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EXISTENCE OF SOLUTIONS OF THE GOURSAT PROBLEM
FOR SOME FUNCTIONAL -DIFFERENTIAL EQUATIONS

0. Introduction
The present paper deals with the guestion of the existen-
ce of solutions of the Gbursat problem for the equation

z(x,y) = ¢(x,53) for (x,y)e G

z;y = f(x,y,z,z&,z&) for almost all (x,y) € D

by assumption that f satisfies Caratﬂébdory and some Vol-
terra type conditions and ¢ , G, D are defined in [1].

The results presented here are some generaslizations.of
those obtained in paper [5] for functional-differential equa~
tions

z(x,y) =¢(x,y) for (x,y)e G

Z;.y(xvy) = f(x179A1(xvyvz) ,A2(x,y,23{(x,' )),
A3(x,y,z§(-,y)) for almost all (x,y) € D

with initial-boundary ccnditions of Darboux fype.
We will use definitions and notations introduced in [5].
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2 J.Straburzyiski

1. Notations, assumptions and lemmas

For given poslitive numbers «,p3, a, b and non-decreasing
functions y = g(x), x = h(y) of C' class defined on
[O,a], [O,b] and such that g(0) = h(0) = 0, O=<g(x)=D,
osh(yl<a let P = [-o,a]x[-8,0], D ={(s,t):h(t)<s<a,
g(s)<tab}, D __ ={(s,t) : h(t)<s<x, g(s)<tsy for

xy y .

X € [O,a] and ye [O,b]},

Furthermore let G = P\D, D ={ ye [g(x),b] s (x,7)e 5}
and ﬁy = {xe[h(y),a] : (x,y) e Dt

Let us denote by R". an n-dimensional Euclidean space
with the norm |x| = max(|x1l ,...,Ixnl) and by CO(P) the
space of all continuous functions u : P —R® with the norm
||u||o = m%x (Julx,3)l}s By C1(P) we will mean the space of

equivalence classes of all functions v : P ——Rn, such that
the function :
vis,y) [—«,a]sx—-v(x,y) € R

‘18 continuous for almost all Je [-,B,b] and

v(x,+) 1 [-B,b]3 3 —v(x,3) € RP

is measurable for xe[~x,a] and such that

b

1vly = [ mex{lv(x,3)l : x ¢ [~0al}ay<o .
3

Similarly, by CZ(P) we denote the space of equivalence clas-
ses of all functions w : P —=R" such that the function

w(*,y) : [-cx,a] 5 x = w(x,y) € RP

is measursble and

wix,*) [-ﬁ,b] 3 y— wix,y) ¢ R
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Existence of solutions 3

is continuous for almost ell xe[-o,a] and such that

a
Iwll, = f mu{llw(x,y)u 1y e [-ﬁ.b]}dX< 0o o
=X
As in [1] we can verify that (C,(P), Ily) and
(Co(B), Il «ll,) are Banach spaces.
The set of all absolutely continuous functions ¢ : G —RB
possessing derivatives ¢’/ ¢ CZ(G) and @' € C1(G) is de~
noted by ¢ . We introduce in ¢ the norm by the formula

I'olg= suple(x,3)l + suplle'y(x,3)1 + suplley (x,3)+

For given ¢ed let

Cg(P) = {u € CO(P) s u(x,y) = p(x,y) for (x,y) € G}.

Similarly, we define t.e spaces cﬁy(P) and CH¥(P).
Furthermore by Cx and C_, we will denote Bahach spaces
of all continuous vector-valued functions on [-B,b] and
[-«,a], respectively, with supremum norms |l, and |-|,.

