, for any set E of class F_6 and of the first category of Baire, a function f of type α (i.e., a function whose set of points of continuity is dense and boundary) such that

$$E = \Delta_f \quad \text{and} \quad C_f - \Delta_f = \Delta_f(\infty) \cup M_f,$$

where

$$\Delta_f = \{x: |f'(x)| < \infty\}, \quad \Delta_f(\infty) = \{x: f'(x) = \pm\infty\},$$

C_f - the set of all points of continuity of the function f ,
 M_f - the set of all those points at which there is no one-sided (finite or infinite) derivative. Besides, in this paper we shall apply the following notation:

I - any closed interval with finite Lebesgue measure,

R - the set of real numbers,

$D_A^- f(x)$ - the set of all left-hand derivative numbers of a function $f|_{A \cup \{x\}}$ at the point x ,

$D_A^+ f(x)$ - the set of all derivative numbers of a function $f|_{A \cup \{x\}}$ at the point x ,

$D_A^+ f(x)$ - the set of all right-hand derivative numbers of a function $f|_{A \cup \{x\}}$ at the point x ,

D_f - the set of all points of discontinuity of the function f ,

$m(A)$ - the Lebesgue measure of the set A ,

$m^*(A)$ - the exterior Lebesgue measure of the set A .

D e f i n i t i o n . Let a function $f : I \rightarrow R$ be given. We shall say that a set $A \subset I$ has the property B_f if

$$\bigwedge_{x_0 \in I} \bigwedge_{\varepsilon > 0} \bigwedge_{\delta > 0} \bigvee_{x' \in (x_0 - \delta, x_0 + \delta) \cap A} |f(x_0) - f(x')| < \varepsilon.$$

T h e o r e m 1. If, for a function $f : I \rightarrow R$, the set $A \subset I$ has the property B_f , then

(a) $D_I^- f(x) = D_A^- f(x)$ for $x \in I$,

(b) $D_I^- f(x) = D_A^- f(x)$ for $x \in I$,

(c) $D_I^+ f(x) = D_A^+ f(x)$ for $x \in I$.

P r o o f . It is obvious that $D_I^- f(x) > D_A^- f(x)$. In order to prove (a), it suffices to show that $D_I^- f(x) \subset D_A^- f(x)$. Let us take $x \in I$ and $\ell \in D_I^- f(x)$. Consider two cases. First suppose that $\ell \neq 0$ (we allow that $\ell = \pm\infty$). Then there exists a sequence $\{x_n\}$, $x_n \neq x$, $x_n \in I$, such that $\lim_{n \rightarrow \infty} x_n = x$ and

$$\lim_{n \rightarrow \infty} \frac{f(x_n) - f(x)}{x_n - x} = \ell. \text{ Since the set } A \text{ has the property } B_f, \text{ for every point } x_n \text{ as well as for } \varepsilon = \frac{|f(x) - f(x_n)|}{n}$$

and $\delta = \frac{|x - x_n|}{n}$ (since $\ell \neq 0$, we may assume that the sequence is chosen such that always $\varepsilon > 0$ and $\delta > 0$), there exists a point $y_n \in A$ such that

$$(1) \quad |y_n - x_n| < \frac{|x - x_n|}{n},$$

and

$$(2) \quad |f(x_n) - f(y_n)| < \frac{|f(x) - f(x_n)|}{n}.$$

We shall demonstrate that $\lim_{n \rightarrow \infty} \frac{f(x) - f(y_n)}{x - y_n} = \ell$. To this end, it is enough to show that

$$(3) \quad \lim_{n \rightarrow \infty} \frac{\frac{f(x) - f(y_n)}{x - y_n}}{\frac{f(x) - f(x_n)}{x - x_n}} = 1.$$

From (1) we have

$$\frac{n}{n+1} < \frac{x - x_n}{x - y_n} < \frac{n}{n-1},$$

whereas from (2)

$$0 < \frac{n-1}{n} < \frac{f(x) - f(y_n)}{f(x) - f(x_n)} < \frac{n+1}{n} \text{ for } n \geq 2.$$

Consequently, from the above inequalities it follows that

$$\frac{\frac{n-1}{n} < \frac{f(x) - f(y_n)}{f(x) - f(x_n)} < \frac{n+1}{n}}{x - x_n}.$$

Hence we get (3).

