

Jan Straburzyński

**EXISTENCE OF SOLUTIONS OF THE GOURSAT PROBLEM
FOR SOME FUNCTIONAL-DIFFERENTIAL EQUATIONS**

0. Introduction

The present paper deals with the question of the existence of solutions of the Goursat problem for the equation

$$\begin{cases} z(x,y) = \varphi(x,y) & \text{for } (x,y) \in G \\ z''_{xy} = f(x,y,z,z'_x,z'_y) & \text{for almost all } (x,y) \in \bar{D} \end{cases}$$

by assumption that f satisfies Carathéodory and some Volterra type conditions and φ , G , \bar{D} are defined in [1].

The results presented here are some generalizations of those obtained in paper [5] for functional-differential equations

$$\begin{cases} z(x,y) = \varphi(x,y) & \text{for } (x,y) \in G \\ z''_{xy}(x,y) = f(x,y,A_1(x,y,z),A_2(x,y,z'_x(x,\cdot)), \\ & A_3(x,y,z'_y(\cdot,y))) & \text{for almost all } (x,y) \in D \end{cases}$$

with initial-boundary conditions of Darboux type.

We will use definitions and notations introduced in [5].

1. Notations, assumptions and lemmas

For given positive numbers α, β, a, b and non-decreasing functions $y = g(x)$, $x = h(y)$ of C' class defined on $[0, a]$, $[0, b]$ and such that $g(0) = h(0) = 0$, $0 \leq g(x) \leq b$, $0 \leq h(y) \leq a$ let $P = [-\alpha, a] \times [-\beta, b]$, $D = \{(s, t) : h(t) < s \leq a, g(s) < t \leq b\}$, $D_{xy} = \{(s, t) : h(t) < s \leq x, g(s) < t \leq y \text{ for } x \in [0, a] \text{ and } y \in [0, b]\}$.

Furthermore let $G = P \setminus D$, $\bar{D}_x = \{y \in [g(x), b] : (x, y) \in \bar{D}\}$ and $\bar{D}_y = \{x \in [h(y), a] : (x, y) \in \bar{D}\}$.

Let us denote by \mathbb{R}^n an n -dimensional Euclidean space with the norm $\|x\| = \max(|x_1|, \dots, |x_n|)$ and by $C_0(P)$ the space of all continuous functions $u : P \rightarrow \mathbb{R}^n$ with the norm $\|u\|_0 = \max_P (\|u(x, y)\|)$. By $C_1(P)$ we will mean the space of equivalence classes of all functions $v : P \rightarrow \mathbb{R}^n$, such that the function

$$v(\cdot, y) : [-\alpha, a] \ni x \rightarrow v(x, y) \in \mathbb{R}^n$$

is continuous for almost all $y \in [-\beta, b]$ and

$$v(x, \cdot) : [-\beta, b] \ni y \rightarrow v(x, y) \in \mathbb{R}^n$$

is measurable for $x \in [-\alpha, a]$ and such that

$$\|v\|_1 = \int_{-\beta}^b \max \{ \|v(x, y)\| : x \in [-\alpha, a] \} dy < \infty.$$

Similarly, by $C_2(P)$ we denote the space of equivalence classes of all functions $w : P \rightarrow \mathbb{R}^n$ such that the function

$$w(\cdot, y) : [-\alpha, a] \ni x \rightarrow w(x, y) \in \mathbb{R}^n$$

is measurable and

$$w(x, \cdot) : [-\beta, b] \ni y \rightarrow w(x, y) \in \mathbb{R}^n$$

is continuous for almost all $x \in [-\alpha, a]$ and such that

$$\|w\|_2 = \int_{-\alpha}^a \max\{\|w(x, y)\| : y \in [-\beta, b]\} dx < \infty.$$

As in [1] we can verify that $(C_1(P), \|\cdot\|_1)$ and $(C_2(P), \|\cdot\|_2)$ are Banach spaces.

