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SOME PROPERTIES OF GENERALIZED THERMAL POTENTIALS
RELATED TO A CERTAIN PARABOLIC- EQUATION OF ORDER 2p

1. Introduction

Let Rg be the zone R"x (0,T>, where n » 2, 0<T<oo

and let us dsfine the following operator

() < 3 - am g+
: vz e P D™ —_—_
a1 = 3 (1) (a) > Ai1...1k( u) T ox bl
j=0 11...1k=1 1,1 lk
p 3P
+ 1 05
whers
Jou| wm n
% = oy 9 o« (Ic‘l=z oy O glxf+ 2m S«?p-‘l)
3x1 ...axn at i=1
and
Ai.‘o‘,‘qik = 31112.. vee ? aik-“ik (k=2(P"j)) with ai;,:aji.

In-this paper we shall examine the regular continuity of

some integrals related to the equation

(1.2) LW [wx,)] = o,
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2 P.Olszewski

We assume that a, (1,3=1y4e0,n) are continuous and bound-

1 am
ed functions of X,t eand 2 for

(1.3) (X,t)eﬁ.?, lzaml <oo (0% |af +2m €2p=1, X=(Xy,e00,%,))

and satisfy the Holder condition

(1.4) Iaij(x,t,zam) - aij(i,i,'iam)k

€ const {lXﬁ|h + |t-§|h +

2p=1

. 'y
+ EE [exp(-bloxl) li“m - Eaml] }
ja}+2m=0
where |ox| <|oX|; b', ", n* e (0,1> , b 20.
Moreovery we assume that the characteristic form
n
= aij(X t,2% )"17‘3 is positive-definite in the domain

i,J=1
(1.3) and satisfies the inequality

n n
- an 2 :
(1.5) > ey (X, Maay > C, D0 A (G300,
i,hj=1 k=1
Let us note that if the functions (x t,2%%) are con-

operator {1:1) is p-th iterate of the operator

L, = 131;15?&5— % .

i,J=

The results of this paper will be used in our next paper
concerning the Cauchy problem for a certain system of inte=-
grordifferential equations of even order.
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Purabolie squation of order 2p 3

2. A fundamental solution
~ We shall construct the fundamental solution of egquation

(1.1) applying the idea of W.Pogorzelski presented in paper
[3] and basing on the results of A.Borzymowski obtained in
-paper [1]. '

Let u{X,t) be a real function defined and possessing
the derivatives D™™u(X,t) (0 ¢|af+t2m ¢<2p-1) in R}, sa-
tisfying the ¢onditions

(2.1) |D9mu(X,t” < const exp(blox]),
. 1
am am =1h - 2B
(2.2) Ip u(X,t)-D u(X,t” g const exp(blox|) |xX|"+|t-%]< ,

where |0X| <|oX|, 0<h <1 and b is the constant appear-

ing in (1.4).
Congider now the equation

(2.3) LW vix,e)] =0

and introduce the functions

n
(24) o{FXY) = 3 1: a3(2,5,%%a(2,5)) (xy-7, ) (x5
1,3=

and

P
_1;1 -1 vt (X,Y)
(2.5) wig(X,t5Y,7) = (t-1) 270 exp [““‘?‘_Fﬁ -7 |°

where X = (x1,...,xn) and Y = (y1,...,yn) are two points
of RY, (P,z) is a fixed point of ﬁg and alJ(P,j,Damu(P,j))
(1,§=1444.,n) denote the elements of the inverse matrix to
[aij(P,b,Damu(P,g))] .

" " From the boundedness of 84 5 and the inequality (1.5)
we deduce the following inequalities
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4 P,0lszewski

(2.6) colxrlz < vf;ﬂ(x,y) < ¢ lxy|? (c. > C, )

From (2.6) it follows that the function (2.5) and its de-
rivatives satisfy the inequalities (see [2],, p.24 and [4],
Pe147-148 and 153)

k P _n+2+l9|2+2k‘-‘2p Izl
(2.7) ID" u(II%(X.t;Y,'l)I < const(t-1) . exp (_ (jtlg )S

< const(t-7) " H|xy] =(n+2+|v| +2k-29-2p)exp(_cl 1xx]),

%k By

(2.8) |D’kwfa§(x,tgr,z) - D™

)(X t;Y z)l

7

1
_h ~5(n+2+| v| +2k-2p) 2
sconst [PP] °(t-1) 2 | exp (" _(‘?Jg"-;)) <

_ b ' '
gconst |PP| °(t-z)'p|XY|'(n+2+|9l+2k'29'29)exp(—C'IXY|),

where h = min(h’, heh*); € <C_, C’'>0 and

[s]

p<min(1,¢ %M + 1+ k - p).

