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SUR UN PROBLÈME HYPERBOLIQUE FAIBLEMENT 
NON LINÉAIRE À UNE DIMENSION 

On étudie' une équation hyperbolique non l inéaire à une di-
mension, équation pouvant dépendre ou non d'un pet i t paramè-
tre e . Le problème approché associé au problème in i t i a l con-
duit à un système d i f férent ie l qui peut être résolu numérique-
ment par la méthode des "Pas de géant". L'existence de la so-
lution est démontrée par une méthode de compacité, le second 
membre f ( t , u ) étant assujetti à certaines hypothèses. I l 
y a unicité de la solution qui tend vers la solution de l 'équa-
tion des ondes quand £ tend vers 0. 

1. Situation et formulation variatioxmelle du problame 
On considère le problème suivant: trouver une fonction 

u(x, t ) satisfaisant à 

3 % _ j £ u £ f ( t j U ) 

at* 3x' 

( D u(0,t ) = u(1,t ) = 0 

u(x,0) = un(x) 

(x,0) = u^x ) , 

où x e ] 0,1 [ = f l , 11 ]0,Tr 
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2 A» Pham Ngoo Dinh 

Les hypothèses sur la fiojnction f seront fa i t es un peu 
plus tard au paragraphe 2, la fonction f pouvant aussi dé-
pendre explicitement de x j à cet e f f e t un exemple F sera 
proposé dans l e courant de cet ar t ic le . Dans (1) s est un 
nombre posit i f qui sera en général "pe t i t " . La petitesse du 
paramètre e n interv ient aucunement dans la formulation 
théorique du problème (1) et dans l'exifetenoe de la solution 
de ce dernier, e l l e apparaîtra cependant dans la résolution 
du problème approché suivant une méthode déjà uti l isée [ 2 ] . 
Signalons dans le l i v re de A. Haraux [ 3 ] l'exemple de l 'équa-
tion non l inéaire 

(2) a,.t - Au = g(u2)u 

dont l 'existence et l 'unic i té d'une solution locale sont dé-
montrées par la théorie des semi-groupes pour chaque (un ,vn )e 

1 2 l 6 (H * L ) (Rp, g étant une fonction bornée sur des ensem-
2 + bles bornés et g(u )u bornée sur des ensembles bornés de R . 

A. Haraux [31 a aussi considéré l'équation des ondes avec une 
-7 

non-linéarité logarithmique dans ] 0 , T [ « r 

o 
(3) - Au + mu - ku Log(|u| ) = 0, 

équation introduite par I . Bialynicki-Birula et J. Mycielski 
[ 1 ] pour laquelle un théorème d'existence et d'unicité et une 
propriété de s tabi l i té sont établis. Dans cet art ic le nous 
allons d'abord établir des estimations a pr ior i basées sur 
une inégalité concernant les inéquations de Volterra (para-
graphe 2) . La solution du problème (1) est obtenue par passage 
à la l imite en utilisant les théorèmes de compacité classiques 
(paragraphe 3) . I l y a unicité de la solution (paragraphe 4) 
qui tend vers la solution de l'équation des ondes quand e 
tend vers 0 (paragraphe 5)» 

Dans la suite de ce papier u(t ) représentera u (x , t ) . 
Soit 0 ( t ) t e l l e que 
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Sur un problème hyperbolique 

4>eDT ={4> /*eL 2 (0 ,T |H¿ (ú ) ) f e L 2 ( 0 f T | L 2 ( û ) ) , • ( ! ) = o}. 

o 
'On r a p p e l l e que L (0,T}H) e s t l ' ensemble des f o n c t i o n s mesura-
b l e s de [0,T] —»-H. C ' e s t un espace de H i l b e r t sépa rab le t e l 

T 2 

que f || u( t) | | gd t < oo , l e p r o d u i t s c a l a i r e é t a n t d é f i n i pa r 

T <u,v> = ^ ( u ( t ) , v ( t ) > H d t . 

Considérons donc une • e DT , mu l t i p l i ons l ' é q u a t i o n de 
(1) par <t> e t i n t ég rons par r a p p o r t à x p u i s pa r r appo r t 
à t . I l v i e n t après u t i l i s a t i o n de l a formule de Green 

« J) (&§)«»-}/ (»#)«• -
0 0 0 0 

T 1 T 
= e J J f( t ,u)«4>dxdt + f ^ ( x ) <t>(x,0)dx. 

