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SOME SHEAVES OVER A DIFFERENTIAL SPACE

Introduction

In this paper we show that in the case of the locally
free sheaves of modules over a differential space, one can
use, investigating their local properties, the analogical
methods of calculations as those used in the theory of the
differential manifolds. In consequencs, as one can expect,
many theorems known about the differential manifolds may be
transferred without difficulty to locally free sheaves of
modules over a differential space, what we show in the next
parts,

1. The sheaves of the ¥, -modules over a differential
space v

Let ¥ be a non empty set of real functions defined on
the set M. The set M will be interpreted as a topologi-
cal space with the weakesat topology Tty in which all func-
tions of ¥ are continuous.

4s it is known [5], the set ¥ is called a differential
structure on M iff the set ¥ 1is closed with respect tq
localizastion and superposition with the smooth functions on
R", n=1,2,... .« Then the coupls (M, ¥) is called a
differential space.

Analogically as in the theory of differential manifolds
we define a tangent vector to the differential space (M, ¥)
at the point p e M as well as the smooth tangent vector
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av}

fields on (M, #) [5]. The F-moduie of all the smooth vec~
tor fislds tengent to the differential space will be denoted
by %.

Let (M, ) be a differentisl space. Then ¥ iz a 1li-
near ring over R conteining all constant functions on M
and the topological spzce (M, Ty) ic a ¥ -regular. Of cour-
se the ring o := {f + ig: f,ge?} of complex functions
on ¥ 1is in natural way connected with thoe differentisl
gtructure on (I, ¥), It is easy to see that the ring %
ues a structure of 2-dimensional differential ¥ -~module as
well,

It iz evident also that the ¥ -modules ¥, ¥ and .TC
generate respectively in ths canonical way, sheaves of ¥ -mo-
dules 3?, ¥ and '}C over the differentisl space (M, F).

& natursl inclusion of the ring ¥ into ring % allows us
to treet the sheaves of T -modules also as tane sheaves of
F-modules over the differential space (M, ).

¥rom this moment on we will consider sheaves of ¥ ~modu-
les and ¥ -modules over the differential space (M, ¥ ).

Let ™ Dbe en arbifrary sheaf of ¥, -modules over the
differential space (M, ¥), where k=R or k=C as well
as Jp =¥, 1t is easy to prove: '

* Lemme 1.1. If Uet, and pe&(U) then for
any point p e U there exist an open neighbourhood V of p
and pe® (i) such that

Vv = 7V,

WNow we sre introducing the following definition.

Definition Tele Let u.l,...,lk, uk+1.’ kenN ,
be any sheaves of ¥, -modules over ilie differential space
(i, ¥). Then each map

£fow (U)x.iaxm (U0)—mn,,(U)
satisfy ing the condition

(LP)  if p iV =9IV, o4, 9y € B(U) for i=1,2,...,k
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and V,Uecty¢ as well as V c U, then

f('z.‘,‘oo,?k)'v = f(?’.‘,cunyylk)lv,

will be called the LF-mapping of 7, (U)-modules u1(U),4
evsey k(U) into }.k (U)-module &k+1(U).

Similarly as in [5] one can prove

Lemma 1.2- If fi= u1(U)x see XEk(U) —°-0'lk+1(U),
i=1,2, are LF-mappings of ¥, (U}-modules u1(U),...,lk(U)
into the % (U)-module zzk+1(U) satisfying the condition

f1(51l U,...,§k|U) = f2(?1'U,.oc,Ek|U)

for any (61’...'-0-1{) € !1(V)X _...xﬂk(V), U,Vé rf aﬂd

Uc V- then f1 = f2.

Lemma 1.3, For an artitrary LF-map
f : 11(U)x .l.xuk(U) —’&‘k_'_.'(U)

of the ¥, (U)-modules !1(0),...,1k(U) into vhe {U)-mo-
dule uk+1(U) as well as for any open set V C U there
exists unique LF-map

f:v H 11(V)x .ooxuk(V) —“uk+1(v)
such that
fv(?_llv,..-,QkIV) = f(?.”...’yk)lv

for any (pqsesesfy) € Ry(U)x ooo xw (U},
Analogically as in [5] we prove as well
Lemma 1.4. Let 3 be an open covering of U and

{fB : u1(B)x ...xuk(B)—*uk”(B)}Beﬁ

1

family of the LF-mappings such that f2|BnB = t2IBn3B
for any B, B'eB, then there exists unique LF-map
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£fiow(Ulx suowxm (U)—m. (U]

1 k w1
sued thot B = £°  for an -arbltrary BeB ,
tovw, led a1,...,uk, Rk+1, ke N, be gtill eny sheeves
of ¥ -zodules over a differential space (ky ¥)o By
L (u1,...,uk; ak+1) will be denoteo ths category which the

?k(b)—modules
(1.1) LF(my (U}, eee,® (U)5m, ,{U))

ior Uety , are objects. Of course ¥ (U)-modules (1.1),
winere UeTy , contain all Lr~mappings fU defined in Lem=-
ma 1.3,

’ Let U and V be an arbitrary open sets in & and

vC V. By Qg will be denoted the morphism of restriction
(U))

Qhuelmy (V) yeue,m (V) 5u, 4 (V) —= L@, (U) 00,2 (V)52

vefined by the formula
V s
QU(f) = 1'-\[

ior an ervitrary e LE( L (Vi,eee, (V)5 (7)),
¥rom our lemmas there follows immediately
Corollary 1«1, The triple (Lr(a1,...,ak;ak+1
I, ty ), where P 1is a contravariant functor from the cate-

)

