Vol. XVI No.1 1983

Janina Ewert, Tadeusz Lipski

LOWER AND UPPER QUASI-CONTINUOUS FUNCTIONS

I. If A is a subset of a topological space X, then by \overline{A} , Int A, Fr A we will denote the closure, the interior and the boundary of A respectively.

A set A is said to be:

- semi-open, if there is an open set U such that $U \subset A \subset \overline{U}$,
- semi-closed, if its complementary X \ A is semi-open.

Any semi-open set A such that $x \in A$ we will call a semi-neighbourhood of a point x (shortly we shall write s-neighbourhood). A intersection of all semi-closed sets containing a set A is said to be a semi-closure of A and we denote it by $A \in [1]$.

Let X,Y be two topological spaces. A map $f: X \longrightarrow Y$ is said to be [2,4,6]:

- quasi-continuous, if for any open set $V \subset Y$ a set $f^{-1}(V)$ is semi-open;
- semi-open (pre-semi-open), if for any open (semi-open) set U C X a set f(U) is semi-open.

Let R be the space of real numbers with the natural topology. For any $a,b \in R$, a < b, we denote $(a,b) = \{x \in R : a < x < b\}$.

Definition 1.1. A function $f: X \longrightarrow \mathbb{R}$ is said to be lower-quasi-continuous (upper-quasi-continuous) at a point $x_0 \in X$, if for any number $a \in \mathbb{R}$ such that $a < f(x_0)$ ($a > f(x_0)$) there exists s-neighbourhood U of the point x_0 such that $f(U) \subset (a, \infty)$; ($f(U) \subset (-\infty, a)$).

(Shortly we shall write 1-quasi-continuous and u-quasi-continuous). A function f is said to be 1-quasi-continuous (u-quasi-continuous) in X, if it is 1-quasi-continuous (u-quasi-continuous) at every point.

From the definition there immediately follows:

- Corollary 1.2. The following conditions are equivalent:
- 1) a function f is 1-quasi-continuous (u-quasi-continuous) at a point x₀;
- 2) for any nelighbourhood U of a point x_0 and a real number $a \in \mathbb{R}$ such that $a < f(x_0)$ $(f(x_0) < a)$ holds U \(\text{Int}\{x \in X: } a < f(x)\} \neq \(\text{U \cap Int}\{x \in X: } f(x) < a\} \neq \(\text{V}\);
- 3) for any nelighbourhood U of a point x_0 and a real number $a \in \mathbb{R}$ such that $a < f(x_0)$ $(f(x_0) < a)$ there exists an open set U', $\emptyset \neq U' \subset U$ such that $f(U') \subset (a, \infty)$ $(f(U') \subset (-\infty, a))$.
- Corollary 1.3. The following conditions are ecrivelent:
- 1) a function f is l-quasi-continuous (u-quasi-continuous) in X:
- 2) for ary real number $a \in R$ the set $\{x \in X: a < f(x)\}$ $(\{x \in X: f(x) < a\})$ is semi-open;
- 3) for any real number $a \in R$ the set $\{x \in X: f(x) \le a\}$ $(\{x \in X: a \le f(x)\})$ is semi-closed.
- II. The orem 2.1. Let D be a dense subset of X. If a function f: X R is 1-quasi-continuous and u-quasi-continuous at every point of D simultaneously then f is 1-quasi-continuous or u-quasi-continuous at every point of X.
- Proof. Let $x_0 \in X \setminus D$. Assume that for every neighbourhood U of the point x_0 there is a point $x \in U \cap D$ such that $f(x_0) \leq f(x)$. Then for any $a \in R$ such that $a < f(x_0)$ there exists an open set U', $\emptyset \neq U' \subset U$ such that a < f(x') for each $x' \in U'$. Hence f is 1-quasi-continuous at x_0 . In the other case, i.e. if there exists a neighbour-

hood U_0 of the point x_0 such that $f(x) < f(x_0)$ for any $x \in U_0 \cap D$, then every neighbourhood U of x_0 contains a point $x \in U \cap D$ such that $f(x) < f(x_0)$.