The set of all absolutely continuous functions $\varphi : G \rightarrow \mathbb{R}^n$ possessing derivatives $\varphi'_x \in C_2(G)$ and $\varphi'_y \in C_1(G)$ is denoted by \mathcal{F} . We introduce in \mathcal{F} the norm by the formula

$$\|\varphi\|_{\mathcal{F}} = \sup_{\mathcal{G}} \|\varphi(x, y)\| + \sup_{\mathcal{G}} \|\varphi'_x(x, y)\| + \sup_{\mathcal{G}} \|\varphi'_y(x, y)\|.$$

For given $\varphi \in \mathcal{F}$ let

$$C_0^{\varphi}(P) = \{u \in C_0(P) : u(x, y) = \varphi(x, y) \text{ for } (x, y) \in G\}.$$

Similarly, we define the spaces $C_1^{\varphi}(P)$ and $C_2^{\varphi}(P)$. Furthermore by C_x^{φ} and C_y^{φ} we will denote Banach spaces of all continuous vector-valued functions on $[-\beta, b]$ and $[-\alpha, a]$, respectively, with supremum norms $\|\cdot\|_1$ and $\|\cdot\|_2$.

As usual we shall say that $f : \bar{D} \times C_0^{\varphi} \times C_x^{\varphi} \times C_y^{\varphi} \rightarrow \mathbb{R}^n$ satisfies the Carathéodory type conditions if

(i) $f(\cdot, \cdot, z, p, q) : \bar{D} \rightarrow \mathbb{R}^n$ is measurable for fixed $(u, v, w) \in C_0^{\varphi} \times C_x^{\varphi} \times C_y^{\varphi}$

(ii) $f(x, y, \cdot, \cdot, \cdot) : C_0^{\varphi} \times C_x^{\varphi} \times C_y^{\varphi} \rightarrow \mathbb{R}^n$ is continuous for fixed $(x, y) \in \bar{D}$

(iii) there exists a Lebesgue integrable function $m : \bar{D} \rightarrow \mathbb{R}$ such that

$$\|f(x, y, z, p, q)\| \leq m(x, y)$$

for $(x, y) \in \bar{D}$ and $(z, p, q) \in C_0^{\varphi} \times C_x^{\varphi} \times C_y^{\varphi}$.

Furthermore, we shall say that $f : \bar{D} \times C_0^{\varphi} \times C_x^{\varphi} \times C_y^{\varphi} \rightarrow \mathbb{R}^n$

has the property of Volterra if for $(x, y) \in P$, $z_1, z_2 \in C_0^{\varphi}(P)$,

$p_1, p_2 \in C_x$ and $q_1, q_2 \in C_y$ such that $z_1(s, t) = z_2(s, t)$,
 $p_1(t) = p_2(t)$ and $q_1(s) = q_2(s)$ for $(s, t) \in P(x, y)$ it
 follows that

$$f(x, y, z_1, p_1, q_1) = f(x, y, z_2, p_2, q_2)$$

where $P(x, y) = [-\alpha, x] \times [-\beta, y]$ for $(x, y) \in \bar{D}$.

By F we shall denote the set of all functions
 $f : \bar{D} \times C_0^\varphi \times C_x \times C_y \rightarrow \mathbb{R}^n$ satisfying the Carathéodory and
 Volterra conditions with the equivalence relation \sim defined
 by

$$(f_1 \sim f_2) \Leftrightarrow f_1(x, y, z, p, q) = f_2(x, y, z, p, q)$$

for almost all $(x, y) \in \bar{D}$.

Let us introduce in F a metric φ defined by

$$\varphi_F(f_1, f_2) = \|f_1 - f_2\|_F$$

where $\|f\|_F = \iint_D \sup \left\{ \|f(x, y, z, p, q)\| : (z, p, q) \in C_0^\varphi \times C_x \times C_y \right\} dx dy$

for $f, f_1, f_2 \in F$.