20ry Ty into the category LF(&1,..., i3 k+1) of 7, (U)-modu-.
les of wi-mappings such that ¥(U) = L¥(®% (L),..., (U),
K+1(U)) and P(1) = 93, where 1: V C*—U an 1nclu810n,
is a chea¥ of L¥-mappings over the differenrtial space (u, F).
This sheaf will ve denoted by LF(%1,...,M ur+1) and cal-
lsd the sheaf of ur-mappings over the differential space
(lu, F).
Now, we will give some examples of L¥-mappings on the di

Jn
Hy
]

ferential spzce (1, &),

1. Let L€ ¥ be an arbiirary smooth vector field on u
znd @= 1 + ig eﬂb - any complex function on ii. Let us de~
Iine
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(71.2) Alp) = X(£} + i X{g)

tor any function ¢= £ + ige?c. Bz means of immediate cal-
culations we verify that the map X : ?C —% is a.~differen-
vial operstor, It is essy to observe as well thaty X 1is a
Le-mapping. ‘The set of all mappings of the form (1.2) is de-
noted by ¥, This set has the natural structure of the
?C -module,

4 sheaf cf the derivations of the ring YC corresponding
to ¥ -module * will be denoted by ¥  as well.

2+ Let 311,...,31K and alk+1, ke N, be the sheaves of
Fy-modules over the differential space (i, ¥) as well as

(1.3) w: B AU oo x W (V) —®wy . (U)

% (U)~k~-iinear map, where Uezs .

Une can show that the map w is a LF-mapping. The set
of all LF-mappings w of the form (1.3) we denote by
Lg ('1“”""”‘k(U“”’m-i(U” and endow it in a natural way
with 2 structure of # (U)-module.

.at the same time we have

Corolleary 1.2, The triple (Lg (u1,...,‘a}:,ur:+,l),

®

¥, Ty ), Where is a contraverient functor from the catego-

™y Ty 1into the category If?x("1""’“k"‘"-—+1) 0i F. (U)=iselim
nesr mappings and F(t) = qt.‘;' where 13 V<—=U an inclusion,
is @ sneaf over the differential space (i, ¥).

this eheaf will be denoted by Ly, (‘11,...,11(,‘!“1) and

czlicd a shear of the tensor fields on i with the values

in the sheaf &, , of % (U)-nodules over the differential
space {ii, F ).
uf course, in particnlar when u1 =¥y = a0 = ®, =X

snd W . = F, this sheaf will be denoted by L (%, % ]

and its elements will be in this case the fk-k-tensor fields
on (I, ¥).

:.oreover if these #p-k-linear mappings will be clkew-sym-
metric, then we cell them the sxterior ?k-k-forms on l.
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The sheaf of sxterior .'Fk -k=-forms on tie differential .
space (i, F) will be denoted by Ak(ac, Fi)e Next, by
Ak(x, M) we will denote the sheaf of the exterior k~forms
on I with the values in the sheaf ®.

Now, let we./\.k(x, F4), where k=C, then w(X1,...,Xk)
€% for any X1,...,Xke:!: « Consequently

Q(X.',o-o,xk) = w1(X1,-..,Xk) +-i%(x1,ooo,xk)’.

where ., w,€ /\k(x, Fle

It is not difficult to observe that the operator of ex-
terior derviation d as well as the linear connections in
the ¥ -module W are the LF-mappings.

In our work we accep;“t the following definition of the
exterior derivation of exterior k-forms:

1° if «e A°(®(U), F(U)) then (do)(X) = X(x) for an
arbitrary Xe ¥ (U) and if «e A°(X(U), % (U)) then
(dx}(X) = X = X(or1) + i X(orz) for an arbitrary Xe ¥(U),
where o= o, 4+ i A pe

2° 17 we AX(X(U), %(U)), k=C or k=R, Uery , taen
K

i ~ v - .
(dw)(x1’_ooo’xk+1) = Z; (-1)l+1Xi(w(x1,...,Xi,...,A-‘H_,')I +
i=1

i+ Y v .
+ Z (-1) w([xi,xj],x1,...,xl,...,xj,...,xk+1)
i<}
for an arbitrary X,,...,X 4€% (U) and k > 1,
0f course

d : AFE(U), 5, (0))—~ A (x(V), 5, (V)

for k = 0,1,... and as it is easy to show [5], we have t:c
identity dod = O, This fact gives us posdibility to cocu-
sider analogically as in the theory of differential masnifolcs,
whe chain complex
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end consequently we have possibility to consider de .tham
cohomeclogy groups of the differential space (i, ¥).

sccordingly with the denotation gsnerally accapted in
the tieory of cohomology we put

25(0) 1= ker(d: A (U), 50U — AT X(U); 5, (U))

SU) i= Inld:s AN (V) 5 (V) —AR(U), £ (U))

g¥(u) = z8(u)/8%(U)

for ¥ =1,2,.s. and UeTy « LOreover we accept also
°(L) = F(U).
croup HY(U), X = 0,1,2,.0s 1is called the k-th cro.n
of de krnem conomology of the differential space (U, ?|U) for
Lety
liext the linear connection in the {U)~module @ (L)
we cefine as & k-iinear mapping

v s w(U) — Al(E(U), = (U))

setisfying the condition

U{ap) = (da)p +aDp

for any p eM(U) and o€ F(U), where (dasp)(X) :=
= (da)(X)p = T(x)p for Xe XE(U),

Now we prove

Lenmma Te5e The operator d of exterior dervivati-
ve 28 well as the linear connection DU 1in the 3}(U)-ﬁodgle
®(U), or Uefty , are the LiF-mappings.

Froof, It is known that for any iwo exterior ITomst
a:e.AF( (U), %,(U)) eand Ge.A}(z(U), F,(U)) we have the
identity
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d(wA8) = dwAd+ (-1)%wrde,

Now let w and p be any k-form from AX(x(U), %, (U))
such that

wlV = g|v
for some open set V C U, We will show that
dw]V =dp| V.