Let us note that if the operator (1.1) acts on the fun-
ction w(’)(x t;Y,7) then the arguments p*® M(Y,7) are not
differentiated and hence the construction of the fundamental
solution of equation (2.3) is analogous as in [1] (see sec-
tions II and IV),

The fundamental solution of equation (2.3) is of the form

o!?

(2.9) Py (X837, 2) —u(u)(XtY'E) +
s [ [ olahix,iz, 10, (2,551,7) azay,
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Parabolic eguation of order 2p 5

where & 0 is a solution of the Volfterra integral equation
(see (71) in [1])

1
(2.10) B y(Xt3¥,7) = m [detIa%j(x,t'pdmu(x't))|]2

. L(u)[w( )(x t3Y 'C) If L(“) w( %(x t32 5)]‘1?(11)(2'5"{ t)dZdy}.
R

" 3. The quasi-potential of spatial charge
In the present section we consider the integral

(3.1) V(g (Xst) =!f w28 (X, 85,70 g (Y,7) a¥

assuming that (2.1) and {2.2) are fulfilled.
Theorem 1. If the function g(x,t) is conti-
nuous in Rg and satisfies the conditions

(3.2) lp(x,t)] sMgt-yq exp(bqloxl),

%% ~He 2180, 1,22
(3.3)  lolx,t)-p(X,3)] < Mt exp(b9|0X|)(|XX| + 651 ¢

t €%, 0€p, <1, 0<h <£1;

where |0x| 2 |0X| <
b ]

’
M? Me > 0, 0 2 0 then the equality

1
a”(x,t,b“"‘u(x,t))” Zo(X )+

(3.4) L(“)[v(u)(x,t)] = -(2mn(p-1)![det

+

f p(w) [o T(x,t;v, z)] g(¥,¥)vde

Rn

R, o
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6 . P.0lszewski

holds in RY and the derivatives DSV, (X,t) for |v|s2k=27,
satisfy the followlng estimates i

(3.5) |p” v(u)(x )| < (C,M +02M9)t p-*‘?\exp(bqloxl),

(3.6) |D”kv(u)(x,t)-n"kv(u)(K,%)

- 1
< (0 sopu! 5 Bexp(o Jox]) (2% Be [5-5(2)
L ? ¢ _ ,
where |0X| > [0X|, t <%, 1 -1 min(n,h}) <p<1,
h = minlh,, ® h;) (h% is the constant appearing in (2.8)
while @ €(0,1)) and C,, C,, C;, C, are positive constants.
Proof. Because the relation (3.4) is an extension
of the thesis of Theorem 18 in D] to the case when the coeffi-
cients of the equation (1.2) depend on Daqu(x,t) and the
density p(X,t) ~satisfies the inequality (3.2), thus the
proof is analogous to that of Theorem 18 in [1].
In order to prove the inequalitices (3.5) and (3.6) first
we consider the case O gk < p and decompose the derivati-
ves DSkV(u)(X,t), where |6|+2k = 2p-1, as follows

pb¥y Vi) (Xst) _f o(®, z)f p® w(u)(X t3Y,7)dYdr +

0 Rn

(3.7)
£

+f p(e,1) [ [Dskmh'g(x,t;y,m, 6k o 28X, 457 'z)] dYar +
0

. |
] D61"-m%l’lr§(x,t;’!,'t)[p(Y,‘l)-g(P,'t)] dyde,
0

where P 1is sn erbitrary point of R™,
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Parabolic equation of order 2p

It is easy to see that the first integral in (3.7) is
squal to zero. Thus, differentiating (3.7) with respect to
X3 and substituting P = X, we obtain the formula*)

o(X,t) f [D"kuﬁ")(x,tﬂ,z),-
Rn

vk
(3.9) DYV, (X,t) =

O Sy,

D"kw}((a'g(x,t;y,z)] dYdt +

+

o‘-.-,g-l-

f p"RafaE (x, 3%, 0) [o(¥, 1)~ g(x,7)] a¥er =
Rn

I1(X,t) + Iz(X,t).