As usual we shall say that f: Dx ng Cy X Cy — R% ‘ga-
tisfies the Carathdéodory type condit.ons if
(1)  £(*,+,2,p,q) : D —~R" is measurable for fixed

(u,v,w) e ng Ce* Cy
(11) f(x,¥9°,°9°) ¢

fixed (x,y) € D
(iii) there exists a

such that

¥ S : |
Cox Cxx Cy R is continuous for

Lebesgue integrable functicn m: D —R

||f(x,;y,z,p,q)||s m(X.y)

for (x,y) e D and (z,p,q) € C:‘:x CpxCe
Purthermore, we shall say that f£-: Dx ng Cex Cg — g8

has the property of Volterra if for (x,y) € P, 24225 € Cz(P),
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4 J.Straburzyhski

PysPp € C, and g,,0,€ C such that z1.(s,t) = zz(.s,t),‘
p1(t) = p2(t) and '*91(5) = qz(s) for (s,t) € P(x,y) it
follows that :

f(x’y,z1 'Pq 9q1) = f(xo7!52192’q2)

where " P(x,y) = [-a,x]ﬂ[-/s,y] for (x,y) € D.

By F we shall denote the set of all functions
£ : Dx C’gx Cp X Cy —— R?  gatisfying the Carathéodory and
Volterra conditions with the equivalence relation -~ defined

by
(f.l"-' f2)<=> f1(x,7.z,P.q) = fz(x,y,Z,p,q)

for almost all (x,y) e D.
Iet us introduce in F a metric ¢ defined by

where [If]l5 =£fsup{||f(x,y,z,p,q)|| : (z,p,9)€ c‘gx C % cy}dxdy
D

for £,£,,£, € F. 0!

We call the sequence (w,) e C1y(P) almost uniformly
bounded on each [-B,b], if for every € >0 there is a set
QEIC [-ﬁ,b] and a constant K;>0 such that |[-/3,b]\95|<8
and || wn(x,y)||< K¢ forall yex , 0= 1,2,e00

We introduce the following two uniqueness assumptions:

Assumption B,. If ped , ‘ne C:(P) and (w,) e Cs:?(P)
is a sequence almost uniformly bounded on [-B3,b] for all
Xe [O,a] then the equation

¢ (x,3) for ye[-p,a(x)]
(1.1) v(y) =

¢'x(x,8(x))+ lim f f(x,t,u,v,wn(-,t)dt
T glx) _

for 3y e Dx
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Existence of solutions : 5

has for almost all fixed xe[0,a] at most one solution
v(y) cortinuous on Bx' Moreover, the exceptional null set
N, ¢ (O,a} is independent of u and (wn).

¢'
sssumption E,. If ped, ue Co(P), v e C,7(P), then
the egquation : '

9 (x,3) for xe [-a,h{3)] " -
(1.2) wix) =
X
9!.'3(11(3),3) + f f(s,t,n,v(a,+),w)ds for xe fy
- hiy]
has for almost all fixed y € [0,b] ‘wt most one solution
w(x) continuous on D_, and the exceptional null set
N2c [O,b] is indepsndent of u and’ v.
The object of our investigation is the functional-diffe-
rential equation of the form ‘

z(x,y) = p(x,y) for (x,y) € G and ped

,\
[

"

zxy(x,y)=f(x,y,z,z'x(x,- ).z'y(‘,y))

for almost all (x,y)eD and fePF.

By the solution of (I) we mean a function 2 : P —R?
ebsolutely continuous possessing derivatives ‘z'x, z‘y and z',’w
almost everywhere on D and satisfying (I).

In a similar manner as in paper [6] we can prove the.fol-
lowing lemmas:

Lemma 1, Suppose fe€ F, ped and (E1) is sa~-

tisfied. If u € C‘g(P) and W e Cq;y(P), thzn the equation
r9>f,x(3t,y) for (x,y) € G

T1.31 v(x,3) =«
J

¢é(x,g(x)) +f fx,t,u,v(x,*),w(e,t))df
g(x)

for almost all xe[C,2] 2nd y e D

x
has exactly one sclution v e CZX(P).
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6 J.Straburzyrieki

Lemma 2, ILet fe F,ped and (B,) be satisfied.
[ :
If ue Cg(P) and Vv e sz(P), then the equation
gv'y(x,y) for (x,y) € G

(1.4)  wix,y) =
X

p’y(h(y},y) + f f(x,y,u,vi(s,*),w(*,y))ds
h(y)
for xe D, and almost all ye [0',b],

J

has exactly one solution w e C?y(P).
By Lemmas 1 and 2 it follows that thers exist mappings

!