Now suppose that $\ell = 0$. There exists a sequence $\{x_n\}$ such that $\lim_{n \rightarrow \infty} x_n = x$, $x_n \neq x$, and $\lim_{n \rightarrow \infty} \frac{f(x_n) - f(x)}{x_n - x} = 0$. Take $g(x) = f(x) + x$. It is easily seen that the set A has the property B_g . Then $\lim_{n \rightarrow \infty} \frac{g(x_n) - g(x)}{x_n - x} = 1$. So, for the function g and for $\ell = 1$, we may apply the proposition of our theorem. Consequently, there exists a sequence $\{y_n\}$, $y_n \in A$, such that $\lim_{n \rightarrow \infty} \frac{g(y_n) - g(x)}{y_n - x} = 1$. Hence it appears that $\lim_{n \rightarrow \infty} \frac{f(y_n) - f(x)}{y_n - x} = 0$. In this way, we have proved (a). The proofs of (b) and (c) are obtained by a simple modifications of the above reasoning.

From Theorem 1 a few corollaries result.

Corollary 1. If f is a continuous function $f: I \rightarrow R$, and the set A is dense in I , then the conditions (a), (b), (c) are satisfied.

Corollary 2. If f is a continuous function $f: I \rightarrow R$, and the set A is of full measure in I , then the proposition of Corollary 1 is true.

Corollary 3. If $f: I \rightarrow R$ is an approximately continuous function, and the set A is of full measure in I , then also conditions (a), (b), (c) are true.

Corollary 4. If $f: I \rightarrow R$ is an approximately continuous function, and the set A satisfies the condition

$$\bigwedge_{x \in I} \bigvee_{\eta > 0} \bigvee_{\delta_0 > 0} \bigwedge_{\delta \in (0, \delta_0)} m^*[(x-\delta, x+\delta) \cap A] > 2\delta\eta,$$

then the conditions (a), (b), (c) are true.

Theorem 2. If a set $E \in F_6$ is of the first category of Baire, then there exists $f: I \rightarrow R$ of type α , such that $E = \Delta_f$ and $C_f - \Delta_f = \Delta_f(\infty) \cup M_f$:

Proof. Let $E = \bigcup_{k=1}^{\infty} E_k$ and $E_k = \bar{E}_k$; the sequence $\{E_k\}$ is increasing. Since $I \setminus E$ is a residual set, there exists a set $A = \{x_1, x_2, \dots\}$ such that $\bar{A} = I$ and $A \cap E = \emptyset$.

Let us define a function g :

$$g(x) = \begin{cases} \frac{1}{i} \varrho(x_i, E_i) & \text{for } x = x_i, i = 1, 2, \dots \\ 0 & \text{for } x \neq x_i, i = 1, 2, \dots \end{cases}$$

If $E_1 = \emptyset$, we assume that $\varrho(x_1, E_1) = m(I)$. The function g is continuous at points of the set $I \setminus A$. Indeed, let us take $x_0 \in I \setminus A$ and $\varepsilon > 0$. We shall find an i_0 such that $\frac{m(I)}{i_0} \leq \varepsilon$. There exists some $\delta > 0$ such that in the interval $(x_0 - \delta, x_0 + \delta)$

there is $0 < g(x) \leq \frac{m(I)}{1} < \varepsilon$. So, the function g is continuous in the set $I \setminus A$. Hence, if $x \in A$, then $g(x) > 0$ and there exists a sequence $\{a_n\}$ such that $a_n \rightarrow x$ and, for every n , $a_n \notin A$. Hence we get that $\lim_{n \rightarrow \infty} g(a_n) = 0$, which yields $x \in D_g$. Consequently, $A = D_g$. Therefore, the function g is of type α .