Making use of assumption (3.3}, inequality (2.7) (where we
take C > bg) and relation lox] <|ox] + |x¥], we obtain
the following estimate of the integral Iz(X,t)

%
|12(X.t)| < const M/ f'c Hg(t—'()-“d'z .
¢ 0

-{n+2-2u~h_)
. f IxY| ¢ exp(b? lox| ) exp(~C’ |xY])dYg
Rn

1=~
< const Myt ' 8 axp(by loxl) -

-(n+2~2p-h,)
j |xx| TR exp(-(c'—bg)lnl)drs

Rn

1-H-H o
’ 1
g<const lpt ¢ exp(bgloxl), where 1 - §-h9 <p <1,
*) '
vk
D denotes ix; D",

- 839 -



8 P.0lszewski

By a similar argument we get for I1(X,t) the inegquality

1ep-
|I1(X,t)|< const M t # yeexp(beloxl),

0

where 1 =~ % h; <p <1 and combining the above-obtained re-
sults we arrive at the estimate (3.5).

We shall prove Holder'’s condition (3.6). (It is enough to
consider the case 2[XX|[<r, V%:;‘<‘ro, where r denotes
a fixed positive number, since in the opposite case the vall.-
dity of (3.6) follows from (3.5)).

Basing on the formula (3.9) we can write

|I1(X,t) - 11(i,t)yg

0(X,1) f l D’k ? g(x t3Y,7) - D’kux’)(x,t Y, tﬂ -
Rn

Ob;d

- [D’ku¥u)(x t37,7) - D’ %ag(x,t Y z)]l dydzr +

f ptmo-p 0 [ [pMffEsT, -
R"

- DR (%, 457, v)| avar = T, + T,
By virtue of (2.8) and (3.3) we get for f1 the estimate

I

1=y~ h
, < const Mys © exp(vyloxl) IxEl Y,

1
where 1 =~ 5 h9<y <1,
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Parabolic equation of order 2p 9

Next we break the integral 31 into three components with
the integration over Ko’ KO—K and Rn—Ko, where K0 and K
denote the balls with the centers at X and the radiil T,
and 2|Xi| respectively. We estimate the integral over K
by the sum of the appropriate integrals and in order to esti-
mate the integrals over K -K and R" —K " we apply the mean-

-value theorem to the functlon
F(X,t;Y,7;P) = D"%w L5, 15,1) - D’kwl(’;')‘(x,t;y,z) (P € R

and we use the relations {2.7) and (2.8). As a result we ob-
tain

_ ~By _, ony
I, <const M?t exp(bp lox]) |xX| , 8¢(0,1).

Proceeding analogously as in the examination of the dif-

ferencs |I1(x,t)-I1(f,t)| we get for Iz(x,t) the inequa-
lity

|1,(x,%)-1,(%,t)| < const Met b exp(b |ox|)lxx| 9

The proof of the Holder condition with respect to t 1is
similar to that above and is based on the inequality

ID Viy) (X, t)=D lg\r o) (5E)[ €

g(x,'z)f ID’ )(xth) -D"kf ) (X, Y, t)Idet+
R®

eb"—u-rl

[ o™ of 5 (x,%,0)| o(x,0)-p(x,0)| avaz +
Rn

+
o “m— ot |



10 P.0Olszewski

f lo(x, 0] f ‘[ il (x,51,1) - D’kmfaf(x,t;y,z)] -

- [D*km(u)(x ;7,7) - DK %uﬁ(x,f;y,z)][ dydr +

vk 9kY'z

'D w%&}(X,t;Y,z)

'lp(Y.z)-g(x,z)ldrdz.

+
C Sy

Rn

The examination of the first two integrals is based on the
inequalities (2.7), (2.8), (3.2), (3.3) and on the following
decomposition &® = Ko v (Rn—Ko).

The remaining integrals can be estimated similarly as
the corresponding integrals in the proof of Holder’s condi-
tion with respect to X, replacing the ball K by the bsall
K1 with the center at X and radius \/ﬁ.

As a consequence we obtain the following result

D’kv(u)(x,t) - D’kv(u)(x,fi|<

1y 1
- h h
< const & PQpr(b? Jox| )(M9 [T-t] 20 + Mé |§-t] 2 9) .

Thus, the proof of inequality (3.6) in the case k <p is
completed. The validity of the estimates (3.5) and (3.6) for
k = p follows from the formula (3.4), the assumptions (1.3),
(2.2) and-from the results proved above for k < p.

Note that the estimates of the integral in (3.,4) do not
cause any difficulty, due to the weak singularity of the
integrand {comp. (72) in [1]).