Px
v e C, (P)

v ch(e)x c¥I(p) 5 (u,w) =y (u,w)

o cPe)x cpX(R) o (u,v) == (u,v) = we CI(R).

Moreover, let us define the mapping T : Ln(]_)) — C‘g(P) by

¢lx,y) for (x,y)e G
(1.5) T(g)(x,3) =

AMx,y) +,f! g(s,t)ds dt for (x,y)e¢ D,

Py

where pe¢ and

J

X
(1.5.1) A(x,y) = 9(0,0) +f¢;r(s,g(s))ds +!¢'y(h(t),t)dt.
0 0

We put now

K(g)

v [r(a), T;(s)] for g e L,(D)
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and
#(g) =" [2(a), K(g)] for g e 1 (D).

Let H, = {g e L,(D) 1 Jalx,yll< v(x,y)) for xe 53, v [0,
where y ¢ L(D). ,

Similarly as in paper [6] we can prove that T(H,) is
compact in CO(P) and T 18 continuous on H,. Moreover
K(‘Hv), %(H,) are conditionaly compact in ng(P) and

Cﬁ?(?), respecti.veiy, and K, ® are continuous on Hg.
By the above notations an operstion S can be defined
as follows

(1.6) [s(g)] (x,3) = £(x,5,7(a),K(g)(x,+), 2(g)(*,3))]
for almost all (x,y) € D.

2. Some properties of the operation S

Theorem 2,1, Suppose fe F, ped and assump-
tions (E1), (E2) are satisfied. Then the operation S de-
fined by (1.6) is continuous on the set Hy.

Proof, Let g,e¢ Hy such tlat |g -8 | — 0 as

n—e, where |g] =fj Ilg(x,ym_ dxdy. By the continuity

D
of operations T, K and % it follows that || Tg,-T8,l, — 0

and

||'J¢gn - 730"1 — 0 88 n—=oo,
On the other hand, for every n = 1,2,..
|s(g,) - s{gy)l =
= ffllf(x,y,un.vn(x.-).wn(',y) - f(xvyouoovo(xt’)awo('vy)”dde’
) )

where uy = T(gk), Yy = K(gk) and w ='J((gk) for k=0,1,2,000
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Hence, from the agsumptions about f 1t follows that

ISgn-Sgol—-—O a8 n——oo ,

which ends the proof.

Theorem 2.2, Suppose that the assumptions of
Theorem 2,1 are fulfilled. Then S(H,) is conditionaly com-
pact in the space Ln(D). Then proaf is analogous to the
proof of Theorem 2.2 given in [5].

Now we prove that the operation S has a fixed point.

We orecede this by the following lemma,

Lemma 2,1, The set Fc L (D) is conditionaly
compact if and only if it is bounded and there exists a func-
tion dp : R°—=R_ such that

lim dF(h,k) = 0
h—=0
k—-0

and for every fe F

ff”f(x+h,y+k) - F(x,y)ll dxdy < dF(h,k)
D
where

f(x,y} for (x,y) ¢ D
f(x,y) =
0 for (x,y) e D°, O* = r\D.

