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1. Introduction 
In this paper we obtain a genera l i zat ion of Berkes and 

Phi l ipp a theorem [2] to the case when, instead of <p-mixing, 
one assumes the so ca l led absolute r e gu l a r i t y condition 
( c . f . [ 4 ] ) . Morever, under the condition s im i l l a r to </>-mlx-
ing 'our construction gives a stronger thesis which enables 
us"to obtain moment - type inequa l i t i e s ( o . f . Corol lary 3 . 2 ) . 

The f i r s t d ra f t of this paper was unnecessarily compli-
cated both in proof and in formulation of Theorem 3.1. A f t e r -
wards the author learned from W. Phi l ipp and R.Bradley about 
two r e su l t s very close to the main r e su l t of this paper. F i r s t 
l e t us mention a paper of Dehling and Phi l ipp [3] where, using 
the Strassen-Dudley theorem, an approximation theorem in some 
sense weaker then ours i s proved. 

The second resu l t i s Corol lary 4.2.5 on page 94 of Berbee 
[1] . As i t was observed by R. Bradley, our approximation theo-

rem oan be obtained from the revised vers ion of Berbee 's co-
r o l l a r y (our Theorem 3 .1 was proved independently, but l a t e r 
then Berbee 's coro l lary 4 . 2 . 5 ) . Using a s l i gh t l y strengthened 
version of Berbee 's coro l la ry 4.2.5 [ l ] as a lemma f o r d i s -
crete random var iab les one makes the proof of our main theorem 
more transparent, thus we w i l l choose this ••ay (suggested by 
R. Bradley) of presentation of the proof. 

F i n a l l y , l e t us mention that in the : vre obtained a 
Complete so lut ion of the approximation proo..sm considered by 
BerVes and Ph i l ipp [2] ( c . f . Remark 3»,, ..uw), 
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2 W.Bryo 

2. Lemmas 
In the sequel l e t (S td) be a Polish space ( i . e . separable 

metric complete one) and consider a sequence of S-valued ran-
dom var iab les (Xn)n6jy defined on a probabi l i ty space 
(fl ,f t l , P) and measurable with respect to a Borel 6 - f i e ld 
in S. 

The numbers f 0 (and respect ive ly r f i ) defined below 
are of some i n t e r e s t i n study of the f-mixing (and resp . abso-
lu t e ly regular ) sequences of r . v . ' s . ( o . f . [4]). Let <p1 = 
• r 1 • 0 and fo r n > 1 l e t 

(1) f n « ess sup sup I p f t t e A|x n ) -

- p ( ( x 1 t . . . t x n - 1 ) « A) | , 

(2) r n - | P ( I n « A l l ^ . . . , ! ^ ) - P(Xn c A) |} . 
S 

Wi w i l l also denote by Pg a measure induoed on (S* by 
the random var iable X. 

L e m m a 2.1 . For every in teger n we have 

r o i v a r ( P j x - Px x • Px ) . 

For the pfoof of the lemma see [4] or [ 1 ] . 
Hecall tha t (A,ffl, P) i s said to be an atomless proba-

b i l i t y space i f f f o r every A,cm with P(A) > 0 there 
ex i s t B e m such that 0 < P(B) < P(A). We w i l l need the 
following lemma ( fo r the proof sae {2] )„ 

L e m m a 2.2. I f p. i s a probabi l i ty measure on 
(S, fig) and (A,ITI, P) i s an atomless probabi l i ty space* 
then there ex is t a random var iable X x A S such tha t 
f o r every A 6 ¡Bg 
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On the approximation theorem 3 

P(X € A) = f i(A). 

The next lemma i s a rev i sed and s l i g h t l y s trengthened 
d i s c r e t e vers ion of Corollary 4*2.5 [ i j • Our proof i s based 
on a cons t ruc t ive approach, however a r e s u l t can be obtained 
a l so by Berbee ' s method combined with a t r i c k which g ives 
(8) and (9) below ( t h i s was communicated to Die by R. Bradley) . 

L e m m a 2 .3 . Let I , Y be d i s c r e t e S-valued random 
v a r i a b l e s defined on a p robab i l i t y space ($-,fTlt P ) . Let 

f = ess sup sup |P(X e A|?) - P(X c A)| , 
A«i s 

r = B f sup |P ( I e a|X) - P(Y e A)|l . 
•Acfig 

Then t h e r e e x i s t a random v a r i a b l e Z d e f i n e d on O* <Oj1> 
such t h a t Z i s a f u n c t i o n of X,X,t only ( t c < 0 | 1 > ) , 
Z I , Z f I a r e independent random v a r i a b l e s and 

(3) P ' ( I 4 Z) - r 

(4) P' ( d (T»? )>e ) < 2f P (d ( I ; e ) > | ) f o r every s S and £>0, 

where P' • P • A , A i s a Lebesque measure on <0;1>* 
P r o o f . Let x ( r e s p e c t i v e l y y) r a n g e over a l l 

v a l u e s of I ( r e s p . T ) . For b r e v i t y we w i l l use the f o l l o w -
i n g n o t a t i o n « 

p x = P(X - x) 

q y = P(T o y) 

px,y • p ( x = Y • 

e x , y - Px.y " pxqy* 
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4 W .Bryc 

Note that 

( 5 ) £ = 2 e x , y » 0 . 

