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SUR UN PROBLEME HYPERBOLIQUE FAIBLEMENT
NON LINEAIRE A UNE DIMENSION

On étudie une équation hyperbolique non linéaire a une di-
mension, équation pouvant dépendre ou non d'un petit paramé-
tre £. Le probléme approché associé au probléme initial con-
duit & un systéme différentiel qui peut &tre résolu numérique-
ment par la méthode des "Pas de géant". L'existence de la so-
lution est démontrée par une méthode de compacité, le second
membre f(t,u) étant assujettli & certaines hypothéses. Il
y & unicité de la solution qui tend vers la solution de 1l'équa-

tion des ondes quand & tend vers O.

1. Situation et formulation variationnelle du probléme
On considére le probléme suivant: trouver une fonction
u(x,t) satisfaisant a

2 2
3t _ 3%u
- = gf(t,
2;;? ;;E? ££(t,u)
(']) u(O,t) = u(1,t) =0
ﬁ u(X,O) = uo(x)
%T% (x,0) = U.,](X),

ou xe€]9,1[=8, telO,TI.
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2 » _ A, Pham Ngos Dinh

Les hypothéses sur la fomction f£ seront faites un peu
Plus tard au paragraphe 2, la fonction f pouvant aussi dé-
pendre explicitement de xj; & cet effet un exemple P sera
proposé dans le courant de cet article. Dans (1) £ est un
nombre positif qui sera en général "petit". La petitesse du
paramétre € n'"dntervient aucunement dans la formulation
théorique du probléme (1) et dans l'existence de la solution
de ce dernier, elle apparaitra cependant dans la résolution
du probléme approché suivant une méthode déja utilisée [2].
Signalons dans le livre de A. Haraux [ 3] 1l'exemple de 1'squa-
tion non linéaire

(2) Uy —~ABu = g(ua)u

dont L'existence et l'unicité d'une solution locale sont dé-
montrées par la théorie des semi-groupes pour chaque (uo,vo)e
€ (Hﬂx L2) (Rb, g étant une fonction bornée sur des ensem-—
bles bornés et g(u“)u bornée sur des ensembles bornés de Rr*.
A. Haraux [ 3] a aussi considéré l'équation des ondes avec une
non-linéarité logarithmique dans ]O,T[x R>

(3) up ~Au + mu - ku Log(jul®) = 0,

équation introduite par I. Bialynicki-Birula et J. Mycielski
[1] pour laquelle un théoréme d'existence et d'unicité et une
propriété de stabilité sont établis. Dans cet article nous
allons d4'abord établir des estimations a priori basées sur
une inégalité concernant les inéquations de Volterra (para-
graphe 2). La solution du probléme (1) est obtenue par passage
4 la limite en utilisant les théorémes de compacité classiques
(paragraphe 3). Il y a unicité de la solution (paragraphe 4)
qui tend vers la solution de l'équation des ondes quand €
tend vers O (paragraphe 5).

Dans la suite de ce papier u(t) représentera u(x,t).
301t ¢(t) telle que
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Sur un problémeﬁ hyperbolique 3
ve Dy ={ /0 e1P(0,7E(0)), §& € 17(0,2477@)) 0(D = 0}.

‘On rappelle que LZ(O,T;H) est l'ensemble des fonctions mesura-
bles de [0,T] —H. O'est un espace de Hilbert séparable tel

T ;
que %' (51§ | Iaidt < oo, le produit scalaire étant défini par

T
<a,vy = [ (u(®), v(t))gat.

Considérons donc une ¢ € Dq, ‘multiplions 1'équation de
(1) par ¢ et intégrons par rapport & x puis par rapport
4 t. Il vient aprés utilisation de la formule de Green

T 4 T 1
(4) [[(3%) aa-[f (32 2¢) axas -
00 00
T1 T
=e [ [ 25, 0axar + [ uyx) 0 (x,0)ax.
00 )
Posons
( Co
a(u,v) =f-g—;-%¥ dx
5) 3 ° 1
(w6, () 5 = f 5752 ax
. Y@ o

De (4) pour une fonction f(t,u)ELa(O,T;LZ(Q)) nous dédui~
sons la formulation faible du probléme. (1): trouver '
ueLZ(O,T;Hg(.Q)) telle que u’' € L2(0,T;L2(.Q)) et vérifiant
1'équation

T

CRN R CORIGI LY -J' (), ¢ () 5 b =

O w=mpt3

T
(lL] ,¢(0)) 2( J (£,9) 2( at, V¢EDT, u(O):uO,
0 o
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La formulation faible (6) est équivalente & la suivante [ 5]:
trouver ue-Lz(O,T;Hg(Q.)) telle que u'eLa(O,T;LZ(.Q.)) et vé-
rifiant

[ d_ (o ol
afa(®),v] + g5 (u (t),V)La(Q) = e(f(t,u(t)),V)Laca)

(7) J u(0) = uyeH)(Q) VveH) Q)

u' (0) = uy€L2(Q).

