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1. I n t r o d u c t i o n 
The well-known s p e c t r a l theorem f o r s e l f - a d j o i n t ope ra to r s 

i s n a t u r a l l y formulated i n the H i l b e r t space framework. As 
eVery H i l b e r t apace i s a l so a Banach space , t he re a r i s e s the 
ques t i on whether the s p e c t r a l theorem can be re fo rmula ted i n 
such a way t h a t i t uses only the language of Banach space theo-
r y . I n t h i s note we would l i k e t o show that ' such a r e f o r m u l a -
t i o n i s p o s s i b l e . Since the no t ions of s e l f - a d j o i n t opera to r 
and of p r o j e c t i o n opera to r are def ined i n H i l b e r t space wi th 
r e s p e c t t o the i nne r product , to ob ta in a Banach space r e -
fo rmu la t i on of the s p e c t r a l theorem f i r s t we have to r e d e f i n e 
these no t ions i n Banach space without any r e f e r e n c e t o the 
i nne r product s t r u c t u r e . We w i l l make use of q u a d r a t i c forms. 
Namely, we w i l l de f ine an a b s t r a c t coun te rpa r t of quad ra t i c 
form and we w i l l c h a r a c t e r i z e the s p e c i a l c l a s s of p r o j e c t i o n 
q u a d r a t i c forms. F i n a l l y we w i l l prove an equ iva len t formula-
t i o n of the s p e j t r a l theorem i n the framework of Banach space 
t heo ry . Our at tempt to r e s t a t e the s p e c t r a l theorem i s mot i -
vated by some problems i n the founda t ions of quantum mecha-
n i c s . Namely, i t i s argued t h a t the language of axioms of 
quantum mechanics should not make use of the H i lbe r t space 
n o t i o n s , i n p a r t i c u l a r , the r e f e r e n c e to the inne r product 
should be avoided. The H i l b e r t space s t r u c t u r e should not be 
an assumption but r a t h e r a consequence of the axioms. This 
approach may lead to some g e n e r a l i z a t i o n s of quantum mecha-
n i c s . 
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2. Quadratic forms and the spectral theorem 
Before we define the basic notions of the paper, we re-

call the formulation of the spectral theorem which will be 
used as a starting point for our generalization. We formulate 
the spectral theorem in terms of quadratic forms. For simpli-
city, we restrict our considerations to bounded operators, 
although all our results can be easily generalized to unbound-
ed operators. Ve will also assume that linear spaces in que-
stions are infinite dimensional. 

Let X be a Hllbert space (a aomplete inner product vec-
tor space). With each bounded seIf-adjoint operator A on 
X (A* = A) we can associate a real-valued function fA de-
fined on X by 

(2.1) fA(x) = (Ax,x) for all x e X. 

Here (.,.) denotes the inner product in X. The function 
defined by (2.1) is called the quadratic form corresponding 
to A. We would like to define quadratic forms on X with-
out the necessity of using the operator A and the inner pro-
duct (.,.). To this aim we will use the following, interesting 
theorem of S. Kurepa. 

T h e o r e m 2.1. (S.Kurepa [l] ). Let X be a com-
plex veotor space and f s X C a complex-valued function 
such that 
(1) f(x+y) + ffx-y) = 2f(x) + 2f(y) for all x,y e X, 
(ii) f(cx) = |c! 2f (x) for all c e C and x € X. 
Under these conditions, the function 

h(x,y) = J (f(x+y) - f(x-y)) + |d(f(x+iy) - f(x-ly)) 

is linear in x and antilinear in y, that is, h(x,y) is 
a sesquilinear form on X and we have h(x,x) = f(x). If 
f(x) is real-valued, then h is hermitean. 

Using Kurepa's theorem, we can characterize quadratic 
forms on a Hilbert space as follows. 
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T h e o r e m 2.2. Let X be a Hilbert space and 
f s X — » R a continuous rea l valued function defined on X 
such that 
( i ) f ( x+y ) + f ( x - y ) = 2 f (x ) + 2f (y ) fo r a l l x,y e X, 
( i i ) f(<Jx) - f ( x ) for a l l x e X and a l l oomplex numbers 

with |o| = 1. 
Then f i s a quadratic form on X, i . e . there i s a s e l f - a d -
joint operator A such that f(x) = f ( Ax , x ) . Conversely, 
every quadratio form on X sat i s f i es conditions ( i ) and ( i i ) . 