Theorem 2. If the density ¢(X,t) is conti-

nuous in RR and the inequality (3.2) is valid with 0 < <1—,
P'e 2

- 842 -



Parabolic equation of order 2p 11

then the derivatives D’kv(u)(x,t) (0 < |9] +2k < 2p-1) sa-

tisfy in ﬁfl‘, the following conditions

ey
(3.10) In’kv(u)(x,t)l < const M% 2 P?exp(be lox|),

¢
(3110 o (5,8 - DY (R, )] €

~ 13
g const Me?eoexp(bq lox|) <lx§f|h+|%_-t| 2h)
where |0X|3 |0X], % > t, %<y,<1—y9, o<h <1-2p,,

0 <8 <152 -y,

Let us note that inequality (3.10).is given in [4] p.197
(comp. (174)) and Holder®’s condition (3.11) is a modification
of the condition (175) in [4] (p.197) (both of these results
concern the parabolic systems).

4. The Fourier-Poisson integral
In paper [1] there was considered the integral of the
form

(401) xl(xyt) = f vi(X,t;Y) g(Y)dY, (i=1,...,p),
rR
where
—g+p-1 LEXLQ
(442) vy (X,t3Y) = ¢ exp(; 7t > .

The integral (4.1) satisfies the p~th iterate of the heat
equation.

In the present section we prove some theorems concerning
the derivatives DK %, (X,t) (0 < |vl+2k €2p; i=1,...,p),
analogous to those obtained in previous section for the in-
tegral (3.1).
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12 Pe0lszewskl

Theorem 3, If the function g(X) has in R®
continuous partial derivatives of all orders including the
(2p-2i+1)-th which satisfy the inequality

(4.3) |2°a(x)] <, exp(v, lox]),

where O ¢|a| €2p-2i+1; D* = D and, besides -that the de-
rivatives of order 2p-2i+1 sgatisfy in R®  the Holder’s
condition of the form

, _.h
(a.0)  |Pen - Pa@l < expivy lox|) |xx] 8

where |6| = 2p-2:+1; lox| > |oX]; o<h_<1, M_>0, M >0,
b_2 0, then the derivatives pk %, (X,%) (|v] +2k=2p) of
the integral {4.1) fulfil the following inequalities

(4.5) Ika Ri(x,t)| (const(M8-+ Mé)t'p exp(b, |ox]),
(4.6) |07 % (x,¢) - D™ %, (X,%)]<

_1=-(1-8)h 8h len

gconst(Ms-i-Mé)t 2 exp(bgloxl) | xX| 8+|¥-’c|2 g

where (X,t), (X,t) € R{,l; t <%, l;&qu and 8 € (0,1).
Proof. This theorem is a modification.of Theo-
rem 17 in [1]. Tet |v]|+2k=2p. We shall consider two cases:

(1) k € i=1, and (ii) i-~1<k <p.
In the case (i) we make use of the following formula

k
(4.7) D"k zi(x,t)=(i—1 )t Z m'(§)ti-1 -k+JD90AJ'3f1(X,t),
J=0

where Aj denotes the j-th iterate of the Laplace operator.
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Parabolic equation of order 2p 13

In the case (ii), basing on the formula (228) in [1],
we obtain

k=1
(4.8) DK #y (X,t) = k! Z (151) GT})T §1-1=35% a3 x, (X, ).
3=0

We shall estimate the expression 1:1"|'k+"jDi"°Aj x¥,(x,t)

(320,++. k) appearing in (4.7) and ti=1=3p7ak~d %, (X,t)
(J=0yeee,i=1) in (4.8).

48 we shall further see, both of these expressions have
the estimates of the same order of singularity.

Let us consider now the ball Ko introduced in p.S and
make the following decomposition

D%, (X,t) = f Y &%V, (X,t5Y)g(Y)aY +
X
0

+ [ Dalvixtmamer (9] = 2p-2k).

n
R™-K,

Applying the Green theorem to the integral over Ko we obtain
(4.9) f p’ A3v1(x,t;Y)g(Y)dY =

» yo 9* .
=J D v (x,%;Y)D" ade(Y)dY + R,(X,t),

where R1(X,t) denotes a sum of certain bounded integrals

over 3K , P = (9?,...,9;) and V= (9*,...,9;) satisfy

the conditions [WO| = 2(i-1+j-k)+1, Iv’?: 2p-2i+1-2j and
*

Vo+vn = . for m=1,...,n (P=(Pq5e00,7 ).