\

Dans (7 %— (u’ ,v)L2 est la dérivée au sens distribution

sur J-eo,T [ de 1a fonction

(%), , t>0
(u’ (%) v>L2(a)

0, ¥ <o.
v
2. Le probléme approché - estimations a priori
Les fonctions vk(x) = sin(k wx) formewt une 'base" de
H?J(.Q) (i.e. linéairement indépendantes et dont les combinai-
sons linéaires finies sont denses dans Hg(.Q.)). Considérons
donc une fonction un(t) écrite sous la forme

. n
8 . w(8) = D B (B)v(x),
k=1

et satisfaisant au probléme

(&

at (%(t)svp)iz(g) + a[un(t) ;Vp] = E(f(t’un) ’VP)LE(.O)

(9) < u, (0)

. uy, (0)

Uon (Ol tejo,7[, 1¢pgn

Uqp ()

- 272 -



Sur un probléme hyperboligue 5

qui est le probléme approché de (7) (méthode de Faedo-Galer-
kin [6]) et ou

n . .
uOn(x) = :S Din Vie(¥) —=ug(x) dans Hg(ﬂ) fort
k=1
(10) < N
Bp(x) = D W ev () —=uy(x) dans 12(Q) fort
k=1
L

2
alvvy) =55 8., (vv) = & 8ipr

6y, ¢étant le symbole de Kronecker.
Les gpn(t) satisfont alors au systéme

SMORECE SIINGORE 26026, (00)5%) 5 o
(11)
500 = Mpns §50(0) = g5y © €]0,2[, 1<p<&n.

Hypothéses sur £
i) £ sera localement lipschitzienne par rapport & u
ESVYT>0, 3A(Y)

| £(t,u,) - f(t,uz)l < A()| wy-u, ],
(12)
te]o,2[ et A(t)e€L?(JO0,TL[),

1i) f(t,u) est continue par rapport & l'ensemble des 2 va-
rigbles (t,u),
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iii) jf(t,u)]g fq(t,|u|), fq(t,v) étant continue par rapport

a (t,v), non décroissante.en v 20 pour chaque 1+t 20
et localement de carré intégrable en + pour chdque
v20. _

Les hypothéses (12,1) et (12,ii1) entrainent, d'aprés les
résultats généraux sur les équations différentielles non li-
néaires, que le systéme différentiel non linéaire (11) dé-
finit u,(t) de fagon unique dans un intervalle [O,Tn],

T, dépendant de n. Le systéme (11) peut &tre résolu a
1'gide de la méthode des "Pas de géant" & condition que le
paramétre g solt "petit" et que la fonction f soit "dé-
veloppable” c'est-a~dire que lesvinconnues gkn(t) de un(t)
dans (8) puissent apparaitre.explicitement dans le second
membre [2].

Lt'hypothese (12,1ii) est classique dans les équations
intégreles de Volterra [4]. Nous allons montrer maintenant
par des estimations "a priori" que Ilué(t)uiz o et
ﬂun(t)"H1 sont bornées indépendamment de (n2

(0]
Multiplions (9) par gbn(t) et sommons. Il vient

1Q 4t panp2 14 - N
gggn %(@" 122 + 5 g5 a(u,u) = e(f(t,un).un)La(g)s

dtou par intégration
' 2 .
(1) IIZ o) + 2 () =

2

. t .
IF(Q) + a(uOn,uOn) +2 ¢ £ (f(e,un),uﬁ)La(Q)de

= Jluqpll
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Sur un probléme hyperboligue 7

soit encore en utilisant 1'inégalité de Cauchy-Schwertz

+ a(uOn,uOn) +

I oZp )+ @) <huggl?

