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A GENERIC PROPERTY OF VECTOR FIELDS ON OPEN SURFACES 

This paper deals with the problem of structural s t a b i l i t y 
of vector f i e l d s on open manifolds which i s one of the central 
research themes in dynamical systems. There are known condi-
tions which imply global s tructural s t ab i l i ty of vector f i e l d s 
on open surfaces (see [3]K I t i s interesting to know i f these 
conditions are also necessary. So f a r the answer i s known only p 
£o* E , In this paper we prove the necessity of one of these 
conditions for vector f i e l d s defined on some c la s s of open 
surfaces . o Let M be homeomorphic to S without a countable number of 

p 

points which form a closed*subset of S . By E we denote the 
set of " i n f i n i t i e s » of M. 
H |(M) - the space of vector f i e l d s on M which generate 
flows endowed with Cr-Whitney (strong) topology ( r > l ) , 
$ Y : M*R—«-M the flow of Y. 

We denote by Oy(x) an orbit of Y start ing with x i . e . 
$y(x»0) = x and define the positive (resp. negative) semi-
-orbit by 

0+(x) = { $ y ( x , t ) ; t > 0 } » 

Oy(x) = { $ y ( x , t ) : t < o } . 

Finally we denote by Oy[x,y] the closed Y-orbit segment from x 
to y. 
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2 J.Kotus 

We dist inguish three kinds of asymptotic behavior for 
each semi-orbit: 
(a) i s bounded i f i t i s contained in some compact set 

KCMj 
(b) O^(x) escapes to inf ini ty i f for each compact set KCM 

there e x i s t s a point yeOj^Kx) for which 0^(x)nK = 
(c) 0±(x) o sc i l l a te s i f i t i s neither bounded nor escapes 

to i n f i n i t y . 
These kinds of behavior for Oy(x) (resp. Oy(x)) can be 

also described in terms of the w-limit (resp. a - l i m i t ) set of 
xeM under 4>y, namely 

I t i s easy to see that we can dist inguish the following 
cases : 
(a) i s bounded i f f u)(Oy(x)) i s compact (and nonempty), 
(b) escapes to inf ini ty i f f u(0y(x)) = 0, 
(c) o s c i l l a t e s i f f 0)(Oy(x)) i s a noncompaot subset of M. 

We extend the def ini t ion of a)-limit (resp. ot-limit) set 
of x eM to u*- l imit (redp. ot*-limit) set 

Thus 
(a) Oy(x) escapes to inf in i ty i f f there e x i s t s P e B such 

that w*(0 j (x) ) = { p } , 

(b) Oy(x) o s c i l l a t e s i f f w(Oy(x)) ji 0 and there ex i s t s P « B 
such that P e u * ( o i ( x ) ) . 

< 

* 

W*(0+(x)) ={ y e l l u B : 3 t n — ~ + o o . 3 . 4>y(x,tn) —<*y}, 

ot*(Oy(x) ) = { y eHuB : 3 t n — — o o . a . 4>T(x ttn) —^y} . 
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A -eneric property of vector fields 3 

Let PerY,£(Y) denote respectively the periodic points 
and the non-wandering points of Y, i.e. 

Per Y ={ x e M : 4>y(x,t) = x for some t >o}, 
< 
ffl(Y) = { x 6 M : 3x n — x, — 3 . <*Y(xn,tn) — x}. 

The first positive (resp. negative) prolongation limit set 
of x e M under 

<t>y is J±(*J = {y eM : x n — x, — + 0 0 . <fry(xn,tn) — y}. 

In general, u(0y(x))c J^(x) and «(Oy(x)) cJy(x), and one can 
easily see that &{Y) = { x € M : xeJ^(x)}. 

Modifying the definition of Nemytskii-Stepanov [4] we say 
that two unbounded semi-orbits Oy(x) and Oy(y) form a saddle 
at infinity if each escapes to infinity and y €j+(x) (i.e. 
x€j~(y)). In this case we call Oy(x) (resp. CJy(x)) the 
stable (resp. unstable) separatrix of the saddle at infinity. 