0 0 0 
Posons 

0 
(5) S 1 

C u ' < t ) . * ' ( t ) ) i 2 ( w = 

De (4) pour une f o n c t i o n f ( t , u ) 6 L 2 ( 0 , T ¡ L 2 ( ú ) ) nous dédui -
sons l a fo rmula t ion f a i b l e du problème ( 1 ) : t r ouve r 
u e L2(0,TjHQCû)) t e l l e que u ' e L 2 (0 ,T;L 2 (û ) ) e t v é r i f i a n t 
1 1 équat ion 

T T 
(6) J a [ u ( t ) , 4 > ( t ) ] d t - j (u' ( t ) , <t»'(t)) 2 d t = 

0 0 L W 
T 

= ( u 1 ' < f , ( 0 ; ) )
I i 2 ( i û )

 + / ( f , * }
L 2 ( i û )

d t ' V * e D T » 
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4 A. Pham Ngoc Dinh. 

La f o r m u l a t i o n f a i b l e ( 6 ) e s t é q u i v a l e n t e à l a s u i v a n t e [ 5 ] î 
t r o u v e r u e L 2 ( 0 , T ; H Q ( û ) ) t e l l e que u ' e L 2 ( 0 , T } L 2 ( û ) ) e t v é -
r i f i a n t 

(7) 

a [ u ( t ) , v ] ( u ' ( t ) , v ) 2 = e ( f ( t , u ( t ) ) , v ) 2 
ÛT; L ( û ) L ( û ) 

u ( 0 ) = u 0 e H j ( û ) VvcHQCû) 

u ' ( 0 ) = u ^ e L 2 ^ ) . 

Dans ( 7 ) 4 r ( u ' » v ) o e s ' f c l a d é r i v é e au sens d i s t r i b u t i o n 
r L 

sur J j - 0 0 >T L de l a f o n c t i o n 

( u ' ( t ) , v ) 2 , 

0 , 

t > 0 

t < 0 . 
» 

2 . Le problème approché - e s t i m a t i o n s a p r i o r i 
Les f o n c t i o n s v v ( x ) = s i n ( k J r x ) formeift une " b a s e " de 

1 . . 
H^Oft) ( î . e . l i n é a i r e m e n t indépendantes e t dont l e s c o m b m a i -

1 • 
sons l i n é a i r e s f i n i e s sont denses dans HQ (û)) . Considérons 
donc une f o n c t i o n u Q ( t ) é c r i t e sous l a forme 

(8) « 2 * t a ( t ) v k C x ) , 
k=1 

e t s a t i s f a i s a n t au problème 

(9) < 

h ( < ( t ) ' V L 2 ( û ) + a C U n ( t ) ' v P ] = 6 ( f ( t , u n ) , v p ) L 2 ( û ) 

u n ( 0 ) = u0n ( x )|» t e 3 M [ » 

U^(0) = U1nCx): 
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Sur un problème hyperboligue 

qui est l e problème approché de (7) (méthode de Faedo-Galer-
kin C6]) et où 

(10) 

n 
u 0 n ( x ) = 2 V k n ' v k ( x ^ ~ ^ d a n s f o r t 

k=1 

u1n|W = 2 — ' » i W d a n s f o r t 

k=1 

2 2 
a ( Y k , v p ) = S k p , ( v p , v k ) = \ a k p f , 

¿^p étant le symbole de Kronecker. 
Les 4pnCt) s a t i s f o n t a lors au système 

( 1 1 ) 

^ n ( t ) + ( p 2 * 2 ) $ p n ( t ) = 2 £ ( f ( t , u n ( t ) ) , v p ) T 2 
L c (û) 

W 0 ) = V ' Vpn<°> = JTpn' 6 J ° ' T C ' 

Hypothèses sur f 
i ) f sera localement l ipschi tz ienne par rapport à u 

<=>VT>0 , 3A(t) 