We call the sequence $(w_n) \in C_1^{\varphi'}(P)$ almost uniformly
 bounded on each $[-\beta, b]$, if for every $\varepsilon > 0$ there is a set
 $\Omega_\varepsilon \subset [-\beta, b]$ and a constant $K_\varepsilon > 0$ such that $|[-\beta, b] \setminus \Omega_\varepsilon| < \varepsilon$
 and $\|w_n(x, y)\| \leq K_\varepsilon$ for all $y \in \Omega_\varepsilon$, $n = 1, 2, \dots$

We introduce the following two uniqueness assumptions:

Assumption E₁. If $\varphi \in \Phi$, $u \in C_0^\varphi(P)$ and $(w_n) \in C_1^{\varphi'}(P)$
 is a sequence almost uniformly bounded on $[-\beta, b]$ for all
 $x \in [0, a]$ then the equation

$$(1.1) \quad v(y) = \begin{cases} \varphi'_x(x, y) & \text{for } y \in [-\beta, g(x)] \\ \varphi'_x(x, g(x)) + \lim_{n \rightarrow \infty} \int_{g(x)}^y f(x, t, u, v, w_n(\cdot, t)) dt & \text{for } y \in \bar{D}_x \end{cases}$$

has for almost all fixed $x \in [0, a]$ at most one solution $v(y)$ continuous on \bar{D}_x . Moreover, the exceptional null set $N_1 \subset [0, a]$ is independent of u and (w_n) .

Assumption E₂. If $\varphi \in \Phi$, $u \in C_0^\varphi(P)$, $v \in C_2^{\varphi_x}(P)$, then the equation

$$(1.2) \quad w(x) = \begin{cases} \varphi'_x(x, y) & \text{for } x \in [-\alpha, h(y)] \\ \varphi'_y(h(y), y) + \int_{h(y)}^x f(s, t, u, v(s, \cdot), w) ds & \text{for } x \in \bar{D}_y \end{cases}$$

has for almost all fixed $y \in [0, b]$ at most one solution $w(x)$ continuous on \bar{D}_y and the exceptional null set $N_2 \subset [0, b]$ is independent of u and v .

The object of our investigation is the functional-differential equation of the form

$$(I) \quad \begin{cases} z(x, y) = \varphi(x, y) & \text{for } (x, y) \in G \text{ and } \varphi \in \Phi \\ z''_{xy}(x, y) = f(x, y, z, z'_x(x, \cdot), z'_y(\cdot, y)) \end{cases}$$

for almost all $(x, y) \in \bar{D}$ and $f \in F$.

By the solution of (I) we mean a function $z : P \rightarrow \mathbb{R}^n$ absolutely continuous possessing derivatives z'_x , z'_y and z''_{xy} almost everywhere on \bar{D} and satisfying (I).

In a similar manner as in paper [6] we can prove the following Lemmas:

Lemma 1. Suppose $f \in F$, $\varphi \in \Phi$ and (E_1) is satisfied. If $u \in C_0^\varphi(P)$ and $w \in C_1^{\varphi_y}(P)$, then the equation

$$(1.3) \quad v(x, y) = \begin{cases} \varphi'_x(x, y) & \text{for } (x, y) \in G \\ \varphi'_x(x, g(x)) + \int_{g(x)}^y f(x, t, u, v(x, \cdot), w(\cdot, t)) dt & \text{for almost all } x \in [0, a] \text{ and } y \in \bar{D}_x \end{cases}$$

has exactly one solution $v \in C_2^{\varphi_x}(P)$.

Lemma 2. Let $f \in F$, $\varphi \in \Phi$ and (E_2) be satisfied. If $u \in C_0^\varphi(P)$ and $v \in C_2^{\varphi'_X}(P)$, then the equation

$$(1.4) \quad w(x, y) = \begin{cases} \varphi'_y(x, y) & \text{for } (x, y) \in G \\ \varphi'_y(h(y), y) + \int_{h(y)}^x f(x, y, u, v(s, \cdot), w(\cdot, y)) ds \\ & \text{for } x \in \bar{D}_y \text{ and almost all } y \in [0, b], \end{cases}$$

has exactly one solution $w \in C_1^{\varphi'_y}(P)$.