P r o o f . First we shall show that ( i ) and ( i i ) above 
imply condition ( i i ) of Theorem 2.1. Putting x = y = 0 in ( i ) 
we obtain f|(0) = 0; Putting x = y in ( i ) we obtain f (2x ) = 
= 4 f ( x ) . By induction, we easi ly in fe r that f(mx) = m2f (x) 
f o r a l l natural m and x e X. Prom ( i i ) we have f ( - x ) = p 
= f ( x ) , henoe f (nx ) = n f ( x ) for every integer n. Put-
ting nx = y we in fe r that f A y) = ^ f ( y ) for a l l inte -v ' n. % 
ger n t 0 and y e X. Henoe f ( r x ) = r ^ f ( x ) for a l l r a t i o -
nal r and x e X* By continuity of f , we infer that 
f ( a x ) = a 2 f ( x ) fo r a l l rea l a and x e X. Now i f c is 
any complex number, then c = u a where |u| = 1 and a is p a real number, henoe f ( c x ) = f(toax) = f ( a x ) = a f ( x ) = p 
= fo| f ( x ) , which shows that condition ( i i ) of Theorem 2.1 
holds. Henoe by this Theorem the function h(x ,y ) defined 
above is a sesquilinear form on the Hilbert space X. Since 
f is continuous, h i s also continuous and consequently 
bounded. By.Riesz's representation theorem, there i s a bound-
ed se l f -ad jo int operator A acting in X such that h (x ,y ) = 
= (Ax,y) for a l l x,y e X. Hence we have f ( x ) = h (x ,x ) = 
= (Ax,x ) , i . e . f i s a quadratic form. On the other hand, 
i t is evident that every quadratic form on X sa t i s f i e s con-
ditions ( i ) and ( i i ) of Theorem 2.2. This ends the proof of 
this theorem. 

Now we reca l l the standard formulation of tha spectral 
theorem (gee, e . g . , Prugovecki { 3 ] ) . To each bounded s e l f -
-adjoint operator A on a Hilbert space X there corresponds 
a projection-valued measure mA : B(R) —• L(X) such that 
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(2.2) (Ax,7) =J A d(mA( {A})x,y} for all x,y e I. 
5 

Putting in (2.2) x = 7 we obtain the spectral theorem for 
quadratic forms 

(2.3) (Ax,x) = / A d(mA({A})x,x) for all x e X. 
R 

For each Borel set E e B(R), mA(E) is a projection. Let as 
call every quadratic form (Px,x) where P is a projection, 

A / a projection quadratic form. Let us denote f?(x) = . A 
= (m ({A})x,xJ. Hence for each A and A. eR, fA(x) is a pro-
jection quadratic form. We can now write formula (2.3) as 
follows 

(2.4) f(x) « / AdfA(x). 
R A 

This shows that eveiry quadratic form on a Hilbert space X 
can be expressed, b7 means of an integral, in terms of pro-
jection quadratic forms. In particular, if the quadratic form 
f acte on a finite-dimensional Hilbert space, i.e. if A is 
a hermitean matrix with eigenvalues , A^,..., then 
the spectral expansion (2.4) for f takes the form 

(2.5) fix) = A ^ i x ) +A 2f 2(x) + ... + Xnfn(x) 

where f^,..,,fn are suitable projection quadratic forms. 
If we think of a generalization of the spectral theorem be7ond 
Hilbert space, the formulas (2.4) and (2.5) seem to be most 
suitable to be generalized. In the next section we will take 
advantage of this formulation of the spectral theorem. 

3. Quadratic functionals 
Before we generalize the spectral theorem, we have to 

generalize the notion of a quadratic form. We would like to 
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def ine a quadrat ic form in an abs t rac t way without using i n -
ner product. We w i l l look upon quadratic. forms as rea l -valued 
mappings defined on a vector space X with some spec ia l pro-
p e r t i e s . When X becomes a Hi lber t space, our generalized, 
quadrat ic form should coincide with the standard Hi lber t spa-
ce quadrat ic form. Theorem 2.2 of the previous sec t ion shows 
us which proper t ies of quadrat ic forms d i s t ingu i sh them from 
other rea l -valued mappings. Henoe we oan introduce the f o l -
lowing d e f i n i t i o n . 

