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A BANACH SPACE REFORMULATION OF THE SPECTRAL THEOREM

1. Introduction

The well-known spectral theorem for self-adjoint operators
is naturally formulated in the Hilbert space framework, 4s
every Hilbert space is also a Banach space, there arises the
quéstipn whether the spectral theorem can be reformulated in
such a way that it uses only the language of Banach space theo-
ry. In this note we would like to show that such a reformula-
tion is possible. Since the notions of self-adjoint operator
and of projection operator are defined in Hilbert space with
respeot to the inner product, to obtain a Banach space re-
formulation of the spectral theorem first we have to redefine
these notions in Banach space without any reference to the
inner product structure. We will mske use of quadratic forms,
Namely, we will define an abstract counterpart of quadratic
form and we will characterize the special class of projection
quadratic forms. Finally we will prove an equivalent formula-
tion of the spe:tral theorem in the framework of Banach space
theory. Cur attempt to restate the spectral theorem is moti-
vated by some problems in the foundations of quantum mecha-
nics, Namely, it is argued that the language of axioms of
quantum mechanics should not make usse of the Hilbert space
notlions, in particular, the reference to the inner product
should be avoided., The Hilbert space structure should not be
an assumption but rather a consequence of the axioms. This
approach may lead to some generalizations of quantum mecha-
nics.
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2, Quadratic forms and the speciral theorem

Before we define the basic notions of the paper, we re-
call the formulation of the spectral theorem which will be
used as a starting point for our generalization., We formulgte
the spectral theorem in terme of quadratic forms. For simpli-
city, we restrict our considerations to bounded operators,
although all our results can be easily generalized to unbound-
ed operators. We will also assume that linear spaces in que-
stions are infinite dimensional.

Iet X be a Hilbert space (a dsomplete inner product veo-
tor space). With each bounded self-adjoint operator 4 on
X (A* = A) we can associate a real-valued function £, de-
fined on X by

(2.1) f,(x) = (4x,x) for all x e X,

Here (.,.) denotes the inner product in X, The function
defined by (2.1) is_called the guadratic form corresponding
to 4. We would like to define quadratic forms on X with-
out the necessity of using the operator 4 and the inner pro-
duct (.,.)e To this aim we will use the following interesting
theorem of S. Kurepa.

Theorem 2.1, (S.Kurepa {1]). ILet X be a com~
plex vector space and f : X —+ C a complex-valued function
such that
(i) f{x+y) + £'x=y) = 2f(x) + 2£(y) for all =x,y ¢ X,

(11) f£(cx) = |el®f(x) for all ¢ € C and x € X.
Under these conditions, the function

h(x,3) = § (f(x+3) = £(x=y)) + Ja(£(x+iy) - £(x-13))

is linear in x and antilinear in 7y, that is, h(x,y) is
a sesquilinear form on X and we have h(x,x) = f(x). If
f(x} is real-valued, then h is hermitean,

Using Kurepa’s theorem, we can characterize guadratic
forms on a Hilbert space as follows.
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Theorem 2,2, Let X be a Hilbert space and
£ s X— R a oontinuous real valued function defined on X
such that
(i} f£(x+y) + f(x~y) = 2f(x) + 2f(y) for all x,y € X,
(11) f(wx) = £f{x) for all =x € X and all complex numbers
with |w]= 1.
Then f is a quadratic form on X, i.e. there is a sélf-ad-
joint operator A such that f(x) = f(ax,x). Conversely,
every guadratio form on X satisfies conditions (i) and (ii).
Proof. Pirst we shall show that (i} and (ii) above
imply condition (ii) of Theorem 2.1. Putting x = 3 = 0 in (i)
we obtain f{(0) = O, Putting x =73 in (1) we obtain f(2x) =
= 4f(x)., By induction, we easily infer that f(mx) = mzf(x)
for all natural m and x € X. From (ii) we have f(-x) =
= f(x), henoce f(nx) = n2f(x) for every integer n. Put-~
ting nx =y we infer that f(% y) = iﬁ f(y) for all inte=-

ger n # 0 and y € X. Hence f(rx) = r2f(x) for all ratio-
nal r and x € X. By continuity of £, we infer that
f(ax) = azf(x) for all real a and x € X. Now if ¢ is
any complex number, then ¢ = wa where |w|/=1 and a is
a real number, hence f{cx) = flwax) = flax) = af(x) =
=}c|2f(x), which shows that condition (1i) of Theorem 2,1
holds. Hence by this Theorem the function h(x,y) defined
above is a sesquilinear form on the Hilbert space X. Since
f 4is continuous, h 1is also continuous and conseguently
bounded. By-.Riesz ‘s representation theorem, there is a bound-
ed sslf-adjoint operator 4 acting in X such that h(x,y) =
(ax,y) for all =x,y € X. Hence we have f(x) = h{(x,x) =
= (Ax,x), 1.e. f 1is a quadratic form. On the other hand,
it is evident that every quadratic form on X satisfies con-~
ditions (i) and (ii) of Theorem 2.2. This ends the proof of
this theorem.