(12) 
I f C t , ^ ) _ f ( t , u 2 ) | < A(t)| lUj-Ugl , 

t e ] 0 , T [ e t A ( t ) e I 2 ( ] 0 , T [ ) , 

i i ) f ( t , u ) es t continue par rapport à l 'ensemble des 2 va-
r i a b l e s ( t , u ) , i 
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iii) jf(t,u)|< f^(t,| u|), f^(t,v) étant continue par rapport 
à (t,v), non décroissante.en v>0 pour chaque t >0 
et localement de carré intégrable en t pour chaque 
v ̂  0. 
Les hypothèses (12,i) et (12,ii) entraînent, d'après les 

résultats généraux sur les équations différentielles non li-
néaires, que le système différentiel non linéaire (11) dé-
finit ^(t) de façon unique dans un intervalle [û,Tn], 
Tn dépendant de n. Le système (11) peut être résolu à 
l'aide de la méthode des "Pas de géant" à condition que le 
paramètre e soit "petit" et que la fonction f soit "dé-
veloppable" c'est-à-dire que les inconnues de "n^) 
dans (8) puissent apparaître.explicitement dans le second 
membre [2^. 

L'hypothèse (12,iii) est classique dans les équations 
intégrales de Volterra [4-]. Nous allons montrer maintenant 
par des estimations "a priori" que || û (t)|| 2 e'b 

||u_(t)|| ,, sont bornées indépendamment de n. 
n HQCÛ) 
Multiplions (9) par ^„(t) et sommons. Il vient 

Sr 

d'où par intégration 

(13) K(t)||2 + aC^Ct),^*)) = L ta; 
t . 

= .IKnÇ2 ( a )
 + a < u 0 n ' W + 2 £ J 
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Sur un problème hyperbolique 7 

s o i t encore en u t i l i s a n t l ' i n é g a l i t é de Cauchy-Schwartz 

+ ^ V V ^ K n l ï ^ + a ( u 0n ' u 0n> + 

(14) 
t t 

+ e 2 | ||f(9,unce)||22 wd8 + J l|unC8)||22(û)de. 
0 

1 2 
Puisque uQn e t u/|n convergent dans HQ(û) et L (fi) respec t ive -

ment vers u0 e t u,,,„.alors I K j f e t ||u0n||^ - sont bor-
L (û) n0(.fl; 

nées indépendamment de n . Nous u t i l i s e r o n s i c i la . norme du 
gradient équivalente à la norme usuelle i . e . 

D'où 

<15) l l u l J * 2 ( û ) + a ( u 0 n ' u 0 n ^ G 1 > 

0,. étant constante indépendante de n. 
( 1 o -On s a i t qu'en une dimension H (û) c £ (£ ) avec i n j e c t i o n 

continue. I l en r é s u l t e , en u t i l i s a n t l e s hypothèses ( 1 2 , i i ) 
et. ( 1 2 , i i i ) 

(16) ||f(e,un(e))|| 2 < Il f ^ e . i i ^ D l l 2 < ¡ ¡ ^ ( 8 , l a )|| . 
L (û) L (û) R xr<U) 

Or . 

(17) | V t ) | < K l l ^ ^ j < ^ l l u J H 1 ( f l ) ( i n j e c t i o n continue) . 
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8 A. Piiam Ngoc Dinh 

La relation (16) entraine, en utilisant encore (12,iii), 

(18) || f ( e, un (e))|| l2 ̂  Il f i ( e > Il I ç 0 ̂  j|| = fi(e'IIVeo(<â))' 

car f„ est maximum en II il,Il „ 
1 " V t°G5) 
Finalement,en utilisant à nouveau l'injection continue 

(17), on a 

(19) I k C e . V e ) ) ! ^ < f^e.V? « V Hi ( û ))-

Posons 

Par (14), (15), (19) et pour 0<e<1 on a 

t t 
(20) sn(t)< C1 + J f2(e, V2. + J sn(e)de, 

o o 

inégalité de la forme Sn(t)^0/] + [Sn(9)]|i où re-
présente une somme d'opérateurs de Volterra tous non décrois-
sants. D'où Q^] 

(21) Sn(t)<S(t), te [0,T[, 

où S(t) est la solution maximum de 

S(t) = C,, + 2 1 [S(t)] , 

solution définie dans [0,11". S (t) est donc bornée dans 
r A A _ A " . 

[_0,TJ, T< T (T sera appele dans la suite T). Il s'ensuit 
que 
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Sur un problème hyperbolique 

(22) ||uL(t)l|2 e t II u_(t)|!2/, sont bornées indépen-
L (û) n 'HJ(Û) dafnment de n . 