12(a)
(14) t t
2 2
v e £||f<e,un<e)”L2(mde.+ g || Co >||L2(Q)

Puisque Uy, et uyqp convergent dans H%(Q) et L2(Q) respeétive—

‘ment vers u, et u,, alors Huqn" "uOn" 1( sont bor-

12(9) Q)
nées indépendamment de n. Nous utiliserons ici la norme du
gradient équivalente & la norme usuelle i.e.

a(u,,u,) =| LlnllH 19"

Dtou

+ a(Uop»Uos) € Gqs

(15) [l u 1n"L2( )

C,l étant constante 1ndependante de n.

On sait qu'en une dimension H (@) c £°(@) avec injection
continue. Il en résulte, en utilisant les hypothéses (12,ii)
et (12,1ii)

(16 - J£C8,u (8 <| £4(8, | <jiz.(s, .
) I £C8,u( ”"1?(9) Il £4¢ lunI)IILZ(Q) [EACH"S ’”g‘@

Or

“1?7) luﬁ(tﬂn< “un“tP(ﬁ) < \ﬁ?[]unuﬂq(g) (injection’ continue).
. | : |
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La relation (16) entraine, en utilisant encore (12,1ii),

(18) |£(s,u (o)) L2(.Q)$" f4<°’"unlco(§))ll= f,,(e.nunuto@)),

car f, est maximum en ||u || o(-)’
14

Finalement,en utilisant & nouveau l'injection continue
(17), on a

(19) [EICIRNCN | 2y € £4(8,V2 lhul )

Hy(9)

Posons

“ ) 2 2
3n() =] uh(9)] 2, @ I, (o) @)

Par (14), (15), (19) et pour 0g<€e<1 on a

t | t
(20)  5,(t)<Cy + j £2(s, V2. 5,(e))de +J s (8)de,
0 0

inég_aiité de la forme Sn(t)s(l,l + Z,] [sn(e)][, ou 21 re-~
présente une somme d'opérateurs de Volterra tous non décrois-—
sants. D'ou [ 4]

(21) s,(t)<8(¥), te[0,T[,

ot S(t) est la solution maximum de

S(8) =Gy + 24 [S(8)],

solution définie dans [O,T[. S,(t) est donc bornée dans
[O,‘I‘], T<T (T sera appelé dans la suite T). Il s'ensuit
que ,
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Sur un probléme hyperboligue 9

22 ! 't 2 et [fu (¢ 2 " sont bornées indépen-
(22) Ilun( )"Lz(n) “ n )"Hg(a) dajunent de n. )

De (22) on en déduit que, lorsque n tend vers l'infini,

demeure dans un borné de I (O,T;Hg(.Q))

(23) au, |
‘l;; =.-&— demeure dans un borné de L°°(0,T;L2(Q)).

3. \Passage 'al la limite et solution du probléme (1)
Raﬁ)elons que

L“(O,T‘;HO(Q)) = L0, 137 (2)))'
L= (0,7312(Q)) = [L'¢0,1312@))'
ou X' désigne le dual de X.
On peut donc extraire de { un} une suite {up} telle que
i) w, —u dans L“(O,T;H?)(.Q)) faible * i.e.

T T
(24) j; CRONONPI. —»{ (u(6),562) 5 3,

vg € L(0,m;877(Q)),

ii) uly —=u' dans L7 (0,7;12(@)) faible » .

De (23) il en résulte en particulier que up demeure dans un
vorné de L2(0,T7;E}(Q)) et w dans un borné de L2(0,T;12(R)).
Donc u, demeure dans un borné de Hq(JO,T[x.Q) = HZ(Q) car

2
3un

T

2
B (Q)

fal

a2
= | ‘*nlle(o’T;Hg(Q)) ¥

6, étant constante indépendante de De
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~De (25) et du théoreéme de l!'injection compacte de H"(Q)
dans L2(Q) (Rellich-Kondrachov) on en déduit que la suite {uu}
extraite de {un} outre (24) vérifie

(26) u, —~u dens 12(Q) fort|et u

(théoréme de Riesz-Fischer).
Nous allons montrer maintenant que

—»u presque partout

[

> £(%, , —(£(t,u), d .°° 0,
(27)  £( u,) vj)La(.Q.) (£(t,u) vd):,a(.g) f:x,llgle *.( ™

T_out dtabord

||f(t,up(t))ﬂ|L < 245, V2| uP(t)||H1 m)-g £,(t, V2' 5(%))

?@) 3
(par (19) et (2'1)), dtou

f i
(28) £(t,u,($)) —ew(t) dans 1% (0,1;12()) faible x.

f étant continue et uP-—>u presque partout, cecl en-
trafne que

(29) f(t.up(t)) — £(t,u(t)).