By Wy (resp. Wy) we denote the union of all stable (resp. 
unstable) separatrices of fixed saddles and at infinity. Each 
set is Y-invariant; it may consists of finitely or infinitely 
many distinct orbits. In either case, it is not generally 
closed» since a fixed saddle belongs to the closure of its 
separatrices* 

At first we recall what so far is known about the suffi-
cient and necessary conditions for global (^"-structural sta-
bility of vector fields on open surfaces. 

T h e o r e m 1. If N is an open surface and Y is 
a complete (^-vector field' on N satisfying the following con-
ditions: 

(i) there are noin-trivial minimal sets and no oscillat-
ing orbits, 

(ii) every orbit in Per Y is hyperbolic, 
(iii) clfly n clHl£ c Per Y, 
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A J,Kotus 

then 

(a) û (Y ) «= Per Y, 
(b) Y i s a globally (^-structural ly stable. 

Theorem 1 i s proved in [ 3 ] . 

T h e o r e m 2. Let_Y be a globally -structural ly -
stable vector f i e l d . 
(a) I f Y is oil M then 

( i ) Y) = Per Y, 
( i i ) Y has no osci l lating orbits; 

(b) I f Y is on any open surface N then 
( i ) every orbit in Per Y is hyperbolic, 
( i i ) Y has no non-trivial minimal sets. 

Part (a ) of this the0 em is proved in [ 2 ] , (b) in [^3], 
I t follows from Theorem 2 that so fa r it is not known 

whether condition ( i i ) is necessary for global C -structural 
stabi l i ty of vector f i e lds on M. The aim of this paper i s to 
show, that some condition weaker than ( i i i ) i s necessary. 
First we shall describe some properties useful in the formu-
lation of our condition. 

L e m m a 1. Suppose that Y is Cr vector f i e l d on 
the open surface for which £ (Y ) = Per Y consists of hyperbo-
l i e orbits. I f clWy intersects clWy at a nonsaddle x, then 
there exist Cr perturbations of Y such that Wj^W^ i 0. 

By Theorem 2 and Lemma 1 which is proved in [ 3 ] i t is 
enough to show that condition W"r>V»T+ = 0 is necessary for 
global C r -structural s tab i l i ty . But when a l l orbits in Per Y 
are hyperbolic then the condition Wy<-\Wy = 0 has three d i -
stinct parts: 
1. no saddle connections; 
2. the stable and unstable séparatrices of fixed saddles are 

not involved in any saddle at in f in i ty ; 
3. the stable séparatrices of saddles at inf inity are not also 

the unstable séparatrices of saddles at in f in i ty . 
The Kupka-Sniale theorem'(see [ 5 ] ) shows that condition 1 

i s generic. In this peper we prove that condition 2 is also 
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A generic property of vector fields 1 

generic and therefore it is necessary for global C -structural 
stability (see Theorem 4 and Corollary). 

At first we recall the definition and properties of a cy-
cle. Definition 1, Remark 1 and Lemma 2 are from [2]. For 
x eM which is not a restpoint of Y eHr(M) by (a,x) (resp. 
(x,b)) we denote the open transversal interval with left end 
a and right end x (resp. left end x and right end b). 

D e f i n i t i o n 1. Let the sequence Oy[xn,xn] 
satisfy for any n e N one and only one of the following con-
ditions: 
(i^) x ne(a tb), x n — x and the first intersection xfl of 

0^(xn) with (a,x) lies between xfl and x n + 1; 
(ii1) xne(a,x), x Q—m-x and the first intersection xfl of 

Q^(xn) with (a,x) lies between and xQ; 
(iii.j) xne(a,b), x Q — ~ x and the first intersection x n of 

0^(xn) with (a,x) satisfy x n = xnj 
(i2) - (iiig) are similar to (i^ - (iii.,) using (x,b) in-
stedad of (a,x) then the set |y e l u E : y = lim z n and 
z n € » which is not a closed orbit of Y, we call 
the cycle of Y through x. The cycle of Y through x we 
will denote by Cy(x). 