By Lemmas 1 and 2 it follows that there exist mappings

$$\psi : C_0^\varphi(P) \times C_1^{\varphi'_y}(P) \ni (u, w) \mapsto \psi(u, w) = v \in C_2^{\varphi'_X}(P)$$

$$\Gamma : C_0^\varphi(P) \times C_2^{\varphi'_X}(P) \ni (u, v) \mapsto \Gamma(u, v) = w \in C_1^{\varphi'_y}(P).$$

Moreover, let us define the mapping $T : L_n(\bar{D}) \rightarrow C_0^\varphi(P)$ by

$$(1.5) \quad T(g)(x, y) = \begin{cases} \varphi(x, y) & \text{for } (x, y) \in G \\ \lambda(x, y) + \iint_{\bar{D}_{xy}} g(s, t) ds dt & \text{for } (x, y) \in \bar{D}, \end{cases}$$

where $\varphi \in \Phi$ and

$$(1.5.1) \quad \lambda(x, y) = \varphi(0, 0) + \int_0^x \varphi'_X(s, g(s)) ds + \int_0^y \varphi'_y(h(t), t) dt.$$

We put now

$$K(g) = \psi \left[T(g), T'_y(g) \right] \quad \text{for } g \in L_n(\bar{D})$$

and

$$\mathcal{H}(g) = \Gamma [T(g), K(g)] \quad \text{for } g \in L_n(\bar{D}).$$

Let $H_\psi = \{g \in L_n(\bar{D}) : \|g(x, y)\| \leq \psi(x, y)\} \text{ for } x \in \bar{D}_y, y \in [0, b]$
where $\psi \in L(\bar{D})$.

Similarly as in paper [6] we can prove that $T(H_\psi)$ is compact in $C_0(P)$ and T is continuous on H_ψ . Moreover $K(H_\psi), \mathcal{K}(H_\psi)$ are conditionally compact in $C_2^{\varphi_x}(P)$ and $C_1^{\varphi_y}(P)$, respectively, and K, \mathcal{K} are continuous on H_ψ .

By the above notations an operation S can be defined as follows

$$(1.6) \quad [S(g)](x, y) = f(x, y, T(g), K(g)(x, \cdot), \mathcal{K}(g)(\cdot, y))$$

for almost all $(x, y) \in \bar{D}$.

2. Some properties of the operation S

Theorem 2.1. Suppose $f \in F$, $\varphi \in \varphi$ and assumptions (E_1) , (E_2) are satisfied. Then the operation S defined by (1.6) is continuous on the set H_ψ .

Proof. Let $g_0 \in H_\psi$ such that $|g_n - g_0| \rightarrow 0$ as $n \rightarrow \infty$, where $|g| = \iint_{\bar{D}} \|g(x, y)\| dx dy$. By the continuity of operations T , K and \mathcal{K} it follows that $\|Tg_n - Tg_0\|_0 \rightarrow 0$, and

$$\|\mathcal{K}g_n - \mathcal{K}g_0\|_1 \rightarrow 0 \text{ as } n \rightarrow \infty.$$

On the other hand, for every $n = 1, 2, \dots$

$$|S(g_n) - S(g_0)| = \iint_{\bar{D}} \|f(x, y, u_n, v_n(x, \cdot), w_n(\cdot, y)) - f(x, y, u_0, v_0(x, \cdot), w_0(\cdot, y))\| dx dy,$$

where $u_k = T(g_k)$, $v_k = K(g_k)$ and $w_k = \mathcal{K}(g_k)$ for $k=0, 1, 2, \dots$

Hence, from the assumptions about f it follows that

$$|Sg_n - Sg_0| \rightarrow 0 \text{ as } n \rightarrow \infty ,$$

which ends the proof.

Theorem 2.2. Suppose that the assumptions of Theorem 2.1 are fulfilled. Then $S(H_n)$ is conditionally compact in the space $L_n(\bar{D})$. Then proof is analogous to the proof of Theorem 2.2 given in [5].

Now we prove that the operation S has a fixed point. We precede this by the following lemma.

Lemma 2.1. The set $F \subset L_n(\bar{D})$ is conditionally compact if and only if it is bounded and there exists a function $d_F : R^2 \rightarrow R_+$ such that

$$\lim_{\substack{h \rightarrow 0 \\ k \rightarrow 0}} d_F(h, k) = 0$$

and for every $f \in F$

$$\iint_{\bar{D}} \|\tilde{f}(x+h, y+k) - \tilde{f}(x, y)\| dx dy \leq d_F(h, k)$$

where

$$\tilde{f}(x, y) = \begin{cases} f(x, y) & \text{for } (x, y) \in \bar{D} \\ 0 & \text{for } (x, y) \in \bar{D}^c, \bar{D}^c = R^2 \setminus \bar{D}. \end{cases}$$

This Lemma follows from Lemma given in [4] p.301.