- 845 -



14 P.0lszewski

Proceeding analogously as in the case (ii) we obtain

0’ A%dv, (X,457) = [ Ay, (2, 851)8(T )Y +

Ko

+ f Y &3y, (x,4;¥)g(¥)ay,

n
R -K0

where
(4.10) f ’ Ak‘jv1(X-.t;Y)g(Y)dY=

- DA (k1 ;110" Ak =Jg(v)ar + By (X, 1)

and R2(X,t) denotes a sum of the same type as in (4.9).
The indices ° and ¥* satisfy the conditions [v°]
lv*|= 2p-2k+1 and VO+9F = v, for m=1,...,n.
Basing on the estimate (see (2.7))

. _n+lal+2m 2 lxy] 2
(4.11) IDamv1(x,1;;Y)l < const 2 exp (_ clxy ) <

< const t-PIXYl-(n+2+'al+2m'29'zp)exp(-51IXYI),

where 0 <0 < 1, 61.> 0 and W is the parameter choosen
as in (2,7), we easily observe that the expression appearlng

in (4.7) and (4.8) has the anslogous estimates as 1 R(k t)
where

- 846 -



Parébolic equation of order 2p 15

(4.12) #(x,4) = [ v (x, 61008 1) e
KO
(0 €1 €1-1, |p|= 2141, |6]= 2p-2i+1).

We shall consider only the integral taken over Ko' since
the integrals appearing in R1(X,t) and Rz(x,t) (see (4.9)
and (4.10)) are bounded and the integrals over Rn-K0 have
the estimates of the form

f D7v1(x,t;I)D6g(Y)dr < const M, exp(bsloxl)
0
R™-K
and satisfy Holder’s conditions with an arbitrary exponent
from the interval (0,1) and the exponential coefficlent

of the same form as that in the right-hand side of the inequa-~
lity written sbove.

Since the integral 4 DIV, (X,4;Y)dY, where |q] =21+1

0
is equal to zero, the function (4.12) can be written in the
form

(013 Fxe = [ ol [Pew - e,
K

0
(1] =21+1, |6] =2p~2i+1).

In virtue of assumption (4.4}, estimate (4.11) and the rela-
tions |oY| <lox| + |x¥], exp(bgloxl) < const, satisfied for
Y e Ko' we have

- 847 -



16 P.Olszewski

~ , ~(n+1=-2u=h_)
|%(x,%)] < const Mgt‘(lﬂ‘) f | xy| %

K

exp(ngOYI)dK

< const Mét-(l"'p) exp(bg|OX|),

1=h
where Tg- <p<t.

Making use of the formula (4.13) and the squality K, =
=K U(KO-K), where K is a ball with the center at X and

the radius 2|)Q-{|<ro we can write

|aecx, ) -Qf(i,t)ls! |D”v1(x,t;y)] |n6g(y)-u6g(x)]dy +
K

+ f "quq(f,t;Y)l|D6g(Y)—D63(i')I dy+|ndg(i)-nog(x)| f |D7v1(x,t;y)dy +

K K -K
o

o S 1ot (] Pofeto)-oa( ar = E (.0 B4,
KO—K s

In order to estimate the integral ﬁ“’ we consider the ine-
quality (4.11) introducing polar coordinates. As a consequen~-
ce we have

~ - h_+2u~-1
(4.14) (1) < const M;t'(lﬂ‘)exp(bgloxh |xX| & ¢ ,

where ;;l-ﬁ<p<1-%hg. . .

In a similar way we estimate 3(2). The component F(3)
is equal to zero. The integral #(4) i examined by applying
the maan-value thaorem, the assumption (4,4) and, subsequent-
ly, the relations ~ |XT| <§ ixx|, II*Y|>% |xY|, where X* is
a point of the iaterior of a sector X_f, lox| ¢ |0X|+IXYI and
exp(béloxl) < congt.
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Parabolic equation of order 2p 17

Hence we obtain the inequality of the form (4.14) with
j;_ha <!_| <l

Joining the results obtained above and substituting
h +2-1 =0h_, where 0 <8 <1, we get Holder’s condition
{4,6) with respect to X.

The same condition with respect to t c¢an be proved ana-
logously by introducing a ball with a center at X and ra-
dius VYt-t and breaking the domain of integration in SNC(X,t)
into two domains,

Theorem 4. Under the assumptions of the pre-
vious theorem (see p.12), the derivatives D™T % (X,%)
(Og|al +2m ¢ 2p=15 i=1,.e..,p) satisfy in Rg the following
inequalities

’

: 8
(4.15) |0*™ %, (x,%)] <const *t ®exp(bg lox|),
(4.16) 0™ % (x,t) - D™® % (X,%)]<
1( 1%
_3(1-0)n _z o
< const M¥E2 8 exp(bsloxl)<lxx|h+ [t-t] 2 ) .
A M for O < |o|+2m ¢2p-3
where 0 <8, <1 hgs M* = ¢ & lod+2m <20

| Mg' for |a]+2m=2p-2,2p~-1,
g {Shs for |a|+2m=2p-1

1 for 0 ¢|a|+2m ¢2p-2 and ©€(0,1).
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