Il est clair d'autre part que ||f(t,up(t))HL2(Q>$C5,

C; étant constante indépendante de t.
On peut alors appliquer le Lemme 1 (c¢f. appendix):

(30) £(t,uy(t)) —=£(t,u(t)) dans 12(Q) faible
l.€. fltyult)) = wit).

Far conséquent

(31) £(t,u,(6) —=£(t,u(t)) dens 1%° (0, T;12(8)) faible %.
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Sur un probléme hyperbolique 11

De (31) on déduit que

(£(t,u,(t)),w) —= (£t ult)), ,
n 122 (£(t,ult)) W)LZ(Q)

dans 1L7°(0,T) faible », Vwel?(a).

" On a donc (27) avec w = vy GHg(.Q.) (vk(x) = sin kwx).
D'autre part (24) entraine évidemment

(32) a(uy(£),v;) — a(u(t),v;) dans L™ (0,T) faible #
quand K —» 00,
De m8&me ’

dans L~ (0,T) faible #

(33) (u,v.) 2" — (u',v.)
B’ €°))] J quand y—>oo.

12(Q)

~

On peut alors passer & la limite dans (9) que l'on utili-
se pour n =p>j (pl= J £fixé). Finalement on obtient, gréce
a (27), (32) et (33)h. '

(34) g—t’ [(u' ’ij)chg) ] + a(unvj) = g (£(t,u) ,vj>L2(Q)

dans L”(O,T) faible #. D'ou, d'aprés'les propriétés de la
"base" v:j s ON &

d '
(35) r [(U. ’V)L‘?(Q) ]'*' a(u(t),v) = E(f(t’u),V)LZ(g)’

Vv eH)(Q).

C'est la formulation variationnelle (7), la solution u(t)
étant telle que
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uel™ (O,TI;Hg(.Q.))

%%-: u' e L‘_" (O‘,T;LZ(Q)).

Il nous reste & montrer que les conditions aux limites sont
satisfaitds i.e.

U.(O) = uo .

| = '
'(a) u(0) = uy
uu(0) = ug, —=uy dems Ho(@) (per (10)),
d'autre part u,, u/ eL“(O,T;LZ(S?.)). Ceci entraine,
par le Lemme 2 (cf. appendix), que u“(t) est continue de
[0,T] —1°(R). De méme u est continue de [0,T] — L3(Q)

i.6.

30> = wCO)] 5 o <
N RO N I R R I YOI e
I uP(O) - u, ()] 120 ot JJu(t) - u(O)"Lz(Q) tendent verst,
car up(t) et u(t) sont continues,
||up(t).—u(t)||L2(Q)———O, car up(‘g)—’u(t), guand pq—»oo, dans
LZ(Q) fort, du fait de l'injection compacte de H (&) dans

12(Q) et de (22).
Finalement u(0) = uge
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Sur un probléme hyperboligue 13

(b) 22 (0) = u,

On a (ul",vj) er”™ (0,T;R) (par (33)). De plus

(u:"vj> = €(f(t’up),vj)L2(Q) "" a(u“,Vj) eLoo(O’Tin)

(par (27) et (32)), et comme (u;,va-) =%t- (u;,,vj)La(m
'Vj)Lz(Q) est

12(2)
(dans D! (10,70 ))+/D*ou, par le méme Lemme 2, (u,"
continue de [0,T] — R.
De mé&me (u',v.) est continue de [O,T] —R ot
v J La(ﬂ)

(36) (0, (0) - u' (0),vy) 5 : Q)l <

I b ! !
<) (uP(O)—[up(t) 'VJ'>L2(9,)‘I +| (up(t)-u €9) 'V'j)LZ(.Q.)I +

1

+ | (u' ($)=u’(0) ’vj)Lz(szjl .

Dans (36) le premier et le troisiéme terme du second mem-

[} ]
bre tendent vers 0, car (up(t) ?VJ)L-? o et (u (t)’vj)Le(.Q.)