Let us denote by H^(M) the subset of Hr(M) such that 
every element of H^(M) has only hyperbolic restpoints. 

R e m a r k 1. If Y €H£(M) and 0+(x) oscillates 
then there exists a cycle Cy(z) such that w*(0^(x)) = Cy(z) 
(z eco(o£(x)). 

L e m m a 2. Let there be given a compact region Kci/i 
and PeE. Then there exists an open and dense set Hp(K) c H1̂ !.!) 
such that if YeH|(K) and xeclK then Y has no cycl Cy(x) 
which contains P. 

The next two lemmas are simple adaptations of the well 
known theory for compact manifolds (see [1]). They are for-p 
mulated using the C compact-open topology which is weaker 
than Whitney topology. 
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6 J.Kotus 

L e m m a 3« Suppose x i s a f ixed hyperbolic sink 
(resp. source) f o r YeH r (M ) and pick K a compact neighbour-
hood of x contained in i t s basin of a t t ract ion Wy(x) (resp. 
region of repulsion Wy(x)) with boundary 3K transverse to 
the f low <|>v. There ex ists a compact-open Cr-neighbourhood U 

Z 
of Y, concentrated on K, and points x e K, varying Cr-conti-
nuously with Z€U, such that 
( i ) xY = x, 
( i i ) x i s a f ixed hyperbolic sink (source) , 
( i i i ) KcwJ (x Z ) (KCW" ( x Z ) ) . 

The corresponding lemma f o r saddle uses the fac t that 
compact parts of stable and unstable separatrices to f ixed 
saddles vary Cr-continuously with dynamical systems (see [ 1 ] ) . 

For a f ixed saddle x and y e f l i ( x ) we denote by 2 ( x , y ) 

the open segment of separatrix joining x and y . 
L e m m a 5. Suppose x i s a f ixed hyperbolic saddle 

f o r Y € H r (M) and y € W i ( x ) . There ex ists a compact-open 
Cr-neighbourhood of Y concentrated on an a rb i t ra r i l y given 

Z Z 
compact neighbourhood of c l Z ( x , y ) and points x , y varying 
continuously with Z e u such that 
( i ) xY = x, y Y = y , 
( i i ) x i s a f ixed hyperbolic saddle f o r Z, 
( i i i ) y Z e w ± ( x Z ) , 

Z Z r 
( i v ) the arc 2 ( x ,y ) var ies C -continuously with z e u . 

D e f i n i t i o n 2. A flowbox f o r a vector f i e l d Y 
on a surface H is a closed quadri lateral P C H containning no 
restpoints of Y, with two opposite edges S+ transverse to Y 
and the other two edges Y-orbit segments, each joining an 
endpoint of S+ to an endpoint of S_. We c a l l S+ the entrance 
set and S_ the exit set of P. 

P r o p o s i t i o n 1. Let there be given a flowbox 
F for Y e H ^ M ) , a point p€ in tS + , and a Cr-neighbourhood U 
of Y. Then there exist a neighbourhood S+ of p in S+ and 
a flowbox P e p with entrance set S+ (end corresponding exist 
set S_) such that f o r any pair of points q + e S+ there 
ex ists a vector f i e l d Z sa t i s f y ing the conditions: 
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A generio property of vector f i e lds 1 

( i ) Zeu, 
( i i ) Z = Y of f P, 
( i i i ) q_£O z (q + ) and Oz[q + , q _ ] cP . 