Indeed, 16t p € V be an arbitrary point and ¢ the
function separated point p in the set V. Then we have

plw=p) = 0

Hence we have

0 = dlplw=-p)) = dpalw-9) + pdlw=-p)
as well as
dgly@=-0l|y + 9ly dlw-plly = 0.
The. last identity implies

dw|V = dp|V.

uf course the remaining part of our proof runs analogically.

At the end let us observe also that for any vector fields
Lipeeeshy € X(U} the composition £;0X0 a0 oX,, seN,
of those vector fields defined by the formula

(4,9 %50 eun 0hg ) o) = X (Kpleealigladeca)))

for o« € (U} is a Lr-mapping as well,

2. The connection and curvature rorms in the shsaves of

¥4 -nodnles over s differential space

Let ® oe a cheef of Fy -nodules over the differential
space (ii, ¥), k=R or k=C and UetTy =3ny open set
in k.
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Sheaves over a differential space 9

Definition 2e7e ihe eizments e1,...,ene n(v)
ere cslled a local (V)=-dzge of fk-(U}-module M(L), where
V,Uety and V ¢ U, iff the € rvees€, form an Fp(v)-bese
tor &®{V). .

0f course if € reeese € ®(V) <tor a iocal F (V) =base
of ¥, (U)-module ®(U)} +then for any pe#(U) we have the
identity

9|V = ct‘]e1 + cx292 + aee + cxnen,

1

where o n)

’ or2,..., a® e %y (V). ‘the collection (d1,...,a
sre called local coordinates of the element p e M(U) with
respect to the local %, (V)-base €rysserey in w(U).

It is easy to prove

Lemma 2.1, If the elements e, ,.c.,e, € A(v) vorm
a local % (V)-base of £,(U)-zodule ®(U) then for any open
set W CV the elements e,|W,.cce,e, | e W(W) dform & local
Fi () -base of 4 (U)-module #(U).

4s we know, if the F,(U)-module R(U) has a F(U)-case
then it has infinitely many %{U)-beses and moreover every
two bases of this Jy(U)-module contain the same number of
clements. Hence if e ,...,e, and ej,...,e) are two
%4 (U)-bases of fk(U)-module M(U} then there exists a ma~-
trix g e GL(n, #,(U))

rl

SJE IR

g1 g2 . gn

such that

i = 1,2,0e0y0y called the matrix of change from one ¥ (U)~ba-
se to another #,{(U)-oase. Of course tne element det(g)e ¥, (U0)
is woversible element of the ring #,(U),
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oL i pition 2.2 4 sheaf WM over the difie~
spoce (i, ¥) 1is celled an n-dimensional locally free

¥ -modules iv for any point p e L there sxists

gn cpsn wad U3 p as well as a ?k(U)-local vase of & (&)-mo=-
cule ®{... <conteining n elements. The number n is then
callen © -“asnsion of the sheaf WM.

S S U Cele Let ®(li) be a n-dimensionsl ¢if-

andule of the linear ¢ ~fields on the difrerential
spece {., F) [3], where ¢ is a function on i such that
for zvery point pe li P(p) ie a n-dimensionsl vector space
over k., uf course each differential module ® (L) on I is
associated with the sheal W of Fy-modules over Il 1t is
not difiicult to obzerve that the sheaf ® 1is a n-dimensio-~
nsl localiy free sneai over the differential space (i, ),

S xample Ze2e Let us take under consideration
F-module GLl{n, Fi) of the nxn-matrices which elements are
functions on i witn values in k. 4 Fg-module GL(n, %)
ig en n~-dimensional iree module over Ii and the metrices
n§ = (8,1}, 1,4 = 1,2,000,n, ecatisiying the conditions

1 if k=i end 1=

81 <
* 0 if k#i or  1#]

0T 1,J = 1,2,eseyn and for any point p e ki, form the
Fyli)~bsse of Guln, 7).

now, let 0(3.‘ € F, tor i,j =1,2,ee0,n, be fixed Punc=-
tions on ., among which st most one is equal to zero at
& countcole suoset of . wext, let us consider the ¥,-modu-
ie generated oy the vector of the form

(o) alsl +als '

n,n

ﬁl; + eee +0(nn,n.
It eesy to observe that the ¥y -module constructed in such
e manner is an n°-dimensional iree Fg-nodule over the diffe-

rentiol coace (w, ), where the vectors of the foram (2.1)
meie = Fp-vese of this Fg-acdule,
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Cr course the ¥ -module constructed avove is a ¥Fg-3ub-
uodule ol tne Fyg-module GL(n, .Tk) which is a difrerential
module but the considered Fg-submodule is not in genzral a
differentisl module., dowever the sheaf associated with this
¥Fj -aodule will be a locally iree sheaf of Fy -modules over
wuy of dimension n2.

wow, let WM be an arbitrary n-dimensional locally ifree
sheaf over the differential space (li, ¥). ‘hen by virtue
of definition for any point p e ki there exists an open
neighbourhood U of p in M as well as a ¥,(U)-base
€ reeey®p of ¥y -module (M) such that for any pe (M)
we have the identity

QlU = «161 + q2e2 + cee + cxnen,

where o i

€ fk(U) for i = 1,2,ooo,no
If 84,444,8, 1is another local ¥, (U)-base of the

¥g~module W (M) then we also have the identity

] IU = /:)1e1 + ﬁzez 4+ see +/5nen,

where pi e.?’k(U) for i = 1,2,¢eeyn. Hence if geGL(n,rk(U))
is a matrix of change from the #;(U)-base 84900456, to the
Fp(U)-base B y00e,8,, ie0. & = gy oy for 1 =1,2,...,n,
then as is easy to show we get the identity

(2.2) ,Bi =-é3' 0(3

for i = 1,24e0e40

The formula {2.2) gives us a transformation law of local
coordinstes of an elemsnt pe M (k) on changing of one
74 (U)-base to another,