'._’O,

sont continues en t. Enfin |[(u'(t) - u'(t),v.)
oy 9120
quand P-oa,‘gré‘.ce 4 (22), d4tou convergence faible dans LZ(.Q.).
Finalement (ul(0),v.) —_ (' (0),v.). quand B —>oo.
K2 TRt T H

2 |
D'autre p?rt u;J(O) = u,]P — u, dans 15(Q) fort (par (10)),
quand p =00 1.8

u’'(0) = Uy

4. Unicitél de la solution du probldhme (1)
Pour démontrer 1l'unicité nous utiliserons un procédé
classique dans les équations hyperboliques linéaires [6];
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Soient donc u et v deux solutions du probléme (1) et
posons W = u - v. La fonction - w est alors une solution du
probléme suivant

2
wh - A e [£(,u) - £(5,v)]

(37) o
w(0) = w'(0) = 05 weL™ (0, T3H)@)), w' €L’ (0,T;L7(2)).

Soit 5'€]0,T[, définissons W(t) par

S
- j' w(s)ds, S2t
t

y(t) =
Posons
t
w(8) = [ w(Ods S ¥ = wy(t) - m(8) (8>t
. 0

Multiplions alors scalairement (37) par w(t). Toutes les
intégrations par parties étant justifiées, il vient alors

S S
(38) - | (v, 5 at+ ]| (§F, v at =
<'! L(2) £ (x x)La(.Q.)

H
™M
Q—.m

(£(tyu) - f(t,v>,w>L2(Q)dt.

@ O

Soit encore, car W= w,

S
’g_tl'"—(—?)“iz(g)d“ *.!; a(y’ ,9)at =

!
nj
© Sy U} O Ve U2

(3]

(£(tyuw) - f(tgv)’uoLzaz)dt
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Sur un probléme hyperbolique 15

rd \ .
0 est-a-dire

(39)

4 2
2 [Im® 2 g + 1w

s
R :
5 "W(t)" Jat =
*2 )

g Ho(2)

S
= ¢ { EChw) = 2060 50) 5 o 3F)

B (R) ]
S

=¢ | @t - 2699 p Gt

Or, £(t,u)

| (£(t,

et (39) se

(40)

o]

étant lipschitzienne par rapport & u, il vient

u) - f(t,v) "P) 2 | < A(t>”w(t>” 2 .Q)

(9)

transforme en

TS =IO gy I m O o <

: S
R S LI

+{[w ()4 Jat.
@)

L'utilisation de l'inégalité

2&b<% a? +ub2, Va>0
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nous amene de (40) a

1) 7 (8)< s(— + -—)j ACE) o] w()) 2

2@y’

A(t)"w,‘(t)"z at +
51(@)

+ &

+ Ea’

A wa(SH2, b, VYo et o >0.
"1 "Hg(g) ’ o

Soit encore

5
) g(s)< 20 Hax (o 1+ 3 [ a0 ottyas +
0

S
+€u'"w1(S)“12i,l(9 | awas.
0

o

A(t) est de carré intégrable sur [0,T], d'ou A(%t) 1ntt>grable
sur [0,T]. Il stensuit alors que

s
@ w2, o [ actyate eofr o (sacT).
0 0

En choisissant o' tel que &o'A(T) ¢ 1’, ce qui sera toujours

possible si g est petit, nous obtenons finalement grice &
(#2) et (43):

3 1/2
¢ (8)< G(T) j’ A(t)o (%) at € G(T) (J' Aa(t)dt> (I o ) ,
0

ou C(T) est une constante ne dépendant que de T; c'est-a-
~dire encore
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Sur un probleéme hyperbolizue 17

T s
) #2(8) < ¢3(T) j' A2(%)at I d2(t)dt.
0 )

Le lemme de Gromwall entrafne 62(5) =0 l.€e u=v.

On a donc le théoréme gue voici.

Théoréme 1. Le probléme (1) avec uoeng(Q),
u, € LZCR) sous les hypothéses (12) admet une solution et une
seule,

Remarque. Do (23) ot grice a 1'unicité de la
solution u, c'est toute la suite {un} qui converge vers u
dans L2(Q) fort.

5. Limite quand & tend vers O
Soit ug 1la solution unigue de 1'équation varilationnelle

(7). Appelons U e la suite u, définie par (8). Par (23)
1

on a

u oo <M
" n'E"L (o,T;Hg)
(45)

u! <M
" n,g" Loo (O,T;L2> b4

ou M est une constante indépendante de n et E£.
I1 en résulte, par le théoréme de Banacn-Alaogu, gue la

solution u, est telle que

€

Il ugl

<l
- . &
L™ (0, T5H))

(46)
Jat <.