Theorem 2.3. Let the assumptions of theorem 2.1 be fulfilled and let H_m be defined by

$$H_m = \left\{ g \in L_n(\bar{D}) : \|g(x, y)\| \leq m \right\}$$

for $x \in \bar{D}_y$ and for almost all $y \in [0, b]$, where $m \in L(\bar{D})$, and m satisfies the inequality

$$\|h(x, y, z, p, q)\| \leq m(x, y)$$

for $(x, y, z, p, q) \in \bar{D} \times C_0^\infty \times C_x \times C_y$. Then the operation S defined by (1.6) has in the set H_m at least one fixed point.

P r o o f . In virtue of Theorem 2.2 the set $S(H_m)$ is conditionally compact in $L_n(\bar{D})$. Also, by Lemma 2.1 there exist a constant $M > 0$ and a function $d_H: \mathbb{R}^2 \rightarrow \mathbb{R}_+$ such that $|x_g| \leq M$ and

$$\iint_{\bar{D}} \|\tilde{x}_g(x+h, y+k) - \tilde{x}_g(x, y)\| dx dy \leq d_H(h, k)$$

for $g \in H_m$ and $(h, k) \in \mathbb{R}^2$, where

$$\tilde{x}_g = \begin{cases} x_g & \text{for } (x, y) \in \bar{D} \\ 0 & \text{for } (x, y) \in \bar{D}^c. \end{cases}$$

Moreover,

$$\lim_{\substack{h \rightarrow 0^+ \\ k \rightarrow 0^+}} d_H(h, k) = 0.$$

Let $W \subset H_m$ be the set of all functions $g \in H_m$ for which $|g| \leq M$ and

$$\iint_{\bar{D}} \|\tilde{g}(x+h, y+k) - \tilde{g}(x, y)\| dx dy \leq d_H(h, k),$$

where

$$\tilde{g}(x, y) = \begin{cases} g(x, y) & \text{for } (x, y) \in \bar{D} \\ 0 & \text{for } (x, y) \in \mathbb{R}^2 \setminus \bar{D}. \end{cases}$$

On account of $S(H_m) \subset W$ we see that $W \neq \emptyset$.

It follows from the definition that the set W is conditionally compact, bounded, closed and convex in the space $L_n(\bar{D})$. Furthermore $S(W) \subset S(H_m) \subset W$. Consequently, from Schauder's fixed point theorem it follows that there exists a point $g_0 \in W$ such that $S(g_0) = g_0$. Thus the proof is completed.

3. The existence of solutions for the problem (I)

We precede the proof of the existence theorem by two lemmas.

Lemma 3.1. If $f \in F$, $\varphi \in \Phi$, then the equation (I) is equivalent to the functional-differential-integral equation

$$(II) \quad z(x,y) = \begin{cases} \varphi(x,y) & \text{for } (x,y) \in G \\ \lambda(x,y) + \iint_{\bar{D}_{xy}} f(s,t,z, z'_x(s,\cdot), z'_y(\cdot,t)) ds dt \end{cases}$$

for $(x,y) \in \bar{D}$ where $\lambda(x,y)$ is defined by (1.5.1).

Proof. By the assumptions concerning the function f it follows that $f(x,y,z, z'_x(x,\cdot), z'_y(\cdot,y))$ is a Lebesgue integrable function in \bar{D}_{xy} .

Since

$$\iint_{\bar{D}_{xy}} f(s,t,z, z'_x(s,\cdot), z'_y(\cdot,t)) ds dt =$$

$$= \int_0^{h(y)} \left(\int_{g(s)}^{h^{-1}(s)} f(s,t,z, z'_x(s,\cdot), z'_y(\cdot,t)) dt \right) ds +$$

$$\begin{aligned}
 & + \int_{h(y)}^x \left(\int_{g(s)}^y f(s, t, z, z'_x(s, \cdot), z'_y(\cdot, t)) dt \right) ds = \\
 & = \int_0^{g(x)} \left(\int_{h(t)}^y f(s, t, z, z'_x(s, \cdot), z'_y(\cdot, t)) ds \right) dt + \\
 & + \int_{g(x)}^y \left(\int_{h(s)}^x f(s, t, z, z'_x(s, \cdot), z'_y(\cdot, t)) ds \right) dt
 \end{aligned}$$