Now let B.. be an open covering of i. such that Tor esch
JeB there exists an ?k(U)-bese eg,...,s cf‘ the 'r'k(U)-
~-znodule W(U). Then for any pe W(i.) o=z wsll sc Zor ssch
UeB we have
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Cf course, if U,VeB and UNn V #@ tazn
(plt)TnV = (glV)juUN T
ans conszquently, if

U iV
ol i &g vV = 2
I)IU . as well r)i ?;cl

i 4. U i v
a"|UNTeg = |{UNnVsee
U | il oo v | i|Unv

or eguivalently

i 41 ]
Cluav = &5 &l unv

for i = 1,2,e4.,n, where g = (g}) € GL(n, F(UNV)} ie

the matrix of change from one $k(U NnV)=-basec to anothsr,
Inversely, if for each Ue®B and for any local ¥F,(Uj-ba-

=8 e?,...,ebg of the #,(U)-nodule ® (L) are determined

collections <°!1,..., an) such that if U,Ve B and
v v
UnNnvV #@ then

1i

1
[unv = &5 Ian

-
v
for i = 1,2,eeeyn, where g e GL(n, F,(UNnV}), then thers
exists exactly one pe W (M)} such that
iU
I)IU = aTes
g
for any Ue B.

Now, let us notice that the way of thinking and proving
shown ebove, is well known from the clasical theory of the
differential manifolds. It results from this that in case of
the n-dimensional locally free sheaves of ¥, -modules over
2 differential space one can use, 1nvest1gat1ng their local
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properties, the analogical methods of calculations as those
used in the theory of manifolds. In consequence, as one can
expect, many theorems known on differentiel manifolde may be
transfered without difficulty on n-dimensional locally free
sheaves of #,-modules over the differential spaces (M, ¥)
which we would like to show in the next parts of the paper,

To this effect let us consider an afbitrary k-form
:we_/\k(:z(U), 9(U)) with the values in the ?k(U)-module
%(U). Then for arbitrary vector fields XiseoerXp € X (U)
Q(X1,....Xk) e %(U). Hence if the (U)-module #(U) has
an #%,(U)-base 84se0ey0, then

(2.3) @(XyseaerXy) = @ (Xqpene,Eiley

where wi(x1,...,xk) e #,(U) for 1 =1,2,.c.yn as well as
X1,...,Xke x(Uu). .

It results from this that w® ¢ A(¥(U), % (U)) is an
exterior k-form on U for 1 =1,...,0. In consequence:
each k-form w € .A.k(:!(U),TL(U)) with values in the ¥ (U)-mo~-
dule (U} with a ?k(U)-base determines unique n exterior
k-forms w!,se.,® on U. :

0f course from univocal decomposition (2.3) there re-
sults a univocal decomposition

i
(2.4) W= wey

of the k-form w in the given ¥4(U)-base.

Next, let e',...,e), be another ¥,(U)-base of the

F4(U)-module ®(U} and let
(2.5) e; = 8yey

for i =1,2,s..,n where (gj.') € GL(n, ¥, (U)) is 2 matrix
of change from one ¥4 (U)-base to snother., Fow in the FlU)=
-bese e vwe hzve the decomposition

i
w= & ey
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Hence as well as from (2.4) and (2.5) we obtain
(206) (*)Ii = -é?j- wj

for i = 1,2,ees,0. OFf course the formula (2.6) gives uc the
transformation law of coordinates of the k~form

weAk(Z!(U), F4(U)) on changing of one #,(U)-base in ®(U)
to enother,

Kow, let B Dbe an open covering of ¥ such that for
ceeh UeB there exists an F4(U)-base e?,...,eg of the
(i) -module W), Then for any we AN(x(M), M(U)) ee well
az for any UeB we have the decomposition

wlU = wieg,
U

vhere ' e Ak(:i(U), FAU)) for i = 1,2,4..,n, Noreover
U

if U,Vve B and UNV £ ¢ then

(@I0)] gy = @IV yay
and in consequence if

iU

wlU = w'e; as well as w|V = wieg
U v

wi|UnV etiJIUnV = wiIUnV eglUnV.
U v

Hence, if g € GL{n, fk(UnV)) is a matrix of change
froa one ¥p{(UNV)-base of M(UNV) to another, then by
vivtue of (2.6) we obtain

wHuav = 3t | vav
v J v

10w 1 = 1,2,..',1‘1.

Conversely, if for each UeB and for any local Fy(Uj-be-
U

v =

e :1,-..,en

of the }’k(h’i)_module F{li) iz ¢ ziven collec~-
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tion (w1,..., w®) of exterior k-forms on U such that if

U. U
U,V and UnV #¢ then

Guav = E Wjuav
v J v

for i =1,2,s..,n, where g e GL(n, F4,(UNnV)), then there
exists exactly one k~foram we/\k(.’t(M), #,(M)) such that

for each UeZ2,
Really, far each collection of k-forms wi_ e_j\k(.'i(U),?k(U))

where 1 = 1,2,¢s.,0n and the set of .Tk(U)-bases e?,...,eg

of the F4(l)-module W(l), there exists exactly one k-form
W € Ak(I(U), N(U)) such that

(2.7) WV = wie?_.

U
Now, let (‘"U)Ueﬁ be a family of k-forms from S’k(U‘)-mo-
dules Ak(I(U), %(U)), Ue 3B such that for any two elements
U,VeB with UNnV #¢, the following condition is fulfil-

led
WwHuav =3 oIlunv
v J

for 1 = 1,2,4..,n, where g € GL(n, ¥, (UnV)) when
eX'UnV = ggeglUnV.
Then of course,
W unv = wlunv
for any U,VeB such that UNnV #¢. Therefore, there
exists, by virtue of definition of a sheaf, a k~form

weAk(:!(M), ®(i)) such that

wlt = wY
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for each Ue B. From (2.7) it results moreover that
ooj“eg.J .