P r o o f . Pick a C°° function f : R2 [0,1] which 
vanishes off F and is positive at every point of intP. Por 
ueR let Yu (x) = Y(x) + uf(x)V(x) where V is a vector f i e ld 
perpendicular to Y on P. There exists e>0 such that Y^eU 
for a l l u €[-£,£] , and Yu sat is f ies ( i i ) . Furthermore, for 
u / 0, the vector f i e ld Yu is translverse to Y on intP. For 
q e intS+ and |u| small we define g(u,q) as the f i r s t point 
of Oy(q) on S_ ( i . e . u,•) is the Poincare' map of Yu ) . I t 
is easy to see that g is a continuous function of two va-
riables and for q fixed g(u,q) is str ict ly monotone with 
respect to u. Thus, for ¿>0 small and q near p, the 
set G(6,q) = { g ( u , q ) : | u | < varies continuously with q, 
so that for given 0 < i < e we can find q . ] <g (0 t p )<q 2 and 
a neighbourhood V of p in S+ such that for every qeV , G(6,q) 
includes [ q ^ ^ ] » w e pick P^ = S+»°>0^(q i), i=1,2 then the 
flowbox F defined by S+ = S + [p 1 f p 2 ] , S_ = s _ [ q 1 » q 2 ] sat is f ies 
( i i i ) for an appropriate Yuje U. 

P r o p o s i t i o n 2. Suppose that Oyip^, 0y(p2) 
form a saddle at in fy i i t y of YeH^(M). Then for any disjoint 
neighbourhoods of p£, i = 1,2 and Cr-neighbourhood U of Y 
there exists Z6U such that: 
( i ) Z = Y Off V1wV2, 
( i i ) p 2 eO z ( p 1 ) . 

P r o o f . Pick S ^ v ^ compact transverse sections 
at p^ i = 1,2. Because Oj (p1 ) , Oy(p2) escape to in f in i ty , 
S.j ,S2 can be chosen such that clO^( p.j )<~> S2 = 0, clO~( pg ) , ^ = 

= {i and Oyip^) has exactly one common point with S^. Pick 
F i c V i flowboxes with S1 (resp. S2) the entrance (resp. ex i t ) 
set of F1 (resp. P2 ) and apply Proposition 1 to obtain Ê  
with p^eS^cs^. Let S* denote the opposite transverse edge ~ * + * ** 
of F i f p£ the intersection of Oy(p i) and S^. Let S2 be com-
pact transverse interval with p2 e S^cintSg. For S2* there 
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8 J.Kotus 

ft -X * * 

exist transverse interval Ŝ  c S1 and points x^—^p^ in Ŝ  

such that the f i r s t intersection of with S2 sa-. 

t i s f y — p'2 e J+(p*MS** and clC£( p£)r> S** = 0. By Pro-

position 1 there exist Z ^ U , i=1,2 such that Z i = Y off F ^ 
x k € ° Z ^ l ' » x k e 0 Z 2 ^ p 2 ) f o r s o m e x k e S 1 * a n d °Z1 » x k l C F 1 ' 

°Z [ x k » p 2 ] C P 2 ' B u t t l i e n equations Z(x) = Z^x ) for 

xeV\ and Z(x) = Y(x) f o r x fiV^V^ define a vector f i e l d 

zeu with p2eo^(p1 ) . 
P r o p o s i t i o n 3. For any open set UCH r(li) 

and a compact region Kcm there exists an open set V^U 
and k6 { o , 1 , . . . } sue*! that i f Y ev then Y has exactly k 
restpoints contained in K and each of them is hyperbolic. 

