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A GENERIC PROPERTY OF VECTOR FIELDS ON OPEN SURFACES

This paper deals with the problem of structural stability
of vector fields on open manifolds which is one of the central
research themes in dynamical systems., There are known condi-
tions which imply global structural stability of vector fields
on open surfaces (see [3]). It is interesting to know if these
conditions are also necessary, So far the answer is known only
fox R2. In this paper we prove the necessity of one of these
conditions for vector fields defined on some class of open
surfaces,

Let M be homeomorphic to S% without a countable number of
points which form a closed®subset of 52. By E we deno%e the
set of "infinities* of M, ,

r(M) - the space of ¢* vector fields on M which generate
flows endowed with C¥ ~Whitney (strong) topology (r 21),
@Y. MxR—=M the flow of Y,
We denote by OY(x) an orbit of Y starting with =x i.e.
QY(x 0) = x and define the positive (resp. negative) semi~-
~orbit by

03(x) = {&y(x,t) : t >0}

07(x) = {&(x,t) : t <0}

Finally we denote by OY[x,j] the closed Y~orbit segment from x
to Je
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2 J.Kotus

We distinguish three kinds of asymptotic behavior for
each semi-orbit:
(a) 0—(x) is bounded if it is contained in some compact set
KCI.1- ,
{b) 0—(x) escapes to infinity if for each compact set K CM
there exists a point y eo—(x) for which O—(x)nK #;
(¢) 0%X(x) oscillates if it is neither bounded nor escapes
to infinity.
These kinds of behavior for O;(x) (resp. 0§(x)) can be
also described in terms of the w-limit (resp. a~limit) set of
x el under ¢Y’ namely

M(O;(X)) ={yeM : 3tn—>+°°‘. 3, ¢Y(x,tn) —»y},
0((0§(X))_ ={y €N : 3t, —=-oco. D, ¢Y(x,tn) —>y}.

It is easy to see that we can distinguish the followlng
cases:
(a) is bounded iff w(o}(x)) is compact (and nohempty),
(b) escapes to infinity iff w(0+(x)) = ¢,
{(c) oscillates iff w(0+(x)) is a noncompact subset of M.

We extend the definition of w-limit (resp. oi-1imit) set
of xeM to w*-limit (resp. o®-limit) set

w*(O%(x)) ={ yEMUE : 'atn-—-wn. 3, ¢Y(x,tn) —>y},

o* (07(x)) ={ Y €MUE : 3t ~e-0co, 3. dy(x,t)) —3}.

Thus
(e) 0¥(x) escapes to infinity iff there exists P €E such
that w*(0}(x)) = {2},

{b) 0+(x) oscillates iff m(0+(x)) # @ and there exists PE€EB
such that Pew (Oy(x)).
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A -~eneric property of vector fields 3

Let PerY, Q(Y) denote respectively the periodic points
and the non-wandering points of Y, i.e.

Per Y ={ xel : ¢Y(x,t) = x for some t >0},

2(Y) = {xeM : 3x;—=x, t, —= +e0. 3. dylx,,t,) —=x}

The first positive (resp. negative) prolongation limit set
of xe€M under

¢, is J—(x) -{y_eM t X, —>X, t, —=to0o. 3, ¢Y(xn,tn)—>y}.

Y n

In general, m(O;(x))C J;(x) and q(OE(x))<2J;(x), and one can
éasily see that 2(Y) ={xeM : er-;(x)}.

Modifying the definition of Nemytskii-Stepanov [4] we say
that two unbounded semi-orbits 0+(x) and OY(y) form a saddle
at infinity if each escapes to inflnlty and 3y EJ;(x) (i.0,
x€Jy(y)). 1In this case we call 0;(x) (resp. dy(x)) the
stable (resp. unsteble) separatrix of the saddle at infinity,

By W {resp. W ) we denote the union of all stable (resp.
unatable) separatrlces of fixed saddles and at infinity. Each
8ot is Y-invariants it may consists of finitely or infinitely
many distinct orbits, In either case, it is not generally
closed, since a fixed saddle belongs to the closure of its
saparatrices.