Now we recall the standard formulation of the spectral
theorem (see, e.g., Prugovecki [3]). To each bounded self-
-adjoint operator A on a Hilbert space X there corresponds

a projection-valued measure md B(R) — L(X) such that

- 853 ~



4 M.Maczyhski

(2.2) (ax,y) =.[ A d(mA({a})x,y) for all x,y ¢ X.
R

Putting in (2.2) x =y we obtain the spsctral theorem for
quadratic forms

(2.3) (ax,x) =_[ Z'd(mA({ﬂ})x,x) for all x e X.
R

For each Borel set E € B(R), nf(E) 1s a projection. Let us
call every quadratic form (Px,x) where P 1is a projection,
a projection quadratic form. Let us denote f:(x) =

= (mA({A})x,xJ. Hence for each 4 and A €R, fA(x) is a pro-
Jection gquadratic form., We can now write formula (2.,3) as
follows

(2.4) t(x) = [ Adty(x).

R '
This shows that eveby quadratic form on a Hilbert space X
can be expressed, by means of an integral, in terms of pro=-
jection quadratic forms. In particular, if the quadratic form
f -acte on a finite~dimensional Hilbert space, i.,e. if 4 1is
a hermitean matrix with eigenvalues 21, ﬁz,..., An, then
the spectral expansion (2.4) for f takes the form

{2.5) f(x) = A1f1(x) + ﬂzfz(x) + ees + ann(x)

where f1,...,fn arse suitable projection gquadratic forms.

If we think of a generalization of the spectral theorem beyond
Hilbert space, the formulas (2.4} and (2.5) seem to be most
suitable to be generalized, In the next section we will take

advantage of this formulation of the spectral theorem,

3. QGuadratic functionals

Before we gensralize the spectral theorem, we have to
generalize the notion of a quadratic form. We would like to
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define a quadratic form in an abstract way without using in-
ner product, We will look upon quadratic. forms as real-valued
mappings defined on a vector space X with some special prc-~
perties, When X becomes a Hilbert space, our generalized
quadratic form should coincide with the standard Hilbert spa-
ce quadratic form, Theorem 2.2 of the previous section shows
us which properties of quadratic forme distinguish them from
other real-valued mappings. Hence we can introduce the fol-
lowing definition,

Definition 3.1, Let X be a topological li-
near space, A real-valued function on X f : X— R i3 said
to be a duadratic functional on X 1if it is continuous and
satisfies the following conditions:

(1) f£(x+y) + f(x~-y) = 2f(x) + 2f(y) for all x,y ¢ X,
(11) f(wx) = f(x) for all x € X and all complex numbers
o] = 1.

‘It is evident that the set of all quadratic functional
on X forms a linear space. On the basis of Theorem 2.2 we
can state the following corollary,

Corollazry 3e2. Every quadratic functional on
a Hilbert space is a quadratic form.

Henoe on a Hilbert space (and also on an inner product
space) the notions of quadratic functional and quedratic form
coincide.

In Hilbert space, among duadratic forms we can distinguish
the simplest quadratic forms - namely the projection quadra-
tic forms, As we know from the spectral theorem, every qua-
dratic form can be construocted from projection quadratic forms.
There arises the'gpeétion how to define a counterpart of the
class of projection quadratic forms in the framework of qua-
dratic functionals, We answer this question by using the no-
tion of a projection system, useful also in quantum logic
theory. .
Definititon 3.2 Let S be a set and L
a family of mappings from. $§ into the real interval [0,1].
"3 gsay that L 1s a projection system if the following con-
dition holds:
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(1) For every sequence fi of elements of L such that
£y + fj <1 for all 1 #£ j, there exists g € L such that
g + f1 + f2 + eoe = 1o

We of course assume that L is non-empty. In the sequel
we shall show that the set of all projeoction quadratic forms
on a Hilbert space X (restricted to the unit sphere of X)
is a projection system.

Observe that every projection system L is naturally
partially ordered by the partial order relation between the
real functions in L: f g if and only if f(x) < g{x)
for all x ¢ S, It is easy to show that f e€ L implies
1 ~f €L, We alsc have 0 € L, 1 € L (here 0 denctes the
function taking the value 0 for all x € S, similarly 1).
Hence we can introduce the mapping f/ =1 -f of L into L,
It can be shown (see [2]) that (L,<, ') is an orthomodular
partially ordered set. We define an orthogonality relation
in L by f£1g iff f + g <1 (equivalently iff f <g’').

4 map. m ;: B(R)— I from the family B(R) of Borel
sets on the real line into L 1s sald to be an L-valued mea-
surs if ‘

(3.1) m(E.] + E2 + -oo) = m(E1) + m(Ea) + see
whenever E; n.Ej =@ for i # ), and
(3'2) : m(R) = 1.