From this there follows u-quasi-continuity of f at the point \mathbf{x}_0 .

Theorem 2.2. If $f: X \longrightarrow R$ is a 1-quasi-continuous (u-quasi-continuous) function, then the set M of all points at which f is not lower semi-continuous (upper semi-continuous) is of the first category.

Froof. Let $x_0 \in M$. Then there exists a number $a \in R$ such that $a < f(x_0)$, the set $A = \{x: a < f(x)\}$ is semi-open and $x_0 \in Fr$ A.

is semi-open and $x_0 \in Fr$ A. Let $Q = \left\{q_n\right\}_{n=1}^\infty$ be the set of all rational numbers and $A_n = \left\{x: q_n < f(x)\right\}$. Then for any number q_n such that $a \leq q_n < f(x_0)$ we have $x_0 \in A_n \subset A$. Hence $x_0 \in Fr$ A_n and $M \subset \bigcup_{n=1}^\infty Fr$ A_n .

Because the boundary of a semi-open set is nowhere dense, M is of the first category. For u-quasi-continuous function the proof is analogous.

Remark 2.3. Let f be a 1-quasi-continuous function. From the proof of Theorem 2.2 it easy follows that the set of all lower semi-continuity points of f is equal to $X \setminus \bigcup_{n=1}^{\infty} (A_n \cap \overline{X \setminus A_n})$, where $A_n = \left\{x \colon q_n < f(x)\right\}$. If f is u-quasi-continuous, then the set of all upper semi-continuity points is equal to $X \setminus \bigcup_{n=1}^{\infty} (B_n \cap \overline{X \setminus B_n})$, where $B_n = \left\{x \colon f(x) < q_n\right\}$.

III. Theorem 3.1. A function $f: X \longrightarrow \mathbb{R}$ is l-quasi-continuous (u-quasi-continuous) if and only if for every open set $U \subset X$ and dense $D \subset X$ the condition $f(U) \cap (a, \infty) \neq \emptyset$ implies $f(U \cap D) \cap (a, \infty) \neq \emptyset$ (the condition $f(U) \cap (-\infty, a) \neq \emptyset$ implies $f(U \cap D) \cap (-\infty, a) \neq \emptyset$).

Proof. Assume that f is 1-quasi-continuous. Let U be an open set, and let D be dense in X. Let us put $\mathbf{x}_0 \in \mathbf{U}$, and a $< f(\mathbf{x}_0)$. There exists an s-neighbourhood V of \mathbf{x}_0 such that $f(\mathbf{V}) \subset (\mathbf{a}, \infty)$. Because $\mathbf{V}_1 = \mathbf{U} \, \overline{\mathbf{V}} \, \mathbf{V}$ is non-empty, semi-open set and D is dense, there exists a point $\mathbf{x}_1 \in \text{Int } \mathbf{V}_1 \cap \mathbf{D}$. Then $f(\mathbf{x}_1) \in f(\mathbf{U} \cap \mathbf{D})$ and a $< f(\mathbf{x}_1)$.

Let us assume now that the condition $f(U) \cap (a,\infty) \neq \emptyset$ implies $f(U \cap D) \cap (a,\infty) \neq \emptyset$ for every open set U and dense D. On the contrary let f be not 1-quasi-continuous at a point x_0 . Then there exists a number $a < f(x_0)$ and a neighbourhood U of x_0 such that for every open set $U' \subset U$ we have $f(U') \not\subset (a,\infty)$. The set $D_1 = \{x \in U: f(x) \leq a\}$ is dense in U, so $D = (X \setminus U) \cup D_1$ is dense in X. But $f(U) \cap (a,\infty) \neq \emptyset$ and $f(U \cap D) \cap (a,\infty) = \emptyset$. For u-quasi-continuous function the proof is similar.