Let ( x , y ) be fixed and denote by { B - t } = a d i s " 
joint par t i t ion of <0;1> with the following propert ies : 

B̂ . i 0 only for a f i n i t e set of indexes t , 
I f e < 0 then B = <0;1> and B+ = 0 for t / y , x ,y y « 
I f ^ > 0 then x ,y 

and for t t y 

x . z 

where a + = max { a ; 0 } , a" = min {a. ;0} , X denotes a Lebes-
que measure on <0;1>. 

Note that since = Pa r ' f c i ' f c i o n with r e -

quired properties ex is ts» 
We define the random variable Z(co, t ) as a function of 

X ,Y , t only by the following i d e n t i t y : 
Z(U), t ) = z i f and o n l y ' i f X(u) = x , Y(u>) = y and . 

t e B z ( x , y ) . 
Then from the properties of the par t i t ion i t f o l -

lows that 

(6) P(X=x, Y=y, Z=z) = 

e+ _ e. 
- * ' z i f z t y 

Ç 9 X , t 

p x S 

r x , z 

"if z = y and e ^ 0 

i f z = y and e v , < C . x ,y 
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On the approximation theorem 

We w i l l prove that Y - Z. Clearly we have 

F(Z=z) = £ P(X=x, Y=y, Z=z) = £ P x , z A ( V 

_ e + 0"" _ ST"1 x,y x,z, 

and 

P(Y=z) = £ P ( X = x ' Y = Z " Z = y ) = X ! px,z A ( B z ) 

x,y x 

- E 
x,y E 

t 
3x,t 

Thus i t su f f i ces to show that 

(7) £ x,y x,z •E x,y x,z' 

However because of (5) we can reduce (7) to the equality 

- T e" = Z: e+ 
¿—i x,y < x,z x x 

which i s true once more by ( 5 ) . Thus Y - Z. 
Por the proof of independence of random variablex X and 

Z notice that 
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6 ff.Bryo 

P(X«x, Z»z) = P(X=x, Y=y, Z«z) = 

D q I f e £ 0 

P„ « - » i f 9 < 0. X tZ X,Z X,z 

Thus P(X«x, Z=z) = P(X=x) P(Y-z) and independence fo l lows 

from Z - Y (which was proved above). 

I t remains to prove (3) and (4)« Prom (6) i t f o l l ows t h a t : 

(8) P(X-x, Y«y,,Yj<Z) = e+ 

and 

(9) P{X=x, Z -z , U Z ) = e x t z * 

Using (8) and Lemma 2.1 we obta in (3l)< 

P W Z ) - £ . J f , - r . 
x»y 

For the proof of (4) f i x s c S and e> 0. Then 

P(d(Y;Z)> C) < PfYj t t , d(Y;s) > i / 2 ) + P(Y^Z, d(Z;s) > c / 2 ) . 

By (8) 

P(Y|iZ,d(Y}s) > c /2 ) » I £ P(X=x,Y=y,Y^Z) = 

{y»d(y js)> e/2} x 

^ ! £ e j . y P(d(Y,s) > 1/2), 
{y=d(y;s)>e/2} x 
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On the approximation theorem 7 

Similarly by (9) 
i 

P(Yj*Z, d (Z je ) > e/2) i y P ( d ( T | 8 ) > f / 2 ) . 

This ends the proof of (4) and of the lemma. 
As an immediate consequenoe we obtain (up to multipl ica-

tive constant) a well known Ibragimov's lemma: 
C o r o l l a r y 2.4. I f X,Y are rea l random va -

r iab les such that B|X|P < oo , B|y|q <" °o (1/p + 1/q * 1, <J *<">) 
then 

| i z r - BX B I| <2q+1^||l||p||l||q, 

where i s defined as in Lemma 2*3. 
P r o o f . By a standard approximation argument i t 

su f f ices to prove the inequality only f o r discrete random 
variables . Let Z be a random variable defined in Lemma 2.3. 
Then 

|e(xy) - ex by| = |b x ( y - z ) | * ] x||p||Y-z||q. 

Corollary fol lows now from (4) and the identity} 

CO 
E|Y-Z|q = j q t q " 1 P(|Y-Z| > t ) d t . 