This Lemma follows from Lemma given in [4] p.301.
Theorenmn 2¢3. Let the assumptions of theorem 2.1
be fulfilled and let Hm be defined by

fy = { & ¢ 1,(B)la(x,3)l < u]

for x e'ﬁy and for almost all Jye Ea,ﬁ], where m e L(D),
and m gatisfizs the inequality



Ixistence of solutions 9

le(xy3,25pya Ml « m(x,3)

for (x,7,2,ps9) € DxCHxC_x Cy. Then the operation 5 de~

fined by {(1.6) has in the set H_ at least one fixed point.
Proof. Invirtue of Theorum 2.2 the set S(.Hm)

ig conditionaly compact in L (D). Also, by Lemma 2,1 there

exist a constant M > 0 and a function dys R - R, such
that x|« M and '

ffu'ig(xm,y+k) - %, (x,3)l dxdy < dyln,k)
E .

for ge H and (n,k) € Rz, where

xg = Slg) for (x,yleD

o for (x,y)e D™

Moreover,

lim dglh,k} = 0.
h-0*
k-0t

Let WCcC Hm be the set of all functions g e Hm for
which Jgl<« M and

S 180z, 3400 - B(x,3)axdy < dy(h,k),

D
where

glx,y) for (x,y)e D
g(x!y) =
0 for (x,y) e R

On account of S(H; ) C W we see that W #¢.
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10 J.Straburzyiski

It follows from the definition that the set W 1is condi-
tionaly ‘compact, bounded, closed and convex in the space
L,(B). Furthermore S(W)c S(H;)c W. Consequently, from
Schauder s fixed point theorem it follows that there exists
a point g e W such that S(go) = 8,» Thus the proof is
completed,

3. The existence of solutions for the problem (I}

We precede the proof of the existence thsorem by two lem-
mas,

Lemma 3.1. If fe F, o&¢d , then the squation
(I) is equivalent to the functional~differentisl-integral
equation

p(x,y) for (x,y) € G
(I1) 2(x,3) =
A{x,y) +ff f(S.t.z,z'x(s,-),z;(c,t))ds dt

Dyy -

for (x,y) € D where A(x,y) 1s defined by (1.5.1).
Proof, By the assumptions concerning the function
£ it follows that f(x,z,z,z;(x,-),z’y(-,y)) is a Lebesgue
integrable function »in Dx-y’
Since

ff f(e,t,z,z’x(a,'),z;(-,t))dadt =
va’

a(y),a~Ye)
= j(f f(s,t,z,z’x(s,-),z’y(',t))dt)ds +
0 ‘g(s)
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Existence of solutions 11

)

J
(f f(s,t,z,z'x(s,'),z&(nt))dt)ds =
h(y)

gis)

glx) g1 ()
( f(s,t,z,z;:(s,-),z'y(-,t))ds)dt +
0 k(%)

x
+ (f f(s,t,z,z'x(s,-)z&(-,t)ds)dt
g(x)‘h(s)

we obtain

7’;<(x'7) for (x,y) ¢ G

(3-1.1) Z’x(x’y) = y

Pelxa(x)) + f  £lx,t,2,25(x,),2] (o, 1)t
g(x)

for almost all xe[O,a] and y e D

- and

) %(x,y) for (x,y) e G

(3.1.2) zs,(x,y) = -

703,30+ [ £(8,3,2,205,),2(+,3))ds
h(y)

for x ¢ ﬁy and for almost all ye [0,b].
.Obviously we get

z;y(xoy) = f(x.y,z,z;(x,- ) ,Zly(’ ,y) )

for almost all (x,y) € D,
Lemma 3.2 Let fe F, ped and let the assump-
tiona (E1). (Ez) be satisfisd. Let A be the set of sll
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12 J.Straburzyiski

fixed points of the operation S defined .by (1.6), and let
Z be the class of all solutions of the equation (II). Then
the restriction of the operation T defined by (1.5) to the
set A is a bijection of A on the set Z,

Proof. Let geA. Then g = S(g) and by thes de-
finition of the operation S we have

(3.1.2) 8(X,'.7) = f(x,ysT(S) ,(KS).(Xp')y(IS)(°a7))

for almost all (x,y) € D, where T(g) is defined by (1.5)
and the functions v = K(g), w =2%(g) are the unigue solu-
tions of the equations