Theorem 3.2. Let $f: X \longrightarrow R$ be an arbitrary function. If there exists a dense set $D \subset X$ such that:

- 1) the function f/D is upper semi-continuous (lower semi-continuous),
- 2) for every open set $U \subset X$ the condition $f(U) \cap (-\infty, a) \neq \emptyset$ implies $f(U \cap D) \cap (-\infty, a) \neq \emptyset$,
- 3) for every open set $U \subset X$ the condition $f(U) \cap (a,\infty) \neq \emptyset$ implies $f(U \cap D) \cap (a,\infty) \neq \emptyset$; then f is u-quasi-continuous (1-quasi-continuous).

Proof. Let U be an open set, $x_0 \in U$ and $a > f(x_0)$. Let us choose a number b such that $f(x_0) < b < a$; then we have $f(U \cap D) \cap (-\infty, b) \neq \emptyset$.

Let $x_1 \in U \cap D$ and $f(x_1) < b$. There exists an open set G such that $x_1 \in G \subset U$ and f(x') < b for every $x' \in G \cap D$. We shall show that f(x) < a for every $x \in G$. On the contrary let there be a point x_2 such that $f(x_2) \ge a$ and $x_2 \in G$. Then $f(x_2) > b$ and $f(G \cap D) \cap (b, \infty) \ne \emptyset$ in view of the assumption 3) of the theorem. This means that there exists a point $x' \in G \cap D$ such that f(x') > b; it is the contradiction. Proof of the 1-quasi-continuity is similar.

IV. From the definition of 1-quasi-continuous and α -quasi-continuous functions there immediately follows:

Remark 4.1.

- 1) Every lower (upper) semi-continuous function is 1-quesi--continuous (u-quesi-continuous).
- 2) Any quesi-continuous function is 1-quesi-continuous and u-quesi-continuous simultaneously.
- 3) Any 1-quasi-continuous and upper semi-continuous (u-quasi-continuous and lower semi-continuous) function is quasi-continuous.

Simple examples show that a function which is 1-quasi-continuous and u-quasi-continuous simultaneously need not be either quasi-continuous lower semi-continuous or upper semi-continuous.

The ore m 4.2. Any pre-ssmi-spen and u-quasi-continuous (1-quasi-continuous) function $f:\mathbb{X}\longrightarrow\mathbb{R}$ is lower semi-continuous (upper semi-continuous).

Froof. On the contrary let us assume that f is not lower semi-continuous. Then for some number a the set $A = \left\{x \in X : a < f(x)\right\}$ is not open, thus $A \neq X$. There exists a point $x_0 \in A$ such that $x_0 \notin Int A$. Let $\epsilon > 0$ be a number such that $a < f(x_0) - \epsilon$ and let us put $B = \left[f(x_0) - \epsilon, \infty)$. The sets B and $f^{-1}(B)$ are semi-closed. Because $x_0 \in f^{-1}(B) \subset A$ we have $x_0 \in Fr[f^{-1}(B)]$. The set $X \setminus f^{-1}(B)$ is semi-open, $x_0 \in Fr[X \setminus f^{-1}(B)]$ so $U = \left[X \setminus f^{-1}(B)\right] \cup \left\{x_0\right\}$ is semi-open. Therefore f(U) and $f(U) \cap (f(x_0) - \epsilon, \infty)$ are semi-open sets. On the other hand $f(U) \cap (f(x_0) - \epsilon, \infty) = \left[(R \setminus B) \cup \left\{f(x_0)\right\}\right] \cap (f(x_0) - \epsilon, \infty) = \left\{f(x_0)\right\}$ and the set $\left\{f(x_0)\right\}$ has the empty interior; this contradiction finishes the proof.

From the above there follows:

Corollary 4.3. Any pre-semi-open and u-quasi--continuous (1-quasi-continuous) function is quasi-continuous.