At first we recall what so far is known about the suffi-
cient and necessary conditions for global cF-structural sta-
bility of vector fields on open surfaces,

Theoren 1. If N is an open surface and Y is
a complete cT-vector field on N satisfying the following con~
ditions:

(i) there are noin-trivial minimal sets and no oscillat=-

ing orbits,

(ii) every orbit in Per Y is hyperbolic,

(111) c1Wyn clWy CPer Y,
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4 . J¢Kotus

then

(a) 2(Y) = Per ¥,
(b) Y is a globally CT-structurally stable.

Theorem 1 is proved in [3].

Theorem 2. Let Y be aglobally C -structurally -
stable vector field.
(a) If Y is on M then

(i) &2(Y) = Per ¥,

(i1} Y has no oscillating orbits;
{(b) If Y is on any open surface N then

(i) every orbit in Per Y is hyperbolic,

(ii) Y has no nor-triviel minimal sets.

Part (a) of this theo em is proved in [2], (b) in [3].

It follows from Theorem 2 that so far it is not known
whether condition (ii) is necessary for global cT-structural
stability of vector fields on M., The aim of this paper is to
show, that some condition weaker thamn (iii} is necessary.
FPirst we shall describe some properties useful in the formu-
lation of our condition.

Lemna Te Suppose that Y is ¢’ vector field on
the open‘surface for which (YY) = Per Y consists of hyperbo-
lic orbits. If ch} intersects clw; at a nonsaddle x, then
there exist CF perturbations of Y such that Wir\wg £

By Theorem 2 and Lemma 1 which is proved in [3] it is
enough to show that condition W AW = ¢ is necessary for
:lobsl cT-structural stability. But when all orbits in Per'Y
are hyperbolic then the condition wgrxw; = ¢ has three di-
stinct parts:

1. no ssddle connections;

2. the stable and unstable separatrices of fixed saddles are
not involved in any saddle at infinity;

3. the stable sepsratrices of saddles at infinity are not also
the unstable separstrices of saddles at infinity.

The Kupka-Smale theorem”(see [5]) shows that condition 1

()]

gensric, In this peper we prove that condition 2 is also
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A generic property of vector fields 5

generic and therefore it is necessary for global cT -structural
stability (see Theorem 4 and Corollary),

At first we recall the definition and properties of a cy-
cle. Definition 1, Remark 1 and Lemma 2 are from [2]. For
xeM which is not a restpoint of YeHT(M) by (a,x) (resp.
{x,b)) we denote the open transversal interval with left end
& and right end x (resp. left end x and right end b).

Definition 1. Let the sequence OY[xn,’in]
satisfy for any ne€N one and only one of the following con-
ditions:

(i,) =x,e(e,b), x,—=x and the first intersection X, of

n n
O;(Xn) with (a,x) 1lies between x, and Xpetd
(111) xne(a,x), x,-—x and the first intersection J_Cn of
O'Y"(xn) with (a,x) lies between X1 and x,;

(iii1) xne(a,b), X, —=X and the first intersection x, of

O.}'(xn) with (a,x) satisfy J_rn = X3
(12) - (1112) are similar to (11) - (1111) using (x,b) in-
stedad of (a,x) then the set {y €luvE: y = lim 2z, and
z, € OY[xn,J-rnj]}, which is not a closed orbit of Y, we call
the cycle of Y through x. The cycle of Y through x we

will denote by CY(x).

Let us denote by Hi (M) the subset of H'(l) such that
every element of Hﬁ(M) has only hyperbolic restpoints.

Remark 1, If YEH[(M) and Op(x) oscillates
then there exists a cycle CY(z) such that w*(O;(x)) = CY(Z)
(Z ew(o}'(x) )e '

Lemnma 2e Let there be given a compact region KCii
and P€E, Then there exists an open and dense set H?(K)CHI‘(LI)
such that if YeHg(K) and x € clK then Y has no cycl CY(X)
which contains P.