we obtain

$$(3.1.1) \quad z'_x(x, y) = \begin{cases} \varphi'_x(x, y) & \text{for } (x, y) \in G \\ \varphi'_x(x, g(x)) + \int_{g(x)}^y f(x, t, z, z'_x(x, \cdot), z'_y(\cdot, t)) dt \end{cases}$$

for almost all $x \in [0, a]$ and $y \in \bar{D}_x$, and

$$(3.1.2) \quad z'_y(x, y) = \begin{cases} \varphi'_y(x, y) & \text{for } (x, y) \in G \\ \varphi'_y(h(y), y) + \int_{h(y)}^x f(s, y, z, z'_x(s, \cdot), z'_y(\cdot, y)) ds \end{cases}$$

for $x \in \bar{D}_y$ and for almost all $y \in [0, b]$.

Obviously we get

$$z''_{xy}(x, y) = f(x, y, z, z'_x(x, \cdot), z'_y(\cdot, y))$$

for almost all $(x, y) \in \bar{D}_0$.

Lemma 3.2. Let $f \in F$, $\varphi \in \phi$ and let the assumptions (E_1) , (E_2) be satisfied. Let Λ be the set of all

fixed points of the operation S defined by (1.6), and let Z be the class of all solutions of the equation (II). Then the restriction of the operation T defined by (1.5) to the set Λ is a bijection of Λ on the set Z .

P r o o f. Let $g \in \Lambda$. Then $g = S(g)$ and by the definition of the operation S we have

$$(3.1.3) \quad g(x, y) = f(x, y, T(g), (Kg)(x, \cdot), (\mathcal{K}g)(\cdot, y))$$

for almost all $(x, y) \in \bar{D}$, where $T(g)$ is defined by (1.5) and the functions $v = K(g)$, $w = \mathcal{K}(g)$ are the unique solutions of the equations

$$(3.1.4) \quad v(x, y) = \begin{cases} \varphi'_x(x, y) & \text{for } (x, y) \in G \\ \varphi'_x(x, g(x)) + \int_{g(x)}^y f(x, t, z, z'_x(x, \cdot), z'_y(\cdot, t)) dt \end{cases}$$

for almost all $x \in [0, a]$ and $y \in \bar{D}_x$

$$(3.1.5) \quad w(x, y) = \begin{cases} \varphi'_y(x, y) & \text{for } (x, y) \in G \\ \varphi'_y(h(y), y) + \int_{h(y)}^x f(s, y, z, z'_x(s, \cdot), z'_y(\cdot, y)) ds \end{cases}$$

for $x \in \bar{D}_y$ and for almost all $y \in [0, b]$.

Let $z = T(g)$. In virtue of (3.1.3) and (1.5) we obtain

$$(3.1.6) \quad z_x(x, y) = \begin{cases} \varphi'_x(x, y) & \text{for } (x, y) \in G \\ \varphi'_x(x, g(x)) + \int_{g(x)}^y f(x, t, z, z'_x(x, \cdot), z'_y(\cdot, t)) dt \end{cases}$$

for almost all $x \in [0, a]$ and $y \in \bar{D}_x$ and

$$(3.1.7) \quad z'_y(x,y) = \begin{cases} \varphi'_y(x,y) & \text{for } (x,y) \in G \\ \varphi'_y(h(y),y) + \int_{h(y)}^x f(s,y,z, z'_x(s,\cdot), z'_y(\cdot,y)) ds \end{cases}$$

for $x \in \bar{D}_y$ and for almost all $y \in [0,b]$.

Thus from (3.1.5) and (3.1.7) by the uniqueness of the solutions of equation (3.1.5) and the fact that $z = T(g)$ we get $z'_y(x,y) = w(x,y)$ for $x \in \bar{D}_y$ and for almost all $y \in [0,b]$. It is obvious that $z'_y = w$ on G .

Similarly, from (3.1.4), (3.1.6) we get

$$z'_x(x,y) = v(x,y)$$

for almost all $x \in [0,a]$ and $y \in \bar{D}_x$. Moreover, $z'_x = v$ on G .