Corollary 4.4. Any pre-semi-open, u-quasi-continuous and l-quasi-continuous function is continuous.

Remark 4.5. The following example shows that the assumption of pre-semi-openess is essential.

The function $f : R \longrightarrow R$ given by:

$$f(x) = \begin{cases} x & \text{for } x \le 1 \\ x+1 & \text{for } 1 < x < 2 \\ x+2 & \text{for } 2 \le x \end{cases}$$

is 1-quasi-continuous, u-quasi-continuous and is not pre-se-mi-open. This function is neither lower semi-continuous nor upper semi-continuous.

V. Let $\{f_n\colon n=1,2\ldots\}$ be a sequence of 1-quasi-continuous (u-quasi-continuous) functions defined on the space X. In general the function f given by $f(x)=\lim_{n\to\infty}f_n(x)$ need not be 1-quasi-continuous (u-quasi-continuous) as shows the following example.

Example 5.1. Let $f_n : [0,1] \longrightarrow \mathbb{R}$, $f_n(x) = x^{2n-1}$ for n=1,2,...; all of f_n are continuous. The function f given by:

$$f(x) = \begin{cases} -1 & \text{for } x = -1 \\ 0 & \text{for } -1 < x < 1 \\ 1 & \text{for } x = 1 \end{cases}$$

is a limit of the sequence $\{f_n: n=1,2,\ldots\}$, but it is neither 1-quasi-continuous nor u-quasi-continuous.

Theorem 5.2. Let $\{f: n=1,2,\ldots\}$ be a sequence of l-quasi-continuous (u-quasi-continuous) functions. If this sequence converges to the function f uniformly, then f is l-quasi-continuous (u-quasi-continuous).

Lemma 5.3. If $\{f_{\alpha}: \alpha \in \alpha\}$ is a family of l-quasi-continuous (u-quasi-continuous) functions defined on a space X, then the function $g(x) = \sup_{\alpha \in \alpha} f_{\alpha}(x)$ ($g(x) = \inf_{\alpha \in \alpha} f_{\alpha}(x)$) is l-quasi-continuous (u-quasi-continuous).

Corollary 5.4. If $\{f_n: n=1,2,...\}$ is an increasing (decreasing) sequence of 1-quasi-continuous (u-quasi-continuous) functions, then the function $f(x) = \lim_{n \to \infty} f_n(x)$ is 1-quasi-continuous (u-quasi-continuous).

Let Ω be the first uncountable ordinal number. The transfinite sequence $\left\{a_{\xi}\colon \xi<\Omega\right\}$ of real numbers is said to be convergent to a number $a\in\mathbb{R}$ if for every $\epsilon>0$ there is an ordinal number $\mu<\Omega$ such that for every ξ , $\mu\leqslant\xi<\Omega$ the inequality $\left|a_{\xi}-a\right|<\epsilon$ holds.

A transfinite sequence $\left\{f_{\xi}:\xi<\Omega\right\}$ of functions defined on the space X is called convergent to a function f, if $\left\{f_{\xi}(x):\xi<\Omega\right\}$ is convergent to f(x) for every $x\in X$. Theorem 5.5. Let $\left\{f_{\xi}:\xi<\Omega\right\}$ be a transfinite

sequence of functions defined on a separable space X, convergent to a function f. If every function f_{ξ} is l-quasi-continuous (u-quasi-continuous), then f is l-quasi-continuous (u-quasi-continuous).

The proof of the above facts is omitted here because it is analogous to the proofs for quasi-continuous, lower and upper semi-continuous functions, respectively (see [3,4,5]).

VI. Let X,Y be topological spaces. If f is a function defined on the product space $X \times Y$, we shall call an x-section for a given $x \in X$ the function f_X defined on Y such that $f_X(y) = f(x,y)$. The y-section f_y for a given $y \in Y$ is defined by the same way.