The next two lemmas are simple adaptations of the well
known theory for compact manifolds (see [1}). They are for-
mulated using the ct compact-open topology which is weaker
than Whitney topology.
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6 JoKOtus

Lemma 3. Suppose x is a fixed hyperbolic sink
(resp. source) for YeHT(M) and pick K & compact neighbour-
hood of x contained in its basin of attraction W;(x) (resp.
region of repulsion W. (x)) with boundary 94K transverse to
the flow ¢Y. There exists a compact-open ¢t -neighbourhood U
of ¥, concentrated on K, and points xzeK varying cT-conti-
nuously with Z €U, such that
(1) xY = x,

(11) %% is a fixed hyperbolic sink (source),
(1i1) KCW'E(x ) (KCWZ(x 3P

The corresponding lemma for saddle uses the fact that
compact parts of stable and unstable separatrices to fixed
saddles vary Cr-continilously with dynamical systems (see [13).

For a fixed saddl¢ x and yeW—(x) we denote by X(x,y)

the open segment of separatrlx Joinlng x and Y.
Lemna 5e Suppose x is a fixed hyperbolic saddle
for YeHT(M) and y eW%(x). There exists a compact-open

Cr-neighbourhood of Y concentrated on an arbitrarily given

compact neighbourhood of ¢l X(x,y) and points xZ, yz varying

continuously with Z€U such that

(1) = =x, 3% =y,

(ii) xz is a flxed hyperbolic saddle for Z,

(iii) 3y eW—(x ), :

{(iv) the arc Z(xz,y ) varies Cr-contin_uously with Z €U,
Definition 2. 4 flowbox for a vector field Y

on a surface N is a closed quadrilateral FCN containning no

‘restpolnts of Y, with two opposite edges S+ transverse to Y

and the other two edges Y-orbit segments, each joining an
endpoint of S+ to an endpoint of S_. We call S+ the entrance
set and S_ the exit set of F.

Proposition 1. Let there be given a flowbox
F for YeH (K), a point p €intS 4+ and 8 cT-neighbourhood U
of Y. Then there exist a nelghbourhood b of p in & and
a flowbox FCF with entrance set S ('=nd corresponding exist
set S C S_) such that for any pair of points q ¢ S there
exists a vector field Z satisfying the ondltlons
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A generio property of vector fislds 1

(i) Zevu,
(ii) 2 = Y off P,
(1i1) g_e0g(q,) and Oyfq,,a_JcP.

Proof. PickaC® function £ : R° — [0,1] which
vanishes off F and ig positive at every point of inftF. For
ueR let Yu(x) = Y(x) + uf(x)V(x) where V is a vector field
perpendicular to Y on F, There exists ¢ >0 such that YuEU
for all u €[-¢,6] , and Y, satisfies (ii). Purthermore, for
u # 0, the vector field Y is trandverse to Y on intF, For
g€intS_ and |u| small we define g(u,q) as the first point
of O (q) on S_ (i.e. g{u,+) is the Poincare map of ¥ ). It
is easy to see that g 1is a continuous function of two va-
riables and for q fixed g(u,q) is strictly monotons with
respect to u. Thus, for §>0 small and q near p, the
set G(6,q) ={g(u,q) : |u|<8} varies continuously with g,
so that for given 0<§<g we can find 94 <gl{o,p)< 9, end
a neighbourhood V of p in S such that for every gqe V, G(&,q)
includes [q1,q2] If we plck p; = S r\OY(qi), i=1,2 then the
flowbox F defined by S =5 [p1,p2], _ =35 [q1,q2] gsatisfies
(iii) for an approprlate Y, !eU.

Proposition 2, Suppose ‘Ghato(p1),0(p2)
form a saddle at infinity of YeH (M). Then for any disjoint
neighbourhoods V,; of p[i i=1,2 and cT-neighbourhood U of Y
there exists Z €U such that:

(1) 2 = Y off V1\JV2',
(11) py€0z(py).

