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OPTIMAL OBSERVATION STRATEGY
FOR A CLASS OF RANDOM EXPERIMENTS

1. Introduction

The objective of most sequential decision problems is
to find a sequential decision procedure, consisting of a stop~-
ping time and a decision rule, which has some optimal proper-
ties. In sowne cases such a prncedure ought to minimize (in
a certain sense) a risk function defined as a sum of two
risks: the mean cost of observations and the mean loss con-
nected with the chosen decision rule, In other cases the
goal is to find procedures which simnltaneously minimize one
of the above risks and ensure a sufficiently small value of
the other one. Thus the control of a sample (observations of
a random process under investigation) consists in the choice
of'a stopping time.

This paper refers to more general sequential decision
problems which arise in practical situations with partially
observed proceases, The idea of partial observability of ran-
dom processes was discussed by Pleszczyrska and Dagbrowska
in [6].

In this case the problem is aimed at finding an observa-
tion etrategy providing a stopping time and characterizing
the form of observations o>f the process up to that time, whioch
satisfies some requirements.

The aim of the paper is to describe optimal observation
strategies which minimize the mean cost of observations and
ensure the existence of a sufficiently good decision ruls.

Exact solutions in some simple cases will be presented,
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2. The statement of the problem
Assume that {(Xn,Yn)} is a sequence of independent iden-
tically distributed bivariate random variables., The distribu-

tion of (X ,Y1) is known to belong to a given family
{Pv : Vo€ éj of distributions on (R2,$(R2)), whers
is a given set of parameters., Accordingly the statistical
space (Q,% ,?P) can be defined so that: Q = R x RZ « esey
£=8(R%) @B(R%)® ..., P = {F°=2,02,0 ..., vea)
4ny sample w = {(xn,yn)} presents current realization of
the random phenomenon under investigation.

Let us suppose that there are given:

~ a set of decisions D and a 6-field & of subsets
of D,

- a loss function L : @ x D —’R+,

- cost functions- L, = R? —*-R+, L2 : R® —» r*,
Interpretation of the functions L
sequel,

Let us assume that the observation strategy is defined by
a stopping time v from some giﬁen set J and a sequence
( Bn}) of svents from & so that for any realization we Q
we observe X1(w),.,.,x9(u)(w) and

10 Lé' will be given in the

Yi(h)) iff UeBi, i = 1,.0.,\’((&)).

Besides if at the i-th step (Xi(w),Yi(w)) = (x,y) is
observed (i.e. weB;) we pay L1(x,y), otherwise (i.e.
w ¢ By) we pay Lz(x,y), Such a way of observation corres-
ponds to situations in whioh a feature of independently inve~
stigated elements of population constitutes a bivariate ran-
dom variable and the cost of observations of the second co-
‘ordinate is relatively high in comparison with the first one.

Roughly speaking the problem is aimed at finding an ob-
servation strategy, which ensures the existence of a decision
rule §: & — D 'for which the mean loss R{®,§) = EvL(m,é)
is sufficiently small and simultaneously the mean value of
global cost of observations is minimal,
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Optimal observation strategy 3

It is obvious that for any n ¢v (W), we &, the obser-
vation at the n-~th step is completely described by a random
variable fn’ such that ;n(o) = (Xn(w),en(w),en(w),Yn(w)),
€ (w) = xg (W), After n steps the observation can be writ-
ten as thenrealization of T, = (§1,...,fn). Therefore there
is a natural restriction on observation strategies such that
B,e6 (x1), B,€ 6 (T, _.,X)), n=2,3,..., and T is a sub-
set of the set of stopping times with respect to the sequence
of 6~fields {G(Tn)}. Thus any observation strategy is a
pair A = (v, {Bn}), where v and ~{Bn} satisfy the assvmp-
tions mentioned above. The cost function corresponding to A
has the following form

V(W)

HA,w) = D Lo(X (w),¥ () xg () + Ly(X (w),Y, (w) x5 W),
n=1 a n

where En = QN\B.

Assume that Ay is a given set of decision rules such
that AAC' {6:52 - D/ is .ﬁ:?-measurable}, where &, de-
notes the 6 -field of observable events, i.e,

&, = {Aeﬁ /Yn{w:v(w =n}nae ﬂn},

where - 'kn = G(Tn), n = 1,2,.-0 .

Let us introduce denotations:
Bple) = {8eny/Rr,8) e, vee)
Rlw,A) = EH(A, ),

N, = {Z = (v, {Bn})/HﬁeAA(e)i(v,M<oo s Ve e}
where & 1is a positive real number.

- 825 -



4 &e.Ferenstein

For any given €>0 we shall define an optimal observa~
tion strategy a: € /\.C so that

sap ﬁhr, Ag) = inf sup R(e,A).
+e@ AEN, ved

3., BExamples of optimal observation strategies

Sxaaples of optimal obéervation strategies given below
refer to trivial stopping times, i.e. constant ones. In this
case any observation strategy has the form A = (N, {Bn}),
Ne¥ = {1,2,...} and Ay = {S= f(TN)/f e?m}, " where ¥,
is a given subset of the set of Borel functions from RN in-
to D.

To obtain explicit results some simple calculations are
needed. Let {An denote a sequence of Borel sets such that
for the given observation strategy A = (N, {Bn}) the follow-
ing conditions hold:

B, = {w/x(w) ¢ &}, B, = {u/(Tn_1(u),xn(w)) € 4,}» 22,300

Under these conditions the cost function H tekes the form

HA,w) = L,(X(0),Y,(w)) 1A1(x1(w)) + Ly(X, (w) 'Y1(‘“’))XK1--(X1(“’”+
N .