By substituting $K(g) = z'_x$, $\mathcal{K}(g) = z'_y$ into (3.1.3) and next g into (1.5) we conclude that the function $z = T(g)$ is a solution of equation (II). Consequently, the restriction of the operation T to Λ transforms Λ on the set Z . Denoting by B the restriction $T|_{\Lambda}$ we have $B : \Lambda \rightarrow Z$. The operation B is a one-to-one mapping from Λ to Z . In fact, suppose to the contrary that for $g_1 \neq g_2$ we have

$$Bg_1 = Bg_2.$$

Then by (1.5)

$$\iint_{\bar{D}_{xy}} [g_1(s,t) - g_2(s,t)] ds dt = 0 \quad \text{for } (x,y) \in \bar{D}$$

Hence $g_1 = g_2$ for almost all $(x,y) \in \bar{D}$, which contradicts the assumption that $g_1 \neq g_2$ in $L_n(D)$.

It remains to prove that $Z \subset B(\Lambda)$. Assume that $z \in Z$ and let

$$(3.1.9) \quad g(x, y) = f(x, y, z, z'_x(x, \cdot), z'_y(\cdot, y))$$

for almost all $(x, y) \in \bar{D}$, and

$$(3.1.10) \quad z'_x(x, y) = \begin{cases} \varphi'_x(x, y) & \text{for } (x, y) \in G \\ \varphi'_x(x, g(x)) + \int_{g(x)}^y f(x, t, z, z'_x(x, \cdot), z'_y(\cdot, t)) dt & \end{cases}$$

for almost all $x \in [0, a]$ and $y \in \bar{D}_x$

$$(3.1.11) \quad z'_y(x, y) = \begin{cases} \varphi'_y(x, y) & \text{for } (x, y) \in G \\ \varphi'_y(x, g(x)) + \int_{h(y)}^x f(x, t, z, z'_x(x, \cdot), z'_y(\cdot, t)) dt & \end{cases}$$

for $x \in \bar{D}_y$ and for almost all $y \in [0, b]$.

By (3.1.7), the definition of ψ and K and the equalities $z = T(g)$ and $z'_y = T'_y(g)$ it follows that

$$z'_x = \psi[T(g), T'_y(g)] = K(g)$$

and similarly by the definition of the operations Γ , \mathcal{H} we see that $z'_y = \mathcal{H}(g)$. Consequently,

$$f(x, y, z, z'_x(x, \cdot), z'_y(\cdot, y)) = f(x, y, T(g), K(g)(x, \cdot), \mathcal{H}(g)(\cdot, y)) = \mathcal{S}(g)$$

which completes the proof.

Now we have

Theorem 3.1. If the assumptions of Lemma 3.2 are satisfied, then there exists at least one solution of the problem (I).

Proof. From the Theorem 2.3 it follows that the class Λ of all fixed points of the operation S is a non-empty set. Let B be the mapping defined in the proof of Lemma 3.2. Then $B(\Lambda) = Z$ and $B(\Lambda) \neq \emptyset$. Consequently $Z \neq \emptyset$.

REFERENCES

- [1] K. Deimling : A Carathéodory theory for systems of integral equations, Ann. Mat. Pura Appl. (4) 86 (1970) 217-260.
- [2] K. Deimling : Das Goursat-Problem fur $u_{xy} = f(x,y,u)$, Aequationes Math. 6 (1971) 206-214.
- [3] A. Bielecki, J. Kisynski : Sur le problème de E. Goursat relatif à l'équation $\partial^2 z / \partial x \partial y = f(x,y)$, Ann. Univ. Mariae Curie-Skłodowska (A) 10 (1956) 99-126.
- [4] Dunford, J.T. Schwartz : Linear operators, Part I. New York-London 1958.
- [5] J. Straburzyński : The existence of solutions of some functional-differential equations of hiperbolic type, Demonstratio Math. 12 (1970) 105-121.
- [6] J. Straburzyński : On properties of some integral operations, Discussiones Math. (in print).

INSTITUTE OF MATHEMATICS AND PHYSICS, ENGINEERING COLLEGE,

ZIELONA GÓRA

Received December 17, 1980.