Proof. Pick SiC Vi compact transverse sections
at p;, i = 1,2, Because O.}'(p1), O'(p2) escape to infinity,
S1,52 can be chosen such that clOY p1)r\52 = ¢, ¢lOg (pz)nS =
= ¢ and OY(pi) has exactly one common point with S;e Pick ’
F; €V, flowboxes with 5, (resp. S, ) the entrance (resp. exit)
set of F.I (resp. F, ) and apply Prop031tion 1 to obtain F

with ples Sl. Let Si denote the opposn.te transverse edge

R
of Fl, pl the intersection of OY(pi) and S,i. Let o2 be com-
pact transvewrse interval with p*ze S;*Cints’é. For SE* there
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8 J«Kotus

exist transverse interval S:* C S: and points xk—-p: in S’;*

such that the first intersection x}; of 0;(xk) with S;* sa-

N 7 ’ + »* £ 1] - 7 L X _ -
tisfy x) ——pzeJY(p.l)nS2 and clOY(pz)n 8y = 4. By Pro
position 1 there exist Z; €U, 1i=1,2 such that Z; = Y off Fy,

+ - 3
x, € 02.1('91)’ xfceozz(Pz’ for some x, €S5]" and OZ1 [p1,xk]cF1,
Ozz[xi{,pz]CFz. But then the equations Z(x) = Z;(x) for
xeV, and Z(x) = Y(x} for x¢V1uV2 define a vector field

; +
Z€U with pzeoz(p1)

Proposition 3. For any open set UCH" (i)
and a compact region KCM there exists an open set VCU
and kE{O,‘l,...} such that if Y€V +then Y has exactly k
restpoints contained in K and each of them is hyperbolic.

Proof. Because Hr(M) is a dense and open subset of
HE (L) (see [6]1), thers exists an open set U,C UnH (k). lio=
reover Y has finitely many restpoints contained in K. Thus
there exist k€{0,1,...}, Xy 909X €K, open sets B(x;,€) €K,
i=1,...k such that B(xi,e)r\B(xj,e) = ¢ and only x; are the
restpoints of ¥ in K. By Lemma 3 and 4 there exist a neigh~

bourhood V,C U, of Y and sets B(xi,q) CB(xi,s) such that if
Z €V1 then Z has at B(xi,q) exactly obne restpoint xi, i=1,...,k

k
which is hyperbolic. Because D = clK - | ) B(x;,n) is compact

and Y(x) # O for x €D, there exists a neighbourhood V, of ¥,
V‘?CV1 such that Z(x) # 0 for x €D and ZeV,. Hence V, and k
gatisfy the thesis of Proposition 3.

Theorem 3. Let KCM be a compact region and P€E,
Then there exists an open and dense set G (K) CHP(K) such that,
if peK is a fixed saddle of YEGP(K) and q €k then neither

branch ¥y of W"'(p) (resp. WY(p)) can form a saddle at infinity
with OY(q) {resp. OY(q)) if m*('yY = {P} {resp. ot*(‘;'Y) =

= {P}). _
Proof, First we will give a sketch of the proof,
We argue by contradiction., If Theorem 3 were false, then some
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A gene'ric Lrogsi'tv nf vector fields 9

open set UCHP(K) would contain a dense subset V such that
each Z €V had a fixed saddle p”€X and a branch 7, of Wy(p®)

which forms a saddle at infinity with Oz(q )} for some qZGK
and w*(qz {P} By Proposition 3 there would exist an opent
set U, €U and k such that if 2 GUO then Z has exactly k
restpoints contained in K and each of them is hyperbolic.
So any 2 €U would have at most k fixed saddles contained
in K, Moreover V Vr\U is dense in U + Using Lemma 4 we
can asgsume that pz is defined to vary continuously with ZGU
and that we can pick out one branch 'fz of Wz(p }s whose 1n1-
tial compact segments vary continuously with 2 €U o0? such that
when 7z €V_ then 7y forms a saddle at infinity with q lex and
w*(‘tz %P} Note that we assume no continuous dependence

2 Z

of q° on Z. Assuming these choices of p R TZ for ZEU and g
for 2 EV we would produce a vector field X€U for whlch Tx
oscillates, w(¥g)n clK # ¢ and Peo* (¥x)e By Remark 1 there
would exist a cycle Cy(q) with qem(‘yx)n clK such tHat Cy(q) =
=W (Tx)' contrary to X€U CHP(K)
Now we present the proof with details., Pick Y1€V°, 80
Y
that ¥y and o; (@ ') form a saddle at infinity for some
1
Y
g 'eK and w (7Y ) = {P}. Let J,, n=1,2... denote the base
Y
of nelghbourhoods of P such that ClJn+1 ClntJn. Set 94=9 Tek
€ ; '
and pick A1Y1 J ﬁp‘y‘ By Lemma 4 we can pick A1Ze TZ yary-

ing contlnuously with Z near Y1 such that A1ZGJ1. Using Pro-
position 2, there exists X1 near Y1 such that q1 belongs to
O+ (A X ). dgain using Lemma 4, we can plck q1 varying conti-
nuously w1th Z near X, such that q1 EO*’(A1Z). Now, pick ¥,
near X1 such that '3:1, -forms a saddle at infinity with some