U

Now, let us take under consideration s k-form

wIU =

we AK(x(U), o (m(U), W(V)))

i.e. a k=-form with the values in the .'fk (U)-module of. endo-
morphisms of the fk(U)-module ®(U}). Let uz assume also
that the ¥g(U)-module ®(U) has an fk(U)-base
Analogically as above we find that each k-form
coe/\ (as(U),oc(u(U), M(U))) determines the n® exterior k-forms
r.o e/\_( (), & (U)) where 1,j = 1,2,...,0, such that

61,ooo,eno

w(X1,ooc,Xk)( ) —w (e)( 1,...,Xk)ej

for ah arbitrary Xiseos,dp€ x(U).

Of course, the k-forms wi(e) ¢ AS(X(U), %(U)) where
g = (e1,...,en), i,5 = 1,2,40e,n, form the matrix

coj.(e) w;(e)'

0000080000000

wls) =

w’{’(e) wﬁ(e)

called the matrix of k-form we ASE(U),o (®(U), A(U))) with
respect to the bsse e of the F4(U)-module W (U).

Kow, let &' = (8’1,...,e’n) be enother Fg(U)-besis of
the fk(U)-module M(U) and g e GL(n, --’fk(U)) the matrix
of change from base ¢ to e , 1l.e. & =g e = (g%ei).

Then by direct calculations we obtailn the following trans-
formation law

Aoy
o;(eg) = gwl(e)gl

where 1,J = 1,2,44.,0, for k-forms co;.'(e) e/\.( (U), #FAU)),

or zguivalenily-in the matrix form
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wleg) = g_1 wiele.

sizilarly a8 ebove it 1s easy to prove
T heo

em 2.7 Iet % be a n-dimensional locslly
the e -modules over the differential space

Irze ghea? of
F, end B such en open covering c¢f 1 that for sach
> €B taere sriste an ¥, (B)-bese ef - (e?,...,eﬁ) cn 3B
of the Fp-module (). Then, if for each local ¥y (B)-ba-
(1), there sssigned is a metrix w(eP) of k-form
(3), L (m{38), M(B))} in such a wa;thhat for any

2,5’e B8, 3nB #¢, the following condition is fulfilled
wieB 1138 = g Nwled)|3n 3 g,
3 B

where g € GL(n, Ik(BnB' }) is a matrix of change from ba-
se e to e', then there exists exactly one K~form

we Ak(:r(l'-&), o (®(11), ®(L}))) and its local decomposition with
regpect to the 3’k(B)-base eB has the following form

(@IB)(Xyyene, B ) (63) =wd(e®)(Xgyuen, Ty )]

o ery  Ayyeee Xy € X(B) and 1 = 1,2,ee04yh

Fext, let W be an n-dimensional locally free sheaf
of %, -modules over U and D: ®(M) — Al(x(U),®(H)) a li-
near connection in the ¥ -module % (M). Decomposing 1-forms
De; € /G(I(U), F(U)) for 1i=1,2,se.,n with respect to
the #,(U)-base e of the ¥, -module n(U) we get

(2.8) De; = 63(D,e)ey.

Zhe decompositions (2,8), similarly as above, determines
epecuivaocally the femily of the exterior 1-forns

P ; _
eg(u,e,-e A(x(U), F.(U0)),

core 1,5 = 1,250004900
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dg it is known, the matrix

e](n,e) e;(D,_e)

6(De) o T

67(D,e) ... 67(D,e)

of the 1-forms, where ei(D,e) for 1i,j = 1,2,44.,n are de-
tarmined by formula (2.8?, is called the matrix of the connec-
tion form D with respect to the ¥, (U)-base e of the
#,(U)-nodule W(U).

Next, putting

(2.9)  63(D,e) t= d 63(D,8) +63(D,e) A 65(D,0)

for i,j = 1,2,¢¢¢,n we obtain the matrix of 2-forms

81(D,0) ... 6)(Dye)

O(D’e) - RN NN RN X RN NN R RN

€0 0000000000000

9?(D,e) ces 8?(D,e)

called the matrix of curvature of the connection D with
respect to the. %, (U)-base e of the ¥#4(U)-module ®n(U),
Definition {2.9) is written briefly in the form

8(D,e) = do(D,e) + 8(D,e) A 8(D,el.,

Henceforth, when the connection D in the #4(U)-module
®(U) will be fixed, then the matrixes 6 (D,e) as well as
6(D,e) are denoted by &(e) and O(e), respectively.

Let e = (eq,00ey8,) be the %(U)-base of the %,(U)-mo-
dule %(U) and g € GL{n, #(U)) the matrix of change from
FplU)-base e to Fy(U)-base &' = cg. Analogically as i.
the tlieory of differential manifolds we prove
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Lemma 2.1, If O(e) and 6O(eg) as well as 6(e)
end 8{eg) are respectively the matrices of the connection D
and of the curvature of this connection D with respect to
F,(U)-base e and eg, then the following identities are
fulfilled

(a) dg + 6(e)g = g O(eg)

(v) 8(eg) = g"19(e)s-

0f course, the identities (a) and (b) give us the trans-
formation laws for the matrices of the connection and of cur-
vature connection respectively, on changing of one %kﬂ])-base
to another,

The elements of the curvature matrix of a conneetion in
the #,(U)-module m(U) are, by virtue of the definition,
the exterior 2-forms on U i.e. @i{e) e AZ(x(U), F4lU))
for i,j = 1,2,¢ees,0 and for an arbitrary 7,(U)-base e
on U of the ¥,(i)~-module w(M),

Hence and from Theorem 2.1 there results

Corollary 2.1, Let % be an n-dimensional
locally free sheaf of the P ~-modules over the differential
avace (M, ¥) and

D: m(M) —= Al (2 (M), ®(M))

a linear connection in the %, (M)-module ®(M). Then there
exists exactly one 2-form OeAz(x(M),oc(u(M), ®W(M))) called
the curvature 2-form of the connection D, which has a local
decomposition of the form

(8 1UN(X,X,)(ey) = 83(e)(X),X,)ey

for i =1,2,e..,n and x1,x2 e ¥(U) with respect to any
¥,(U)~base e on U of the 7 (M) -module =(X).