Theorem 6.1. Let X be a Baire space, Y a second countable space and let $f: X \times Y \longrightarrow \mathbb{R}$ be any function. If all of the sections f_X , f_Y are 1-quasi-continuous and f_Y is u-quasi-continuous for every $y \in Y$, then f is 1-quasi-continuous.

Proof: We shall prove that for every number $a \in R$ such that $\{(x,y) \in X \times Y : a < f(x,y)\} \neq \emptyset$ we have Int $\{(x,y) : a < f(x,y)\} \neq \emptyset$. On the contrary, we assume that there exists a point $(x_0,y_0) \in X \times Y$ and a number $a \in R$ such that $a < f(x_0,y_0)$ and $Int\{(x,y) : a < f(x,y)\} = \emptyset$. Let $a < a_1 < f(x_0,y_0)$. Since f_y is 1-quasi-continuous, so $U = Int\{x \in X : a_1 < f_{y_0}(x)\} \neq \emptyset$. By 1-quasi-continuity of f_x and $f_x(y_0) = f(x,y_0)$ for every $x \in U$, we obtain

Now let $B \subset X$ be any open set. For every $x \in B$ we have $(f_{B\times V_n}) = (f_x)_{/V_n}$ where $f_{B\times V_n}$ denotes the partifunction; $f_{B\times V_n} : B\times V_n \longrightarrow R$. It is easy to see that the denotes the partial restriction of a 1-quasi-continuous (u-quasi-continuous) function to an open subspace is 1-quasi-continuous (u-quasi-continuous). Thus functions (f/BxVn) x are 1-quasi-continuous $(f_{B\times V_n}) = (f_y)_B$ are 1-quasi-contifor every $x \in B$ and nucus and u-quasi-continuous for every $y \in V_n$. Therefore by the first part of the proof for every a & R such that $\{(x,y) \in B \times V_n : f_{B \times V_n}(x,y) > a\} \neq \emptyset$ we have Int $\{(x,y) \in B\times V_n : a < f_{B\times V_n}(x,y)\} \neq \emptyset$. Let $p \in X \times Y$ and a < f(p). For any open neighbourhood U of a point p there exists an open set $B \subset X$ such that $p \in B \times V_n \subset U$. Then we have $U' = Int\{w \in B \times V_n : a < f(w)\} \neq \emptyset$ and $\overline{U'} \subset U$, so f is 1-quasi-continuous at the point p.

The orem 6.2. Let X be a Baire space, Y a second countable space and let $f: X \times Y \longrightarrow \mathbb{R}$ be any function. If all of the sections f_x , f_y are u-quasi-continuous and

 \mathbf{f}_y is 1-quasi-continuous for every $y \in Y,$ then f is u-quasi-continuous.

Proof of this theorem is similar as in Theorem 6.1.

REFERENCES

- [1] S.G. Crossley, S.K. Hildebrand: Semi-closure, Tex. J. Sci. 22 (1971) 99-112.
- [2] J.S. Lipiński, T. Šalát: On the points of a quasi-continuity and cliquishness of functions,
 _ Czech. Math. J. 21 (1971) 484-489.
- [3] S. Lojasie wicz: Wstęp do teorii funkcji rzeczywistych, Warszawa 1976.
- [4] A. Neubrunnová: On quasi-continuous and cliquish functions, Časopis Pest. Mat. 99 (1974) 109-114.
- [5] A. Neubrunnová: On transfinite sequences of certain types of functions, Acta Fac. Rerum Natur. Univ. ___ Comenian. Math. 30 (1975) 121-125.
- 6 Z. Piotrowski: On semihomeomorphisms, Bolletino Un. Mat. Ital. 16-A (1979) 501-509.

DEPARTMENT OF MATHEMATICS, PEDAGOGICAL UNIVERSITY, SŁUPSK, Received June 8, 1981.