Y Y

q 2€Kandw(3'y)—{P} Set g, = g 2

such that A2<-:J2' Again by Lemma 4 we can choose '

. 1
and pick A2€O (q1 }c

C %’Yz
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10 J.Kotus

2ZGOz(q ) c ¥, verying continuously with Z neer Y, so taat
ZZeJZ' Proceeding inductively, we find a vector field An
such that for Z near Xn there exist points qf_ and p?_ verying

continuously with Z near X, such that
. Z + .

(i) qiEOZ(AiZ)C ¥y for i=1,...,n;
- + 2 .

(ii) Aiz"oz(qi-ﬂ for i=2,...,n;

(iil) AiZeJi fDI‘ i=1,¢oe,no

Then we find Y EVO near Xn go that (i-iii) hold, "Y

n+1
+1
forms a saddle at infinity with some q, ,€K and w (‘(Y ) =

n+1
= {P}. Pick An+1Z varying continuously with Z near Ym’-1 and
satisfying (ii) and (fii) for i = n+1; using Proposition 2 we
. N . + . Z .
find X, 4 Wwith g 0 (An+1x 1), and pick q , varying

n+1E Xn
continuously with Z near Xn+1 such that (i) holds. This is
the inductive step., It is clear that, since "near" can be de-
flned arbltrarlly at each stage, the seguence X can be made
to converge et -uniformly on compact to some XGU by using
a known method (see [4]). For this vector field abOVe (1-iid)
hold for 211 n, 8o we have alternating points qﬁ, Anxe a’x
with q}éeK and AnXeJn' Because clK is compact, then there
exists an accumulation point q of the sequence qX which be-
longs to clK. Moreover AnX tend to P, S0 Pew ('6‘ ). This shows
that WX oscillates, contrary to X €U CHr(K) and Theorem 3 is
proved.

The orem 4., There exists a residual set G (M)C
c H'(M) such that, if Y€GT(M) then there is no fixed saddle
of Y for which some separatrix forms a saddle at infinity with
another semi-orbit.

Proof. Let Ki» i=1,2+++ denote the combact regions

(-]

such that U = M and clK, CintK, .. Pick P €E, [Theorem 3

implies that for any K1 there exists an open and dense set
Gp(K;) CHD(K;) with the property: if pe€K, is a fixed saddle

of YGG;(Ki) and q €K; then no branch ¥y of WY(p) (resp. ;(p))
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4 generic propertyﬁof vector fields 11

such that w*(‘a‘Y) = {P} (resp. o\*(“Y = {P}) can form a saddle
at infinity with Og(q) (resp. OY(q)) Because Hr(K.) is open
and dense in HY () for any K; by Lemma 2 then GP(K ) is also
open and dense in ur (M)s Thersfore GP M) = {il G Ki) is re-
sidual in HT(M). Moreover, if O (p) and OY(q) form a saddle
at infinity of Y‘EGP(M) such that either w (OY(p)) = {P}
*(03(g)) = {p}, then neither o(03(p)) nor W(03(q) is a fixed
saddle. Let T(u) = g;% GP(M) Because E is countable, G 6T (1)

is residual in HY(M). It i8 not difficult to see that if O;(p)

o

and O§(q) form a saddle at infinity of Y’eGr(M), then neither

x(og(p)) nor w(O;(q)) is a fixed saddle and G* (M) satisfies
the thesis of Theorem 4.

Corollary. IfYeH (M) i$ a globally structu-
rally stable, then there is no fixed saddle of Y for which
some separatrix forms a saddle at infinity with another semi-
~orbit,

Guestions, Does a globally structurally stable
vector field Y on I have the property that the stable sepa-
rgtrices of saddles at infinity are not also the unstable
separatrices of saddles at infinity?
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