Now, let us return for a moment to the general case.
Let ® bée an n-dimensional locally free sheaf of ¥,(U)-modu~-
les over a differential space (M, ¥) and let w be a k-form
on M with values in the #,(M)-module J(u(M),_uﬁm)), which
is a locally free #,(M)-moduls as well.
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For an arbitrary local ?k(U)-base e on U of the
#4(M)~module ®(ll), by wle) we denote the following ma=
trix

w}(e) ces wl(a)

€
=
(0]
I
.

‘"9 8 0008000000000

w?(e) see wg(e)

where wgle) for i,j = 1,2,ee.,n are defined by the for-
nula '
@l U)Xy yeaesX ) (og) = wg(e)(}{.],...,xk)ej

called the matrix of a k-form w with respect to the local
#,(U)-base e on U of the ;*(M)-module n(L).

A8 we know for the matrix w(e) ws have the follwing
transformation law of changing one local %,(U)-base to ano-
ther

(2.10) wleg) = g'1w(e) 8.

Let D be a linear connection in the #(M)~-module (1),
Now, we extend the action of the operator D on the 3k(l)-mo-
dule .A.(:!(L) o (m(M), m(i))) putting

Do) 1= dolle) +83(e) awlle) - (-1)%y(e) ABS(e)

for 1,3 = 1,2,eee,0, Or equivalently

(2.11) Dwle) = dwle) + 8(e)rwl(e) - (-1)5(e) A 6(e).

Analoglcally as in the theory of manifolds we prove

Lemoa 2.2 If we ASEW),« (M), m(M))) and e
as well as eg, where g € GL(n, %,(U}), are two local
#4lU)-bases on U of the #,(M)-module ®x(M), then

Dw(eg) = g'1Dw(e)g,
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where w(e) and w{eg) are the matrices of the k-form w
with respect to #(U)-bases e and eg respectively.
From the above lemma and from Theorem 2.1 there results
Corollary 2.2 For an arbitrary k~form
we Ak(x(M), oL (M(L), ®(M))) there exists exactly one k+i-form
Dwe/\k+1 {x(m), o£{m(M}, M(M))) such that its local decompo-
sition with respect to the ¥ (U)-base e on U has the
form ‘

Dm}(e) cee le(e)

L N N N N RN NN NN

Dw?(e) ces S(e)

where Dwi(e), for 1,j = 1,2,es.,8, 8re defined by formu~
la (2.11). ' ‘

The ([k+1)-form Dw is called a covariant derivative of
the k~-form w. '

Let ® (M) be an n-dimensional locally free ¥,(M)-module.
Ve will provs .

Lemma 2.,3. If XeAk(x(M),oc(‘n(M), n{K))) and
we/@(x(m), L (Wm(i), ®(¥)))} are any k-form and l-form res-
pectively with values in the locally free ¥, (M)-module
of{F(ki), W(M)) while X(e) and y({e) are the matrices of
these forms with respect to an arbitrary %, (U)-base e on
U, then there exists exactly one k+l-form XA ye

Ak+l(:£(M), o (®m(l), w(M))) such that

(xAayl)le) = x(e)ayle)

tor any ¥,(U)~base e on U of the ¥, (U)-module =(U).

Proof. Let us assume that fulfilled the assump~
tions of Lemma 2.3 and let 3B be such an open covering of M
thet for eech Ue B there exists a sk(U)—base el on U
of the #(U)-module =(U).
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As a result for each #,(U)-base eV on U given are the

matrices X(eU) and w(eU) of k-form X and l-form y res-
pectively as well as the matrix X (e°) A v (e’). Now, we will .
show ‘that the family (x(eU) A w(eU))Ue$ of exterior k+l-forms
with values in the % (M)-module o«(®(X), m(M)), determine
exactly one k+l-form Xayp e AX*L(x(M), of(m(u), m(M))).

" In order to end, let us take two sets U,U'e B such that
UnU" # ¢ and let g e GL(n, #,(UNU")) ve a matrix of chan-

ge from ¥, (UNU')-basis e&Y|UNU' to F,(Un U’ )-basis
eV |unu', By virtus of (2.10) we have

x(eV )lunt' =g~V x(eU)junu'g

w(e’) | unu' =g 1 y(eY)|Uunt’g.

Hence

(2.12) x(e%) | U’ A w(e¥)unt’ = (x(e¥) A y(e¥ 1)]uny’

= g (V) [unu' g A g Myl ) [UnU' g =

g~ (x(e¥) A w(eU))IUnU'g.

From (1.2) and from Theorem 2,1 it result the existence of
exactly one k+l-form XAweAk"'l(.‘i(M), of (M(Li), N(W))), such
that it’s matrix (XA\p)(eU) with respect to }‘k(U)-base eU,
where UeB , has the form

(xAyp)(e¥) = x(eY) A yplel).

Defined in Lemma 2.3 k+l-form XAy is called an exte-
rior product of the k-form X and 1-form y.

Similarly we prove

Lemma 2.4, For any k-form XeAS(X(i1),eof(m(i),®(i}))
end any 1-form \peAl(x(LI),oC(Ul(I.I), M(L))) there exists exac-
t1ly cne k+l-form [X, w] GA}:”'(I(LI), oL (M(i), M(u)})) such that
its mati‘ix with respect to an erbitrary ?k(U)-ba.se eU o%s)
U ig defined by the formula
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(2.13) [x 4] (") 2= [x(e"), y(e¥)] =
= x(eV) A plel) = (-1)¥ x(e¥) Ay(eY).