?’;{(x,y) for (x,y) € G
(3.1.4) v(x,y)

i

J .
?;((x,s(x)H-f f(x,t',z,z;{(x,-),z’y(-,t))dt
g{x)

for almost all xe [0,a] and y e D

st’s](x,y) for (x,y) e G
{3.1.5) wix,y)

X
p(a(z),9)+ [ 2(s,3,2,200s,0) 2, (3N as
h(y)

tor xe D, and for almost all ye [0,b].
Let 2z = T(g). In virtue of (3.1.3) and (1.5) we obtain

9’;((x,y) tfor (x,y) € G

(3.1.6) =z (x,y)= 5

S"x(X,g(X)Hf f(x:t’z’zx(xv')9z
g(x)

%(',tndt

Ior almest =il X € [-L),a] and y e Dy and
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<P'y(X,y) for (xz,y) € G
(3¢147) z’y(x,y) = '

X
93:;“1(3)’3') +B/{' )'f(B,y,Z,Z'X(S,'),Z&(‘,y))ds
J

for xe D, and for almost all ye [0,b].

Thus from (3.1.5) and (3.1,;i7) by the unigqueness of the
solutions of equation (3.1.5) and the fact that 2z = T(g) we
get 2. (x,y) = wix,y) for x e D, and for almost all
ye [0,b]. It is obvious that 2z, =w on G.

Similarly, from (3.1.4), (3.1.6) we get

-td
d

2 (x,3) = v(x,3)

for almost all xe [0,a] and y e D, Morsover, z/ = v

on G. ‘
By substituting K(g) = zl, ¥ (g) = z’y into (3.1.3) and
next g into (1.5) we conclude that the function 2z = T(g)
is a solution of equation (II). Consequently, the restriction
of the operation T +to A transforms A on the set Z, De=-
noting by B the restriction T|A we have B : A —Z, The
operation B 1is a one~to-one mapping from A to 2. In
fact, suppose to the contrary that for g4 # g, we have

Bg1 = Bgz .

Then by (1.5)°

../_:/ [81(8,1;) - gz(s,t)] dsdt = 0 for (x,y) e D

Py

Hence g, = 8, for almost all (x,y) € D, which contradicts
the assumption that g, # 8, in I,(D),
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It remains to prove that 2 C B{(A)., Assume that 2z e 2
and let '

(3.1.9) glx,y) = f(x,y.i,z;((x.').z;,('.y))
&pr\almost all (x,y) e D, and

_ 9 (x,3) for (x,y) € G
(3.1.10) 2 (x,3) = 5
?&(X,B(X))'Ff f(x’tszszlx(xg'),z&(',t))dt

g(x)

for almost all xe[0,a] and y e D,

#,(x,3)  for (x,3) €
(3.1.11) Z'y(x,y):

X
#(malx)s [ 20x,5,2,2 05,0 ),2p 0, 0))a8
(y)
for x e D, and for almost all ye [0,b].
By (3.1.7), the definition of ¥ and K and the equali-

ties z = T{g) and z% = T&(B)' it follows that

=

2, = v[r(e), 2 (e)] = Kla)

and similarly by the definition of the operctions M, # we

see that z& =3H(g). Consequently,

f(x)yDZ’Z;{(X!')’ZIy(.’y)) = f(X!ysT(g) 1K(E7;) (x, ) ,St(g)(- ,:Y”=i:-":é§,;

which coampletes the proof,.
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Now we have

Theorem 3.1, If the assuvmptions of Lemma 3.2
are satisfied, then there exists at least one solution of
the problem (I).

Proof. Prom the Theorem 2.3 it follows that the
class A of all fixed pointe of the operation S 1is a non-
-empty set. Let B be the mapping defined in the proof of
Lemma 3.2, Then B{A) =2 and B(A) #¢. Tonsequently
Z£¢.
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