De (22) on en déduit que, lorsque n tend vers l ' i n f i n i , 

(23) 
demeure dans un borné de L 

U^ = -jçS. demeure dans un borné de L"° (0 ,T }L 2 (û ) ) 

3 . passage àj l a l imite e t solution du problème (1) 
Rappelons que 

L°°(0 ,T}H 0 (û)) = [ ^ ( O . T j . r ^ û ) ) ] ' 

lT°(0,T;L 2 ( . f l ) ) = [L 1 (0 ,T|L 2 (û)) ] ' , 

où X' désigne l e dual de X. 
On peut donc extra i re de { U j J une sui te { u ^ } t e l l e que 

i ) Uy u dans L°°(0,T}HQ(û)) f a i b l e * i . e . 

T T 
(24) / ( U u ( t ) , g ( t ) ) p dt — / ( u ( t ) , g ( t ) ) 2 d t , 

• r l (il) * t. r.QA 

Vg € L 1 ( 0 , T ; H - 1 ( û ) ) , 

i i ) dans L°° ( O . T j L 2 ^ ) ) f a i b l e * . 
De (23) i l en résul te en p a r t i c u l i e r que u^ demeure dans un 

borné de L 2(0,T;HQ(û)) et u^ dans un borné de L 2 ( 0 , T ; L 2 ( Û ) ) . 
A p 

Donc uQ demeure dans un borné de H ( ] 0 , T [ * û ) = H (Q) car 

(25) K l 2 . = I K I I 2 ? 1 

H (Q) " ^ " ^ ( O . T j H j W ) 

Gp étant constante indépendante de n. 

3u 
n 

W < G 
L 2 ( 0 , T ; L 2 ( û ) ) " 
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De (25) et du théorème de l'injection compacte de H (Q) 
dans L2(Q) (Rellich-Kondrachov) on en déduit que la suite 
extraite de {u^} outre (24) vérifie 

5 
(26) u^ —•» u dans L (Q) fort| et u^ —»-u presque partout 

(théorème de Riesz-Fischer). 
Nous allons montrer maintenant que 

(2?) Cf(t,uJ.vJ 2 — (f(t,u)tv,) 2 danja L°°(0,!P) 
H 0 L (û) 3 L (il) faible *. 

Tout d'abord 

lk(t,uw(t))J| 2 S f ^ t , V2> u(t)|| 1 K ^ c t , VTsct)) 
H L^(û) 1 H- "Hjca) 

(par (19) et (fc1)), d'où 

/ 

(28) fit.u^Çt)) —•-w(t) dans L°° (0,T;L2(&)) faible *. 

f étant continue et u^—»-u presque partout, ceci en-
traine que 

(29) fCt.iyCt)) — f(t,u(t)). 

Il est clair d'autre part que ||f(t,Up(t))|| g 
C^ étant constante indépendante de t. 
On peut alors appliquer le Lemme 1 (cf. appendix): 

~ " """" '"2/ i.e. f(t,u(t)) = w(t). 
(30) fit.u^t)) —^f(t,u(t)) dans Ld(q) faible 

Par conséquent 

(31) f(t,Uj,(t) —*-f(t,u(t)) dans L°° (0,T;L2(ß)) faible*. 
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Sur un problème hyperbolique 11 

De (31) on déduit que 

( f ( t , u ( t ) ) ,w) — ( f ( t , u ( t ) ) , w ) 9 

* L2(Û) L (fi) 

dans L°°(0,T) f a i b l e * , VweL2(f l) . 

On a donc (27) avec w = v^ sHQ(û) (vk(x) = s in k î r x ) . 
D'autre pa r t (24) entra îne évidemment 

(32) a ( u „ ( t ) , v , ) — a ( u ( t ) , v , ) dans L (0,T) f a i b l e *• r o J 
quand fj -*•00 . 

De même 

(33) ( u ' , v . ) ? _ ( u ' . , v J ? dans L°°(0,T) f a i b l e * 
r 3 l r ( f i ) 0 L (û) v ' ^ ' quand fj -•> o®. 

On peut a l o r s passer à l a l im i t e dans (9) que l ' o n u t i l i -
se pour n = ju > o (p, i» ¡3 f i x é ) . Finalement on o b t i e n t , grâce 
à (27), (32) e t (33)|, 

(34) ^ [ ( u ' . v j 2 ] + a ( u , V i ) = e ( f ( t , u ) , v i ) , a v 3 Ld(a) 3 0 U1 ( f i ) 

dans 1 ^ ( 0 , 1 ) f a i b l e * . D'.où, d 'après ' les p ropr ié tés de l a 
"base" v ĵ , on a 

(55) [ ( u ' , v ) 2 ] + a ( u ( t ) , v ) = e ( f ( t , u ) , v ) 2 , a t L2(û) L2(Û) 
Vv €HQ(Û). 