The k+l-form defined above [X, w] is called the Lie brack-
et of the given forms. Prom (2.13) it result as well as that

[%,9]= xap - (-1)5 yax,

Lnelogically as in the theory of manifolds one can prove
Lemma 2.4, If D is a linear connection in' the
%, (M)-module W(M) then for any forms X e AN(X(1),a(m(M),n(1)))
and yeAN(E(M),of(n(M),R(1))), there is fulfilled the iden-
tity

(2.14) DIXAy) = DXAy+ (=1)XXADy
as well as

Lemma 2.6, If 8eA2(X(4), oLlm(), m(M))) is
the curvature 2-form of the connsection D in & n-dimensional
locally free ¥ (M) -module @ (M), then we have the identity

d 8 (e) = [6(e), 8le)],

where &(e) 1is the curvature matrix of the connection D
and O(e)} 1is the matrix of this connection with respect to
an arbitrary ?k(U)-base on U, )
From Lemma 2.6 there follows immedigtely
Corollarcry 2.3. (Bianchy identity)

D& = 0.

it easy to prove

Lemma 2.7. Let we AS(2(M), o« (w(l), ®(¥))) bte an
arbitrary k-form and DI a linear connection in & n-dimensio-
nal locelly free ¥,(il)-module ®(ii). Then we have

(2.15) D%y := D(Dy) = [@, y].

Remar ke The proofs of all the propositions of tiis
chepver from uaich the greater part was omitted may be proved
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locally. Of course, this is a consequence of the aséumption
that the considered ?k(M)-modules are finite dimensional
locally free modules.

3. The locally free sheaves of Fy-modules and the dif-
ferential ¥F,-modules over a differential space

Let ® be an arbitrary sheaf over the differenfial Haus-
dorff space (M, ¥). 4s it is known, the eclements p, p'e T (L)
are said to be equivalent at the point p e U if |V =9'|V
for some open set V c U such that pe V ([2]).

The equivalence classes of this relation in ®(U) =zre
called the germs of the element p € W(U) at the point p e U.
The set of all germs at the point p of the sheaf W is de-
noted by ﬂLp and called the stalk at p for the sheaf %x.

Of course ¥ =3 and Fo are the sheaves of smooth recal
and complex functions on M respectively. In those cases 3’p
and ?’C are the stalks at the point pe M of the germs of
smooth real and complex functions on I respectively. lLiore-~
over as it is easy to observe the stalks 3’p and pr have
the natural structure of a ring. ‘

Now, let us denote by "uRp and J(Cp the subsets of 'r'p
and ¥ regpectively determined by the formulas

Cp
J
chp = { [f]pe fcpi 0},

where [f]p stand for the germs of smooth functions on i

He ;={[f]p e 7, £(p)
(3.1)
f(p)

fl

at the point p.

One can show that ‘”Rp and "”Cp are the meximasl ideals
of the rings :Fp and TCp regpectively and therefore the
ring ’kp is a local ring over k, where k=R or k=C.,
Hence ykp/"‘(kp ig a number field which is isomorpaic to k.

lLet us observe that if ® 1is sheaf of Fy-modules over ..,
then the stalk =®. at p of the germs of the sheaf M hse
a structure of the rkp-module.
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Yow let ® and W be the sheaves of ?kn-modules over
a differential space (il, F). It is known that tie femily

{hv, hy e Homyk(v)(u(v), n(Vv);, Ve r,}

is celled a homomorphisms of the sheaf ® inte the sheef

iff

py°hy = hyo ey

for any V,Uetfy, where V C U and Qg is the restrictior
t=Rel

Low, let us observe that instead of Definition 2.2 7e cen
zqguivalerntly give the following

Definition 3% 4 sheef W of ¥ -modules
over the differential spsce (i, ¥F) 1is said %o be locslly
free of the renk n if for any point o e ii there zxisis
a nzightourhood U of p scsuch that ® rsstricted to U
iz icomorphic to the sheaf (?k(U))n.

It is easy to prove ([2])

Theorean 341, & sheaf ®m of fk—modules over
the differential space (L, F) 1is locally free of rznk n
iff for svery point p € ii there exists a neignbouriioc” U
of p =und slements f,,e..,p, € B(U) such that for smy 5, °n

set V C U the elements 93(91),...,93(911) € N(V) forz =
bese of ®m(V) over F(V).

rroof. In consequencq of Definition 3.1 and lewm-
ma 2.1, 1t is easy to see that a locally free shesf hesg tac
propzrty chown in Theorem 3.1. Conversely, if elements
seeeyf, OVEr U exist, then for every open set V C U
2o mep hy of (k(V))? into ®(V) defined by
Ay(fqaeee,fy) = f171 +eee + Ty
hV define isomorphism of the sheaf .‘F}‘l of smootir maps
U— k™ onto the sheaf ® restricted to U.

Kow, let M Dbe an n-dimensional locelly free sheaf of
¥ ~codules over (I, ¥). Similarly as in the theory of diffe-
vential mznifolds one can show that the stalk ‘up OVET p

is bijective and ths acps
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of perams of the zlements belonging to ® have the structure
of & free 3kp4module of rank n,

y - i ] . s

0f course ‘”kp up is an 5kp vbmodule of i module

X, where ﬂk is an ideal of the ring ;kp defined in
I3
(3.1), and Hyp® ®, denotes the set of all algebraic sums
of the fora a, wiere T e M, and ae®,. '

/

dnalopgically as in the theory of a differential manifolds
we prove ([3]) the following theorem

Pheorenm 3,2. If % is an n-dimensional locally
free cheaf of ¥y -modules over the differential space (if, ¥),

for any point p e li, apﬁakpabp is an n-dimensional
vector gspasce over k.