P r o o f . Because H^(M) is a dense and open subset of 
Hr(Li) (see [ 6 ] ) , there exists an open set U^cUr>H^(M). Mo-
reover Y has f in i t e l y many restpoints contained in K. Thus 
there exist k e { o , 1 , . . , x ^ , . , x k eK , open sets B i x ^ e j C K , 
i = 1 , . . .k such that B ix^e ) ^vBix^e) = 0 and only x̂ ^ are the 
restpoints of Y in K. By Lemma 3 and 4i there exist a neigh-
bourhood V1 c u1 of Y and sets Bfx^rj ) c B ( x i f e ) such that i f 
Z ev^ then Z has at Bfx^ty) exactly t>ne restpoint x^, i=1,.. . ,k 

k which is hyperbolic. Because D = clK - I J B(x^ ,ij) is compact 
1X1 1 ' 

and Y(x) 4 0 for xeD, there exists a neighbourhood V2 of Y, 
V2CV1 such that Z(x) 4 0 for x eD and Z6V2 > Hence V2 and k 
sat is fy the thesis of Proposition 3. 

T h e o r e m 3. Let KCM be a compact region and PeE. 
Then there exists an open and dense set Gp(K) CHp(K) such that, 
i f peK is a fixed saddle of Y eGp(K) and q e k then neither 
branch tfy of W£(p) (resp. Wy(p)) can form a saddle at in f in i ty 
with O^(q) (resp. o£(q)) i f co*(yy) = { P } (resp. * * ( r Y ) = 
• { * » • . 

P r o o f . First we w i l l give a sketch of the proof. 
We argue by contradiction. I f Theorem 3 were f a l se , then some 
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A generic property of vector f i e l d s 1 

open set UCHp(K) would contain a dense subset V such that 
each Z e v had a fixed saddle pZ e K and a branch -yz of Wz(pZ) 

«• Z 7 

which forms a saddle at i n f i n i t y with OZ{q") f o r some q t & 
and co*(J2fz) = { P } . By Proposition 3 there would e x i s t an open^ 
set UQC U and k such that i f Z eUQ then Z has exact ly k 
r e s t p o i n t s contained in K and each of them i s hyperbolic . 
So any Z would have at most k fixed saddles contained 
in K. Moreover V = VrvU i s dense in U . Using Lemma 4 we o„ o o ^ 
can assume that p*1 i s defined to vary continuously with Z € U . 

— z 
and that we can pick out one branch ^ ^ z ( p )> whose i n i -
t i a l compact segments vary continuously with Z e n , such that z 
when Z ^ v then 2Tg forms a saddle at i n f i n i t y with q e K and 
CO*(tz 

( f z ) = Note that we assume no continuous dependence 
z z z of q on Z„ Assuming these choices of p , f o r ZeUQ and q 

f o r Z eVQ we would produce a vector f i e l d XeUQ for which -fl̂  
o s c i l l a t e s , w(ifx)/~i clK 4 0 and Pe<k)*(-yx). By Remark 1 there 
would e x i s t a cycle Cx(q) with q e u(-j-x) n clK such th'eit Cx(q) = 
= w * ( T x ) , contrary to Xeu o CHp(K) . 

Now we present the proof with d e t a i l s . Pick Y . 6 V , so T 

that Yy Oy (q ) form a saddle at i n f i n i t y for some 
y 1 1 

q 1 € K and co*(Tv ) = { p } . Let J . n = 1 , 2 . . . denote the base 
n Y 

of neighbourhoods of P such that c l J Q + 1 c i n t J n . Set q. j=q £K 

and pick A^y c J ^ ^ y I » By Lemma 4 we can pick A i 2 e ^ z v a r 7 ~ 

ing continuously with Z near Y1 such that . Using Pro-
posit ion 2 , there e x i s t s X1 near Y1 such that q^ belongs to 

°X A 6 a i n usi^S Lemma 4, we can pick q^ varying c o n t i -

nuously with Z near X1 such that q^ 6 0 + ( A 1 z ) . Now, pick Y2 

near X such that %. forms a saddle at i n f i n i t y with some 
Y 2 Y Y 

q 2 € K and w*(tfy2) = { p } . Set q 2 = q 2 and pick Ag e o j ( q ^ J c 

c such that A2 e A & a i n L e m m a * we can choose 
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10 J.Kotos , 

A2Z e o^fq ^) c "¡fz varying continuously with Z near Y^ so that 
A2Z e t f2 # P r o c e e ding inductively, we find a vector f i e l d X 
such that for Z near Xn there exist points q? and p| varying 
continuously with Z near such that 

( i ) e c>2(Aiz;)c yz for i = l , . . . , n ; 

( i i ) A ^ e o j t q ^ ) for i = 2 , . . . ,n; 

{ i i i ) A ^ e ^ for i = 1 , . . . , n . 