It is easy to show that BE n P = ¢ implies m(E) + m(F),
If m 1s an L-valued measure, then for each fixed u e S
the map

(3.3) m,6: BE—> m{E)(u)

is a probability measure on B(R). Assume that this probabi-~
1ity measure is bounded, i.e. thers exists a bounded Borel
set E such that mu(E) = 1. Then we can compute the integral
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of A with respect to m, (interpreted as the expected value
of the random variable corresponding to the probability den-
Bity mu):

(3.4) f(u) =f qu1=! Admﬂhh(m.
R R

In this way we define a function f from S into R. We
shall say that f 18 generated by L. The set of all fun-
ctions generated by L will be denoted by v ar? called the
set of all random variables on L or L-random variables,
Obgerve that Lcd,

4, Spéctral theorem for quadratic functiounals on Banach

spaces

We now restrict our consideration to Banach spaces. Let’
X be a Banach space and S the unit sphere of X. Let L{X)
denote the set of all closed subspaces of X partially or-
dered by the inclusion relation. We shall say that X is an
orthocomplemented Banach space if there exists a map' :L(X)—
~+L(X) with the following properties:

(4.1) M" =M for all M e L(X),
(4.2) MEN implies N'€ M' for all M,N e L(X),

(4.3) Mal' = 0 for all M e L(X),

(4.4) if N € L(X) contains both M and M', then N = X,

We can now prove our main theorem.

Theorem 4.1, Let X be an orthocomplemented
Banach space and Q the set of continuous quadratic funotio-
nals defined on X. Then there exists a projection system
L € Q|S such that Q|S is generated by L (Q|S denotes
the set of all functions in Q with domain restricted to S).
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Proof. Since X 1is an orthocomplemented Banach
space, by a theorem of Kakutani-Mackey in {4] there is an
inner product (.,.) defined on X such that (X,(.,.}) 1is
a Hilbert space and the Hilbert space topology of X coinci-
des with the original Banach space topology of X. Now let
f € ¢ be a continuous quadratic functional on X, By Theo-
rem 2,2 f is a quadratic form on X, i.e., there exists
a bounded self-adjoint operator on X such that f£(x) =
= f(4x,x) for all x e¢ X. Let L, be the set of all ortho-
gonal projections on X (i.e. for each I’eLo we have
P2 - P = P¥), and let for each P ¢ L, fP(x) = (Px,x) for
all x X, It is clear that fP is a quadratic functional.
We shall show that L = {fPIS : P e Lo} is a projection sy-
stem, In fact, let fi be a sequsnoe of elements of L such
that £, +.f;j €1 for all 1 # j. ILet fi(u) = (Piu,u)
for 811 u € S. If (Piu,u) + (P.u,u) ¢1 for all u e S,
then (Piu,u) < ((1 = Pj)u,u) for all u € S. This implies

Pi <1 - Pj = P; » l.e. P; and P, are orthogonal. Hence

P=P, +P, +... exists an is a projection. et glu) =

(Plu,u) for all u e S, We have g € L and g + £, 0+ fé+...
= 1, Hence property (i) of Definition 3,2 holds. This shows
that L 1is a projection system.

Next we shall show that L generates Q|S. Let f e Q
and let f(x) = (Ax,x) for some self-adjoint opsrator A.
By the spectral theorem, there exists a projection valued
measure mh such that

(4.5) (ax,x) = [ 2 atub({a})x,x)
' R

for all x € X, For each Borel set B ¢ B(R), mA(E) is a
projection, hence (mA(E)u,u) with u € S is a member of I,
and the map o’ : E —a»(mA(E)u,u) is an L-valued measure.

We can write (4.5) in the form
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(4.6) £(u) =f A dmf({x})(u)
R

which shows that f 1is generated by L. This ends the proof
of Theorem 4.1,

- Theorem 4,1 shows that our orliginal aim is achieved: the
gpectral theorem has been formulated entirely in terms of
the theory of ‘Banach 8paces, without direct reference to inner
product and self-adjoint operators. We shall now give another
more probabilistic formulation of this theorem.

Theoremn 4.2. Let X be an orthocomplemented
Banach space and Q +the set of all continuous quadratic fun-
ctionals on X. Then there exists a doubly-indexed family of
probability measures

(4.7) {mf,u}feQ, ues

guch that the following conditions hold:

{1} For each f € Q and E € B(R) +the map u —«-mf’u(E)
is a guadratic functional defined on S.

{ii) The family L of all maps defined in (i) is a projec-
tion system generating Q.

(11i) We have f(u) = £ A dmf,u for all f € Q, u € S.

Proof. By Theorem 4.1 there exists a projection
system L € Q|S such that Q|S is generated by L. Hence
for each f € Q there is an L-valued measure E —» mf(E)
such that for z2ach f € Q we have

£(a) = [ 2 dm ({a}) (u).
R

For each f € Q and each u € S the map m, from B(R)
’
into [0,1] defined by me u(E) = mf(E)(u) is a probability
r - ’
measure. 1t is easy to verify that the family {mf,u}feQ,ueS
satisfies the conditions of the theorem,
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