Irom this Theorem thore results

Corollary 3.1. &ny locally free sheaf @ of
Fg=zodules of the rank n over (I, ¥) in a natural way
determine a function ¢ on W which assigns to each point
pe i an n-dimensional vector space By = /J% ®_ over k.

lioreover, as it is not difficult to prove, if R?U) is
a n-dimensional %4(U)~module &and Deressslp € n(U) fora a
fk(U)-base of ®(U), then for every point p e U the ele-
zents [Q{]p,...,[gn]p ewy form the Jkp—base of the %jep~lO=
dule & ..

Similarly, if & (U) is an n-dimensional ?‘(U)-module
and .?1"“’?n € U(U) form the 3}(U)-base of u(U), then
for svery point .p € U ths elements 91(p),...,?n(p)

€ up/J%o' np form a base of the vector space apﬂﬂkp'up

over Kk, -

Let #® be a locally free sheaf of ¥y -modules of the
rank n over (i, ¥). Then, according %o Corollary 3.1,
the sheaf ®m determines the function ¢ on M which assigns
to each point pe I an n-dimensional vector space = /J% up
over k. Now, let us denote by % (L) the %, ~module of all
linear ¢-fields on 1I in the following manner: I}‘eﬁ(m) if
and only if for an arbitrery #,(U)-vase Dqresealy of ®(U)

shen

é\lU =< 01112? + ees + dngz,
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where d1,...,0tn € 3" (U) and 9’;(0),...,9;(;)) fora 2 base
of the vector space u /Jlk . over Kk, for any point
pe U, determinad by the ?U) -base Ryressspy OFf N(U).
. One can show that the ?k ~nodule defined in such a way
®(W) is closed with respect to localisation, Hence the
Fx -module (M) is a differential module over s differen-
tial space (M, F) of linear ¢ -fields.
It is easy to prove ' :
Theorem 3.3 A linear §-field 4§ on 1. 1is
an element of the % (I)~-module #(1) 4iff for an erbtitw
fanj.l;y {'31"""3n}Be.B k(B)-‘baqe of #(B)-modules 37<(
where B iz an open covering of L, there existe =z de
position

where ol € F (B) for i = 1,2,...,n and Be3B .,
: X ,

an % (M)-module #(U) will be called s differential
Fj (il)-module of linear ¢ -fields associated with the F-mo-
dule ®(L) or associated with the n~dimensional locslly free
sheaf of J# -modules over the differential space (1, ).

Hence we have

Corollary 342, Any n-dimensional locally free
sheaf W of ¥ -modules over (L, ¥) determine, in the ca-
nonicel vay, en.n-dimensional differential ?’k -module # (L)
of linear ¢ -fields on I _

Of course, with the % -module a’i’(m), tnere is associat-
ed, in the canonical wzy, & sheaf ® of differential Fje ~m0-
dules of the rank n over (Ui, ¥).

et m be a locally free sheaf of rank 'n over the dif-
ferential space (lf, and ® a sheaf associated with W,
It is rnet difficult to observe if Rysecery is'a local
¥(U)-bese on U of the sheaf M, or equlvalentlj e locel
:;k(r_? ~-base of the ?k(U)-module ®#(U), then 91,..-,Qn is
a local ﬂ(U)-base on U of the sheaf @ of differcntial
% (U)-a0dules of lineer ¢ -fielde cn I
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We will prove

Theorem 3.4, 4ny n-dimensional locsally free shsaf
% of ¥ -modules over the differential space (L, ¥) is ca-
nonicelly isomorphic to the associated sheaf M of differen-
tial % -uodules of linear ¢ -fields on Il
., Froof. ILet pi,eee,p, Dbe the F(U)-base of the
# (U)-module ® (U). Let us consider the map hy:®(U) — 0 (V)
defined by the formula

hy(py) = 23

for i =1,2,4..,n, where 9’1‘,...,9; is the % (U)-base of
the 7 (U)-module ®(U) associated with Q24,...,7,.

Now, we will show that the map hU does not depsend on
the choice of a local Fx(U)-base. Indeed, let Dqsseesdy be
snother local #(U)-base of m(U), Then we have

= _ o
217 2305

for 1,j = 1,2,..eyn, where (ag) is a matrix of changse
from one .‘Fk(U)-base to another, and for the associated
?k(U)-base

=% >

21

]

)
‘_I.

~
.
-

i,j = 1,2,-..,1’1-
Consequently

[
o
[ 2
[ov]
-
~
L
1
W
’-l-
~
[}
1
~
‘-'-
.

Next, let V Dbe an arbitrary open set of M and B and
open covering of V such that for any Be B there exists
a % (B)-base of the #(B)-module ®(B). Of course, a co-
vering 8 of V determines a family {hB}Be.B of isomon-
phisms. loreover, by the immediate calculus one can verify
that for any hB’ hB/e {hB}Be.'B' we have

bgiBaB' = Byl BaB'
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Hence, by virtqe of sheaf properties, there exists exactly
one isomorphism hy : (V) — (V) such that

hyjg = by

for any BedB .
Consequently, this family {hV}Ver, » 25 it is easy ta
verify is the canonical isomorphism or the sheaves ® agnd o,
This canonical isomorphism of shesaves #® and 7 allows
us to define some geometrical structures on the sheaf W
through pulling back correspondent structures from the asso-
ciated sheaf # of differential ¥ -~modules, for example
Definition 3.2. 4 function g* is said to
be a hermitian metric on e locally free sheaf W if g* =
= hfg, where g is a hermitian metric on the sheaf ® asso-
ciated with @ and h 1is the canonical isomorphism of those

sheaves,
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