D e f i n i t i o n 3,1 . Let X be a topological l i -
near space. A rea l -va lued func t ion on X f : X — R i s said 
to be a quadrat ic func t iona l on X i f i t i s continuous and 
s a t i s f i e s the following condi t ions : 
( i ) f(x+y) + f (x-y) = 2f(x) + 2f(y) f o r a l l x,y e X, 
( i i ) f (ox) = f (x ) f o r a l l x e X and a l l complex numbers 

| t) | = 1. 
-It i s evident that the set of a l l quadrat ic func t iona l 

on X forms a l i n e a r space. On the bas is of Theorem 2.2 we 
oan s t a t e the following ooro l l a ry . 

C o r o l l a r y 3 ,2 . Every quadrat ic func t iona l on 
a Hi lber t space i s a quadrat ic form. 

Henoe on a Hi lber t space (and also on an inner product 
space) the notions of quadrat ic func t iona l and quadrat ic form 
coincide. 

In Hi lber t space, among quadrat ic forms we can d i s t ingu i sh 
the simplest quadrat ic forms - namely the pro jec t ion quadra-
t i c forms. As we know from the spec t r a l theorem, every qua-
d ra t i c form can be constructed from pro jec t ion quadrat ic forms. 
There a r i s e s the qjuestion how to define a counterpart of the 
c lass of p ro jec t ion quadrat ic forms in the framework of qua-
d ra t i c f u n c t i o n a l s . We answer t h i s quest ion by using the no-
t ion of a p ro jec t ion system, usefu l also in quantum logic 
theory. 

D e f i n i t i o n 3*2. Let S be a s e t and L 
a family of mappings f rom. S in to the r e a l i n t e r v a l [0 ,1] , 
^o 9ay that L i s a p ro jec t ion system i f the following con-
d i t ion holds: 
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(i) For every sequence f^ of elements of L such that 
fi + f j f o r a 1 1 1 ^ there exists g e L such that 
g + f1 + f 2 + ... =1. 

We of course assume that L is non-empty. In the sequel 
we shall show that the set of all projection quadratic forms 
on a Hilbert space X (restricted to the unit sphere of X) 
is a projection system. 

Observe that every projection system L is naturally 
partially ordered by the partial order relation between the 
real functions in Ls f ^ g if and only if f(x) ^ g(x) 
for all x e S. It is easy to show that f e L implies 
1 - f e L. We also have 0 e L, 1 e L (here 0 denotes the 
function taking the value 0 for all x e S, similarly 1). 
Hence we can introduoe the mapping f' = 1 - f of L into L, 
It can be shown (see [2] ) that (L, ̂  , ' ) is an orthomodular 
partially ordered set. We define an orthogonality relation 
in L by f g iff f + g $ 1 (equivalently iff f g'). 

A map m : B(R) — L from the family B(R) of Borel 
sets on the real line into L is said to be an 1-valuod mea-
sure if 

(3.1) m(B1 + E2 + ...) = m(E.,) + m(E2) + ... 

whenever E.. n E. = 0 for i ^ j, and 

It iB easy to show that E n F = 0 implies m(E) J- m(F). 
If m is an L-valued measure, then for each fixed u e S 

the map 

is a probability measure on B(R). Assume that this probabi-
lity measure is bounded, i.e. there exists a bounded Borel 
set E such that m (E) = 1. Then we can compute the integral 

(3.2) m(R) = 1. 

(3.3) m(E)(u) 
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of X with respect to n^ (interpreted as the expected value 
of the random variable corresponding to the probability den-
sity mu): 

In this way we define a function f from S into R. We 
shall say that f is generated by L. The set of all fun-
ctions generated by L will be denoted by fr and called the 
set of all random variables on L or L-random variables. 
Observe that L £ -fr • 

4. Spectral theorem for quadratic functioaals on Banach 

We now restrict our consideration to Banach spaces. Let' 
X be a Banach space and S the unit sphere of X. Let 1(X) 
denote the set of all closed subspaces of X partially or-
dered by the inclusion relation. We shall say that X is an 
orthocomplemented Banach space if there exists a map1 :L{X)—• 
—^-LfX) with the following properties: 

(4.1) M" = M for all M e L(X), 

(4.2) M£N implies n'cm' for all M,NeL(X), 

(4-3) MnM' = 0 for all M € L(X), 

(4.4) if H e L(X) contains both M and M', then N = X. 