°(0,131%)

De (46) il suit en particulier que

lluellﬁq(,osfi V2T, Ve, 13»e>C.
“



18 A. Phan Regoc Dinh

On peut €bnc extraire de {ue} une suite {ue.}, ol ej tend

vers 0, yuand j tend vers l'infini, et telle que

[ uei—»Tx dans L (O;T;Hg) faible #, quand j —= oo
d
(47) j
,,l,l'e —+ O’ dans L (O,T;LZ) faible %, quand Jj —=o°°
=3
’QE- —= U dans L2(Q) fort,duand j —=oe
d
(48)
_ ,.uej—b‘ﬁ dans Q pepey quamd § —=-o°
€3 £(t,ue.)-—>0,, quand j tend vers ltinfini, p.p.
J .
dans Q.-
D*autve phrt

Il 8f(t,u£)”_L2(Q)g« f(t,ua)"La(g)s £,¢6,M ¥ <0’ vt e[o0,1],

¢’ étant constante indépendante de €, car £, est continue.

Dtou e, £(t,u, ) est bornée indépendamment
Ies 20re o 0,21200)

de €. Donc il existe une sous-suite extraitg encore appe-
lée {ga.}_ telle que

&y £(t,ug ) —+g(t) dans L7 (0,1515(R)) faible x.
3
Mais

g5 £(b, ug )2 <¢'?r, vj,
1 5 ) 2 S

alors, d'aprés le Lemme 1, ceci entraine que & £(tug ¥y —0

. J
dans L2(Q) faible. Donc
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Sur un probléme hyperbolique . 19

(49) ejf(t,usj) ~>0 dans L°°(0,T;12(Q)). faible *.
Or, par (47), on a

a(ug »v) —=a(¥,v,) dans L (0,1) faible x

(50)
. <u'€j,vp>L2(Q-)—> <ﬁ',vp>L2(n) dans L (0,T) faible *.
Donc .
(51? %E <uéj’vp>L2(.Q;_’ %1—: <l—1”‘.rp>L2'(.Q.) dans él)ld]lo,‘.'ﬂ[).
Or,les u vérifient 1'équation

&

4 ! :
(52) g5 CUgyrvpdp2 oy = 8l "Vp) * € <f(t’u"-;;)’VP>L2(S.'.).

Finalement, par (49), (50), (51) et (52), U vérifie 1'équa-
tion '

= 4 = ’ _r oo .
(53) a(u,‘vp) + g <, vP>L2(Q)* 0 da.ns.L (0,T) faible x.
Les {vp} étant denses dans H'(‘,(g), il en résulte en définitive
que U satisfait 4 l'équation

a(d,v) +%5<-E;VP>L2(9> =0, VveHE)\(®)

(54)
avec el (0,T3HN(Q)), el (0,7;12(2)). .

Y

Par un raisonnement exactement semblable & celui utilisé
au paragraphe 3 ((a), (b)), on démontre que la solution
de (54) est telle gue
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E(O) = U.o
(55)
u'(0) =

!
£

Donc u satisfait finalement au probléme (54), (55). Il y
a évidemment unicité de ce probléme (faire £ = O dans (7)).
Du fait de l'unicité du probléme (54), (55) c'est toute
la suite {us} qui tend vers T dans I2(Q) fort, quand &
tend vers O. ]
On peut donc¢ énoncer le théoréme suivant.
Thigoreme 2. up solution unique du probléme
(7) tend vers un élément u solution unigque du probléme (54),
(55) dans 12(Q) fort.
Remarque. Ilpeut 8tre démontré,par des consi-
dérations analogués & celles qui précédent;lfexistence et
1'unicité du probléme suivant (P):

- 2 2
2 2
Eg"ﬂ% meleg(Em v 1500
4 u(0,t) = u@d,t) = 0

u(x,0) = uy(x) € Hg(g)

| 3% @0 = uym e1f@n

£, vérifiant les mémes hypothéses que la fonction f précé-
demment considérée et £, eL2(Q). )

Appendix
Lemme 1. Soit un ouvert de R}I: *R, et gp,
geLll(e), 1.<g<oo, telles que
€0 et g —»g p.p, dans @
” g"‘"Lq(G) p ’

alors g, —e-g dans L1(8) faible.

K
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Lemme 2. s1 £, —%{-GLP(O,T;X), 1 pgoe, =alors f
est, aprés modification éventuelle sur un ensemble de mesure
nulle de (0,T), continue de [0,T] —X.
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