Then we find Y n + 1 e VQ near XQ so that ( i - i i i ) hold, fly 

forms a saddle at infinity with some q .. e K and oA^y ) = 
r i ' n+1 = ^Pj. Pick An+12 varying continuously v/ith Z near Yn_^ and 

satisfying ( i i ) and ( : i i ) for i = n+1; using Proposition 2 we 
find Xn+1 with and pick varying 

continuously with Z near Xn+^ such that ( i ) holds. This is 
the inductive step. I t is clear that, since "near" can be de-
fined arbitrar i ly at each stage, the sequence X can be made 
to converge C -uniformly on compact to some X€UQ by using 
a known method (see [ 4 ] ) . For this vector f i e ld above ( i - i i i ) 

Y 
hold for a l l n, so we have alternating points q f l, An7 e yY 

with q ^ e K and A _ T e J B e o a u s e clK is compact, then there Li ilA XI y 
exists an accumulation point q of the sequence which be-
longs to clK. Moreover A ^ tend to P, so P e w ("Jf^* This shows 
that ^x osci l lates , contrary to X€UQC 

and Theorem 3 is 
proved. 

T h e o r e m 4. There exists a residual set G r (M)c 
c Hr(M) such that, i f Y eG r (M) then there i s no fixed saddle 
of Y for which some separatrix forms a saddle at inf inity with 
another semi-orbit. 

P r o o f . Let K^, i =1 ,2 . . . denote the compact regions oo such that U K^ = M and clK^ c intK i + 1 . Pick p e g , (Theorem 3 
implies that for any K^ there exists an open and dense set 
G j i X ^ C H * ^ , with the property: i f p e ^ is a fixed saddle 

of Y sGp(K^) and q e ^ then no branch Xy o f wy(p) (resp. w£(p)) 
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A generic property of vector fields 11 

such that u/ilfy) = { p } (resp. = { p } ) can form a saddle 

at inf in i ty with Oy(q ) (resp. Oy(q)) . Because HpfK.^) is open 

and dense in Hr(M) for any ^ by Lemma 2 then Gp(K^) is also 

open and dense in Hr(M). Therefore Gp(H) = O g£(K.) is re-
+ i = 1 

sidual in H (M). Moreover, i f Oy(p) and Oy(q) form a saddle 

at in f in i ty of Y £Gp(M) such that either w*( 0+( p)) = { p } or 

a # ( 0 - ( q ) ) = { p } , then neither o((Oy( p)) nor U(Oy(q) is a f ixed 

saddle. Let Gr(M) = O Gp(M). Because E is countable, Gr(M) PeE r 

i s residual in Hr(M). I t i-s not d i f f i cu l t tp see that i f Oy(p) 

and Oy(q) form a saddle at in f in i ty of Y eG r (M), then neither 

a (0y(p ) ) nor co(Oy(q)) is a fixed saddle and Gr(M) sat is f i es 
the thesis of Theorem 4. 

C o r o l l a r y . I f Y € Hr(M) is a globally structu-
rally stable, then there is no fixed saddle of Y for which 
some separatrix forms a saddle at in f in i ty with another semi-
-orb i t . 

Q u e s t i o n . Does a globally structurally stable 
vector f i e l d Y on M have the property that the stable sepa-
ratrices of saddles at in f in i ty are not also the unstable 
separatrices of saddles at in f in i ty? 
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