We ean now prove our main theorem. 
T h e o r e m 4.1« Let X be an orthocomplemented 

Banaoh space and Q the set of oontinuous quadratio funotio-
nals defined on X. Then there exists a projection system 
L £ Q|S such that Q|S is generated, by L (Q |s denotes 
the sot of all functions in Q with, dom&in pdstpictod to S)* 

(3.4) 
R R 

spaces 
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P r o o f . Since X is an orthocomplemented Banach 
space, by a theorem of Kakutani-Mackey in [4] there is an 
inner product (.,.) defined on X such that (X,(.,.)) is 
a Hilbert space and the Hilbert space topology of X coinci-
des with the original Banach space topology of X. Now let 
f € Q be a continuous quadratic functional on X. By Theo-
rem 2.2 f is a quadratic form on X, i.e. there exists 
a bounded self-adjoint operator on X such that f(x) = 
= f(Ax,x) for all x c X. Let LQ be the set of all ortho-
gonal projections on X (i.e. for each Pe L0 we have 
p2 = p = p*), and let for each F eI Q fp(x) = (Px,x) for 
all x X. It is clear that fp is a quadratic functional. 
We shall show that L = {fp|s : P e LQJ is a projection sy-
stem. In fact, let f^ be a sequenoe of elements of L such 
that ti * 1 for all i i j. Let f-^u) = (Piu,u) 
for all u e S. If (P±u,u) + (P^u.u) $ 1 for all u c S, 
then (P^u,u) £ ((1 - P^)u,u) for all u e S. This implies 
P.̂  £ 1 - Pj = Pj , i.e. and P^ are orthogonal. Hence 
P = P.j + Pg + *•• exists an is a projection. Let g(u) = 
= (PAu,u) for all u e S. We have g e L and g + f1 + f2 + ... 
= 1. Henoe property (i) of Definition 3.2 holds. This shows 
that L is a projection system. 

Next we shall show that L generates Q|S. Let f e Q 
and let f(x) = (Ax,x) for some self-adjoint operator A. 
By the spectral theorem, there exists a projection valued A measure m suoh that 

(4.5) (Ax,x) = / A d(mA({Jl})x,x) 
R 

for all x e X. For eaoh Borel set B e B(R), mA(E) is a 
projection, henoe (mA (E)u,u) with u e S is a member of L, 
and the map mf : E —•• (mA(B) u,u) is an L-valued measure. 
We can write (4.5) in the form 
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(4*6) f ( a ) = / A dm f({A})(u) 
R 

which shows that f i s generated by L. This ends the proof 
of Theorem 4 . 1 . 

Theorem 4.1 shows that our original aim i s achieved: the 
spectral theorep has been formulated ent i re ly in terms of 
the theory of Banach spaces,, without direct referenoe to inner 
product and se l f -ad jo int operators. We shal l now give another 
more probabi l is t ic formulation of th is theorem. 

T h e o r e m 4 . 2 . Let X be an orthocomplemented 
Banach space and Q the set of a l l continuous quadratic fun-
ct ionals on X. Then there ex i s t s a doubly-indexed family of 
probability measures 

( 4 ' 7 ) { m f ,u}feQ, U6S 

such that the following conditions hold: 
( i ) For each f e Q and E e B(R) the map u —»nu (E) i , u 

i s a quadratic functional defined on S . 
( i i ) The family L of a l l maps defined in ( i ) i s a projec-

t ion system generating Q. 
( i i i ) We have f (u) = / A dm- „ for a l l f e Q, u e S. R r » u 

P r o o f . By Theorem 4.1 there ex i s t s a projection 
system L Q Q|S such that Q | S i s generated by L. Hence 
for each f e Q there i s an L-valued measure E —m^(E) 
such that for ¿ach f e Q we have 

f (u) = / A dm f({A})(u). 
R 

For each f e Q and each u e S the map m̂ , from B(R) 
r 1 ' into |0,1J defined by m- ( E ) = nu(S)(u) i s a probability 

* r i measure. I t i s easy to verify that the family u |f € g U € s 
s a t i s f i e s the conditions of the theorem. 
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