Let us take $x_0 \in E$. We shall show that $g'(x_0) = 0$. Let $\varepsilon > 0$. There exists some $j \in N$ such that $\frac{1}{j} < \varepsilon$ and $x_0 \in E_j$. Take an $h > 0$ such that in $(x_0 - h, x_0 + h)$ there are no points $x_1, x_2, \dots, x_j \in A$. Let us now consider the two cases: 1) $x_0 + h \notin A$ and 2) $x_0 + h = x_s \in A$, $s > j$. If $x_0 + h \notin A$, then

$$\left| \frac{g(x_0 + h) - g(x_0)}{h} \right| = \left| \frac{g(x_0 + h)}{h} \right| = 0.$$

If $x_0 + h = x_s \in A$, $s > j$, then $h = \varrho(x_0, x_s) \geq \varrho(x_s, E_s)$, which gives

$$\begin{aligned} \left| \frac{g(x_0 + h) - g(x_0)}{h} \right| &= \left| \frac{g(x_0 + h)}{h} \right| = \\ &= \frac{\varrho(x_s, E_s)}{s \cdot h} \leq \frac{\varrho(x_s, E_s)}{s \cdot \varrho(x_s, E_s)} = \frac{1}{s} < \frac{1}{j} < \varepsilon. \end{aligned}$$

It follows from a theorem of Z. Zahorski in [3] that there exists a continuous function φ such that $\Delta\varphi = E$, $M_\varphi = I \setminus E$. Put

$$f(x) = g(x) + \varphi(x).$$

The function f is of type α , $D_f = A$, $E \subset \Delta_f$. Let now $x \notin E \cup A$. Consequently, $x \in M_\varphi$. So, at this point there exist at least two distinct right-hand derivative numbers l_1, l_2 and two distinct left-hand derivative numbers l'_1, l'_2 . Let $\{y_n\}, \{z_n\}$ be sequences such that $y_n \rightarrow x$, $y_n > x$, $z_n \rightarrow x$, $z_n > x$, $y_n \notin A$, $z_n \notin A$ and

$$(4) \quad \lim_{n \rightarrow \infty} \frac{\varphi(y_n) - \varphi(x)}{y_n - x} = l_1,$$

$$(5) \quad \lim_{n \rightarrow \infty} \frac{\varphi(z_n) - \varphi(x)}{z_n - x} = l_2.$$

The existence of such sequences results from Corollary 1. From condition (4) we have

$$(6) \quad \lim_{y_n \rightarrow x} \frac{f(y_n) - f(x)}{y_n - x} = \lim_{n \rightarrow \infty} \frac{\varphi(y_n) - \varphi(x)}{y_n - x} = l_1,$$

whereas from (5) we obtain

$$(7) \quad \lim_{n \rightarrow \infty} \frac{f(z_n) - f(x)}{z_n - x} = \lim_{n \rightarrow \infty} \frac{\varphi(z_n) - \varphi(x)}{z_n - x} = l_2.$$

From (6) and (7) it follows that $l_1, l_2 \in D_A^+ f(x)$. Similarly, one proves that $l'_1, l'_2 \in D_A^- f(x)$. Hence we infer that, if $x \notin E \cup A$, then $x \in M_f$. In consequence, $E = \Delta_f$ and $C_f - \Delta_f = \Delta_f(\infty) \cup M_f$. Note that $\Delta_f(\infty) = \emptyset$.

REFERENCES

- [1] M. Filippczak : Sur les fonctions dont l'ensemble des points de continuité est à la fois frontière et dense, Colloq. Math. 33 (1975) 237-250.
- [2] S. Marcus : Sur les propriétés différentielles des fonctions dont les points de continuité forment un ensemble frontière partout dense, Ann. Sci. École Norm. Sup. 3, 79, (1958) 1-21.
- [3] Z. Zahorski : O zbiorze punktów nieróżniczkowalności funkcji dowolnej, Dodatek do Rocznika Polskiego Towarzystwa Matematycznego 21 (1950) 23-26.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF ŁÓDŹ, 90-238 ŁÓDŹ,
POLAND

Received February 26, 1981.