+ D LX), Y () x, (T, (w),X (w)) +
n=2 n

+ Lp(Ey(0), Y]] a5 (T (@), Xy(w)))s

For ary v €8, n=1,2,s.., let us denote by p, n
the probability distribution on (31,8 (R3D)) generated by
Tn' Taking into account the independency of Tn and
(xn+1,rn+1) we obtaln that Bo,n ® P, 1s their joint pro-
bability distribution. Now the risk function R can be writ-
ten in the following form
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~

R(v,A) = f L1(x,y)de, + ! Lz(x,y)de, +

1 - o1
A xR | A xR

N
+ I L1(x’y)dpv,n-1 ®Pp, + f I‘2(x’y)df‘1r,n—1 ® B,\.
=2\ 4 xR iR’

Let us introduce denotations

rr,4) = [ Ly(xmylan, + [ L(x,3)0R,, 48 (R,
xR AR

ay(t) = {x e &' (1,x) € b te RMe=1) n oo,

Due to Fubini’s theorem the function R has the form

N
(3.1)  Rlo,a) = olw,ay) + 37 [ zlo,aq(t))ap, (5]
n=2 p3(n-1) '

Proposition. Let us assume that

Ple (B\roee,AoeS (R1))(Vv56,Aeﬂs(R1))

r(v,4°) < r(v-o,A°) § rlv ,A).

P2, (Va) (YA, = (n, {B,})) (38,en, )

An

inf sup R(»,8) = sup R(»,8.) = 1lim = 0,
6°A/‘I.n vc% ’ veg '"n En neoo tn
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Then for any € > 0 there exists an optimal observatlon stra-
tegy AL = (N0, {BR}) such that

= {vea/x (w) e 8%}, k=1,2,...,

N° = inf {n > 1/p, 55} .
Proof, Let A = (n, { k}) be any fixed observa-

tion gstrategy. In view of P1., for k = 2,3,..., T € R3(k"1)
A (t) e B (R

o, 4°) < (r,a%) € Tra(t)), vee.

Then the formula (3.1) and the condition P1. imply
~ 0y ¢ B 0y ¢ % o _ k
R(v-,an) < R(vo,hn) < R(vo,hn), Ap = (n, B, )

Therefore in view of P2. it suffices to note that for any €>0
and any A € /\E

~ 0 ~
R(o,ns) < R(v-o,xn).

Example 1. Let us suppose that 8 = (a,p) C R
and for any 1ve® the following conditions hold:
(1) there exist a density function p,(x,y), (x,7) € R?

of the distribution P, with respect to some product measure

b= tx @ pye
(ii) the functions (x,v) = f L ,y)pv(x,y)de(y),
i=1,2, are integrable with respect to gy
3%, (x,v)
(iii) there exist integrable partigl derivatives v

X € H1, for i = 1,2, and the following equslities are ful-
filled:
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3¢ (x,v)
A A

(iv) there exisits 7, € ® such that

ad, (x,v) 30, (x,v)
17 _ 22 Y
f ap Gux(x) = "f e dig(x),
A° a°

» o _ 1
wohere A° = {x eR /Q1(x,vb) < 02(x,vb)}.
Then the condition P1. of the proposition is satistied.
Procofs According to (ii) the function = has the
form

(3.2) lo,4) = | 8 (x,midpylx)+ [ 8y(x,w)dpg(x), AeB(R))
A A

Due to the definition of 4°

(3.3) r(v,4°) = min  r(v ,4).
4e8(R")

Besides in view of the conditions (iii), (iv)

0
(3.4) dzlvah’) _ o,
for any ve® . It follows that r(v,4°) does not depend
on v. Taking into account (3.3) and (3.4) and applying the
usual reasoning in classical discrimination problems we state
that the condition P1, is fulfilled.

Example 2. Assume that 8 = (0,1) and for any
ve ® the distribution By, is defined as
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R{ax{1}) = [wr (xlax, B (ax{0}) = [ (1-0)g,(x)ax,
A A

B, (R'x{0,1}) = 1, 4c®(R)),

where f1, f2 are fixed density functions with respect to [the
Lebesgure measure, not proportional over a set of a positive
measure,

Besides suppose that

d
"
<

0 y=0 L,,
L1(X’y) = ’ ’ Lg(xay) = 2 .
L1, J 1 o,

d
i}
—

Let us regtrict ourselves to the strategies An = (n, {Bk}),
where B, = {weQ /X (w) e 4}, 4eB (R, a#o,

k =1,2,000y D =1,2,0¢s « Let us essume that the loss fun-
ction I depends additionally on Zn in the following way:

s 2 .
L(v,d,hn) = m (p=d)=, T = !f1(x)dx, reB®, de®

and let

Y, EBys=v],

n
Aan = {6l6 = Z Giﬁiyi, Ei = xh(xl), al € R
i=1

R(v,&,;\.n) = m‘vL(v,ﬁ,An), re8, 6bSeA A
n
Under the above assumptions the conditions P1., F2. cf the
Proposition are fulfilled,
Proof: The form of TP, implies that

r(w,a) = f vL1f1(x)dx + I (1 - ) L2f2(x)dx.

4 A
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Now following the discrimination problem we state that there
exist a positive constant C such that A°={x/C L,f,(x) <
$Lf,(x)} and v =c(1+ 0! satiery P1.

It is .obvious that for any An {‘kYk} is the sequence
of i.i.d. random variables with E (e,Y,} = vg,, D2 pl€4Tq) =
= v‘gh(1- ng). The Gauss Markov theorem implies that

inf B (-8)° = B (-2 )2, e @
iag 5 ol0=5:12,
) .

where

n
= (n fA)-1 Z CiYi.
i=1

Hence

inf sup R(»,8,A n) = sup R{»,o PoeA,) = o',
bedy ved el

The above equalities imply the condition P2,
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