0 

3. Theorem 
The main result of this paper i s the following genera l i -

zation of the approximation theorem of Berkes and Philipp [2] 

Theorem 2. 
T h e o r e m 3.1. Let ( * n ) n € j j be a sequence of 

S-valued r . v . 's . Then we can redefine (XQ) onto a richer 
probability space P) on which there exist a sequen-
ce (Yn ) of independent random variables such that 
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8 W,Bryo 

( 1 ) X n ~ Y n (n= 112,...) 
(ii) P(Xn 4 Y n) = r n (n=1,2,...) 
(iii) P(d(Xn;Yn) > £) $ 2fn P(d(Xn}s) > e/2) (neN, , 

s c s, e>'0), 
where and f n are defined by formulas (1) and (2) res-
pectively. Morever for every n > 1, Yn and ..(X1.. ,Xn_1) 
are independent r.v.'s. 

P o o f . First suppose that (Xn) is a sequence of 
discrete random variables. In this case we redefine (X^) 
on the probability space P) which supports a sequence 
^ of independent uniformly <""0, 1>-distributed random va-
riables independent of 

Let = X1 and suppose that are defined. 
Then we apply Lemma 2.3 to random variables 

X := ( X ^ . . ) 

Y != Xn 

and we define Y n := Z(X,Y,Sn). 
It is easy to see that constructed in such a way random va-
riables have all properties stated in the theorem. 

In general case let = b e a se(3uence 

discrete random variables such that 

— • (Xn)neN in distribution (k-»oo). 

(k i r For instance one can define X' = a* iff i = inf y : 
-11 n i 

sd(Xn;a;.) < k J where ( ^ k e E i s a d e n s e se't i n s* "fc*ie 
discrete part of the oroof one can find (after passing to 

(k) a suitable probability space) a sequence Y* of independent 
random variables such that (a), (b) and (c) are satisfied. 

E L1 
Let be a measure on S xS" generated by the random va-
riable (X(k),Y(k)). Then is a relatively compact fa-
mily of probability measures. Indeed 1st e > 0 and denote 
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On t h e a p p r o x i m a t i o n theorem 9 

by Kfl a compact s e t i n S such t h a t P ( X ^ k ' c Kn) > l - e / 2 n . 
Then K = X KQ* X KQ i s a compact s e t such t h a t ^ ( K ) > 1 - c 

n n 
( k = 1 , 2 , . . . ) . Thus by P r o c h o r o v ' s theorem (f i k) i s r e l a t i v e l y 
compact . P a s s i n g t o a subsequenoe we may assume t h a t 
l im a. = p . By Lemma 2*2 on eve ry a t o m l e s s p r o b a b i l i t y s p a -

¿ •oo 
ce (£1, fU, P) we can f i p d a random v a r i a b l e ( ( X n ) , ( Y n ) ) w i t h 
d i s t r i b u t i o n ¿1. C l e a r l y Yn a re i ndependen t random v a r i a b -
l e s . I t r ema ins t o prove (b) and ( c ) , s i n c e (a) i s o b v i o u s . 

Let c > 0 t s e S and n e N be f i x e d and l e t 5 be any 
po in t of c o n t i n u i t y of t he d i s t r i b u t i o n of r e a l random v a -
r i a b l e s d(Xn ;YQ) - t and 2d(X n J s ) - e . 

Then 

P ( d ( X n j Y n ) > c + 5 ) = l i m P ( d ( X ^ k , , Y ^ k ) ) > e+S) 
k •oo 

thus from the discrete part of the proof (because S i s ar-
b i trar i ly small) we obtain (b) and (c ) . 

C o r o l l a r y 3 . 2 . Let f : R + ~ * R+ be a c o n t i -
nuous i n c r e a s i n g f u n c t i o n such t h a t f ( 0 ) - 0 and f o r some 
s e S t n e N, B f ( 2 d ( X n ; s ) ) < oo . Then (XQ) can be r e d e f i n -
ed on a r i c h e r p r o b a b i l i t y space on which t h e r e e x i s t s a s e -
quence (Yn) of i ndependen t random v a r i a b l e s , such t h a t Y Q - X n 

and E f (d{X n $Y n ) ) $ 2 ? n E f ( 2 d ( X n > B ) ) . 

P r o o f . Th i s c o r o l l a r y f o l l o w s f rom Theorem 3 .1 
and f rom the i d e n t i t y : 

For every r e a l random v a r i a b l e T 2 0 , E f ( T ) = 

« J P(T* t ) d f ( t ) . 
0 

R e m a r k 3 . 3 . Th® r e s u l t o b t a i n e d i n Theorem 3 . 1 ( b ) 
i s b e s t p o s s i b l e . I n d e e d , suppose t h a t and ( X ^ , . . . ) 
a re ir.de>pendent, ¿ n - Y . Dhaa by Lemma 2 .1 

r n = s £ p ! P ( ( X I V € A ) * P ( ( X 1 X n - 1 ' V c A , l = 

= aup | p ( ( ^ 1 f . . . , X n J e A , (X1 X ^ , Y n ) < A) <P(X n *Y n i . 
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