C 'es t l a formulat ion va r i a t i onne l l e (7 ) , la solut ion u ( t ) 
é tan t t e l l e que 
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12 A. Pham Ngoc Dinh. 

u e L (O.TjHjCû)) 

u' e L°° (0,T}L2(û))< 

I l nous r e s t e à montrer que l e s condi t ions aux l i m i t e s sont 
s a t i s f a i t é s i . e . 

'(a) 

u(0) = u 0 

l i t CO) = U r 

u(0) = Up 

y ° ) = uoH 
un dans HA(A) (par ( 1 0 ) ) , 

oo P 
d ' a u t r e p a r t u^, u'^eL ( 0 , T ; I r ( û ) ) . Ceci e n t r a i n e , 

par le Lemme 2 ( c f . appendix) , que u^ ( t ) e s"t cont inue de 
[0 ,T] — • L 2 ( û ) . De même u e s t continue de [ 0 , T ] -*• L2(fl) 
i . e . 

| |uM(0) - tt(0)||L2w< 

I V O ) - u
M ( t ) | l L 2 ( Q )

 + l h H C t ) - « C t ) | L 2 ( f l ) + | | u ( t ) - u ( 0 ) « L V 

u..(0) - u u ( t ) | | o e t | | u ( t ) - u(0)| | 5 t endent vers 0 , 
L c (û) 

c a r u u ( t ) e t u ( t ) sont con t inues , 
r 

Il u 1 1 ( t ) -u ( t ) | | 0 —»0 , car u . . ( t ) u ( t ) , quand u - » o o , dans / L2(Û) * r 

L (û) f o r t , du f a i t de l ' i n j e c t i o n compacte de K (&) dans 
L 2(û) e t de (22) . 

Finalement u(0) = UQ. 
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Sur on problème hyperbolique 13 

( b ) 3t ( 0 ) = "1 
On a (ufj.Vj) eL°° (0,T;R) (par ( 3 3 ) ) . De plus 

( U " , v j = e C f C t . O . v . ) 2 - a ( u , v , ) « L (0,T}R) r <J C O L (û) K 3 

(par (27) et ( 3 2 ) ) , et comme ( u " , v , ) 2 = -J=- ( u ' v . ) 2 

(dans JDÌ ("]0,T[ )).|D'où, par le même Lemme 2, (uî. , v . ) ~ est 
H J L^Cû) 

continue de [ 0 , î ] —»R. 
De même (u1 , v - ) ~ est continue de fo.Tl — e t 

J L2(Û) 

(36) K^CO) - u ' ( 0 ) , V . ) l 2 w | < 

^ K u ' W - i u U t ) ^ ) 2 | + | ( u ' ( t ) - u ' ( t ) , v . ) | + 
H 3 I/^û)' f ¡> L2(Û) 

Dans (36) le premier et le troisième terme du second mem-
bre tendent vers 0 , car (uî.(t) 0 et (u ' ( t ) ,v_ ; ) Q 

sont continues en t . Enfin |(u!,(t) - u ' ( t ) , v . ) 0 I -—••O, 
11 0 L2(û)' o 

quand p -*-oo,|grâce à (22) , d'où convergence faible dans L (SI). 
Finalement (U!,(0),Vj) 0 — ( u ' (0) ,v-). - , quand u - » o o . 

r 3 L2(û) 3 L (û) r 

D'autre part uJ^O) = —•> û  dans L2(.tt) f o r t (par (10)),| 
quand p -*o© i . e . 

u'(O) = i^. 

4 . Unicitél de la solution du problèime (1) 
Pour démontrer l ' u n i c i t é nous utiliserons un procédé 

classique dans les équations hyperboliques l inéaires [6 ]» 
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14 A. Pharn Nrqc Dinh 

Soient donc u et v deux solutions du problème (1) et 
posons w = u - v. La fonction w est alors une solution du 
problème suivant 

(37) 

a2„, 
w« _ «w - t [ f ( t ,u ) - f ( t ,v)] 

3x 

w(0) = w'(0) = 0; weL°° (0,TjHQ(û)), w'e L°° (0 ,T ;L 2 (£) ) , 

Soit s ; e ] 0 , T [ f définissons ip(t) par 
- S 
- | w(«)dff, S Jst 

i ( t ) H t 

0 , s < t . 

Posons 

W1(t) = J w(<r)d<r V(t) = w2(t) - m,(S) ( s > t ) . 
0 

Multiplions alors scalairement (37) par ip(t) . Toutes les 
intégrations par parties étant j u s t i f i é e s , i l vient alors 

S S 
(38) - j ( w ^ O i W i t + J ( g , f i ) p dt = 

L2(Û) 

= e f ( f ( t , u ) - f ( t , v ) , v ) 2 dt. 
*0 L (û) 

Soit encore, car ip'= w, 
S S 

~ î I « + J W , f )dt = 
0 L W o 
s 

= e f ( f ( t , u ) - f ( t , v ) , v ) 2 dt 
n L ( Û ) 
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Sur un problème hyperbolique 

o est-à-dire 

S 
= e J (f(t,u) - f(t,v),i|») 2 dt|, 

0 ^ 

S 
= e f (f(t,u) - f(t,iv),v) 2 dt. 

* L (û) 0 

Or, f(t,u) étant lipschitzienne par rapport à u, il vient 

(f(t,u) - f(t,v),ip) 2 |<A(t)||w(t)|| 2 . ¡ V W I I . ^ 
ii jj W H Q W 

et (39) se transforme en 

S 

l|w l (s)|| H,Jat. 
"0 

L'utilisation de l'inégalité 

2ab<^- a 2 + a b 2 , V a > 0 
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16 A. Pham Hgoc p-inh 

nous amène de (40) à 

S 

(41) S)<e(^ + 2») J A(t).||w(t)||22^dt + 

s 
+ eoi f A(t;)||w1ct)||2^ at + 

o Ho<û> 

s 
+ £« ' J Ait^w^iS)!2,, dt , Va et « '> 0. 

o V û > 

Soit encore 

S 

J 
0 

O 2 ) <r(S)< 26 M a 5 - + J A(t). t f( t)dt 
0 

S 

+ ecc'||VS)||2 J A( t )dt . 

A(t) est de carré intégrable sur [ 0 , l ] , d'où A(t) intégrable 

sur [0,t3» I l s lensu i t a lors que 

S 

(43) eoi'llw^S)!!^ f A(t)dt<H'<T(S)jA(T). 
Hq(Û) Q 

En chois issant oc' t e l que < lj, ce qui sera toujours 

possib le s i E est p e t i t , nous obtenons finalement grâce à 

(42) et (45): 

T- \1/2 / f ., \1/2 
tf(S)<0(T) | A(t)or(t)dt<C(T) A 2 ( t ) d t^ J ) d t j s 

où C(T) est une constante ne dépendant que de T; c 'est-à-

-d i r e encore 
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Sur un problème hyperbolique 17 

X O 
(44) o,2(S)< C2(T) J A2(t)dt J tf2(t)dt. 

0 0 p 
Le lemme de Gromwall entraîne <f (S) = 0 i.e. u = v. 
On a donc le théorème que voici. 
T h é o r è m e 1. Le problème (1) avec u0eHQ(ft), 

U/j e L2(A) »ous les hypothèses (12) admet une solution et un© 
seule. 

R e m a r q u e . De (23) ®t grâce à l'unicité de la 
solution u, c'est toute la suite {u n| qui converge vers u 
dans L2(Q) fort. 

5« Limite quand e tend vers 0 
Soit u £ la solution unique de l'équation variationnelle 

(7). Appelons u n j £ la suite un définie par (8). Par (23) 
on a 

(45) 
n,E $ M 

L (0,T;HQ) 

< J « 2
 < M » ' L (0,T;L ) 

où M est une constante indépendante de n et e. 
Il en résulte, par le théorème de Banach-Alaogu, que la 

solution u £ est telle que 

(46) 

UJ oo 1 L (0,T;HQ) 

uî-Il o <13. 
L (0,T;L ) 

De (46) il suit en particulier que 

uJI . V2t\ Ve, 1 >e >o. £ h\q) 
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Oil peut Cfonc ex t r a i r e de { u e } une su i te | u £ où ê  tend 

vers 0, quand j tend vers l ' i n f i n i , e t t e l l e que 

O© A . 

dans L (0,T}HQ) f a i b l e * , quand o — 

dans L°° (0,T;L2) f a i b l e * , quand j — 0 0 

o dans L (Q) for t , , quand j — 

dans Q p . p . , quand 3 —"-0® 

• 0, quand 0 t®»d vers l ' i n f i n i , p .p . 

C' é tant constante indépendante' de £, car ^ es t continue. 
D'où | |e. f ( t , u _ )|| ^ ~ es t bornée indépendamment 

J e j L (0,!E}L (£)) 
de Donc i l exis te une sous-sui te ex t r a i t e encore appe-o 
lée { t j } . t e l l e que 

e* f ( t , u . ) —*g(t) ¿ans L ^ Î O j T j L 2 ^ ) ) f a i b l e *. 
3 ¡3 

Uais 

f ( t , .VJ, 

a lo r s , d'aprè« le Leœme 1, ceci entraîne que e• f ( t , u c ) — 0 
¡j 

dans L2(Q) f a i b l e . Donc 

(47) 
u' 

(48.) J 

8d tCt,u f c_) 
dans Q. 
D'autre pàr t 
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(49) £ j f ( t , u c ) dans L°° (0 ,T;L 2 (û)) . f a i b l e * . 
3 ed 

Or, par ( 4 ? ) , on a 

(50) < 

a(u ,v_)—^aiu jv^) dans L (0,T) f a i b l e * Bj P P 

<u' ,v > o —<û' ,v^> o clans L°°(0,T) fa ib le * . 
P L 2 ( û ) P TÏfCii L c(û) 

Dono 

(51) 4 f c < u ; , v _ > 2 — 4 f c < û » 0 - 2 - dans at t.. p dt p l 2 ( ä ) 

Or,les u_ vér i f i en t l 'équation 

(52) "gr <ul ,v > p = - a ( u £ ,v ) + e* < f ( t , u ) , v > 2 . at t j p EJ p a p 

Finalement, par (49) , (50 ) , (51) e t ( 52 ) , u v é r i f i e l ' équa-
t ion 

(53) a(u,v ) + 4 r <u' , v_> 2 = 0 dans L°°(0 ,T) f a i b l e * . P at p j ^ a ) 

Les étant denses dans HQ(û) , i l en résul te en déf ini t ive 
que ïï s a t i s f a i t à l 'équation 

> 2 L 2(Û) 
(54) 

a(û,v) + | t < 5 ' V T 2 ^ = V v e H o ( Û ) 

avec û e L ( 0 , T | ^ ( Û ) ) , ïï'eL (0 ,T }L 2 (û ) ) . 

Par un raisonnement exactement semblable à ce lui u t i l i s é 
au paragraphe 3 ( ( a ) , ( b ) ) , on démontre que l a solution û 
de (54) est t e l l e que 
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(55) 
u(0) = u0 

u'(0) = 

Donc u satisfait finalement au problème (54), (55). Il y 
a évidemment unicité de ce problème (faire f = 0 dans (7))« 

Du fait de l'unicité du problème (54-)» (55) c'est toute 
la suite |ue| qui tend vers u dans L2(Q) fort, quand s 

tend vers 0. 
On peut donc én'oncer le théorème suivant. 
T h l a o r à m e 2. u£ solution unique du problème 

(7) tend vers un élément u solution unique du problème (54)» 
(55) dans L2(Q) fort. 

R e m a r q u e , Il peut être démontré,par des consi-
dérations analogues à celles qui précèdent,l'existence et 
l'unicité du problème suivant (P) s 

' 2 2 

=£[f1(t,u) + f2(x,t)] 

u(0,t) = uQ,t) = 0 < u(x,0) = uQ(x)E HJ(Û) 

' (x,0) = u1(x)6L2(û)l, « 

f,. vérifiant les mômes hypothèses que la fonction f préoé-
2 

demment considérée et f g ^ L (Q). 

Appendix 
L e m m e 1. Soit un ouvert de * R^. et g , 

g6'L^(8), 1.<q<oo, telles que 

ll^ll Lq ( e )
< 0 e t S p.p. dans 9, 

alors g, —»-g dans L*(9) faible. r - 2 8 8 -
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L e m m e 2. Si f, 61^(0,T;X), 1<p4<x>, alors f 
est, après modification éventuelle sur un ensemble de mesure 
nulle de (0,T), continue de [0,T] —-X. 
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