DEMONSTRATIO MATHEMATICA
Vol. XV No3 1982

Wiodzimierz Bryc

ON THE APPROXIMATION THEOREM OF 1. BERKES AND W. PHILIPP

1. Introduction

In this paper we obtain a generalizafion of Berkes and
Philipp s theorem [2] to the case when, instead of y-mixing,
one assumes the so called absolute regularity condifion
(cef. [4]). Morever, under the condition similiar to ¢-mix-
ing our comstruction gives a stronger thesis which enables
us to obtain moment - type inequalities (¢.f. Corollary 3.2).

The first draft of this paper was unnecessarily compli-
cated both in proof and in formulation of Theorem 3.1. After-
wards the author learned from W, Philipp -and R.Bradley about
two results very close to the main result of this paper. First
let us mention a paper of Dehling and Philipp [3] where, using
the Strassen-Dudley theorem, an approximation theorem in some
sense wesaker then ours is proved.

The second result is dorollary 4.2.5 on page 94 of Berbee
[1]. As it was observed by R. Bradley, our approximation theo~-
rem can be obtained from the revised version of Berbee’s co-
rollary (our Theorem 3,1 was proved independently, but later
then Berbee 's corollary 4.2.5). Using a slightly strengthened
version of Berbee 's corollary 4.2.5 [1] as a lemma for dis-
crete random variables one makes the proof of our main theorem
more transparent, thus we will choose this ay (suggested by
R. Bradley) of presentation of the proof.

Finally, let us mentidn that in the ¢ - we obtained a
tomplete solution of the approximation prco:ciem considersd by
Rerlnas and Philipp [2] (¢oefe Remark 3, o .ow)e
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2 W.Bryc

2., Lemmas

In the sequel let (S,d) be a Polish space (i.e. separable
metric complete one) and consider a sequence of S-valued ran-
dom varisbles (xn)neN defined on a probability space
(8.,m, P) and measurable with respect to a Borel 6-field %S
in S, '

The numbers %n (and respectively rn) defined below
are of some interest in study of the ¢-~mixing (and resp. abso-
lutely regular) sequences of r.v. s. (o.f. [4]). Let ¢, =
=T, = 0 and for n> 1 1let

= X goee X -
(1) ¢, = ©88 sup A:;g-T IP(( 1 Xy _q) e Alxn)

- p((x1,...,xn_1) € A)l.

(2) r, = E {‘:gg [P(X, € Al p00e,X 1) - B(X € A)I}d

We will also denote by Py a measure induoed on (Sy 85) by
the random variable X.

Lemma 2.1, Por every integer n we have

T, =} ver(Py cox, " Px.x, , *Fx )
For the proof of the lemma ses [4] or [1].

Recall that (8,1, P) is said to be an atomless proba-
bility space iff for every Aec¢il 'with P(A) > O there
exist BemM such that 0 < P(B) < P(4)s We will need the
following lemma (for the proof see [2]). '

Lemma 2.2 Ifr § is a probability measure on
(s, 35) and (Q,M, P) 1is an atomless probability space,
.then there exist a random variable X 1+ Q —» S such that
for every 4 € Bg '
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On the approximation theorem 3

P(X € &) = p(A).

The next lemma 1s a revised and slightly strengthened
discrete version of Corollary 4.2.5 [1]. Our proof is based
on a constructive approach, however a result can be obtained
also by Berbee ‘s method combined with a trick which gives
{8) and (9) below (this was communicated to me by R. Bradley).

Leamama 2.3. Let X, Y be discrete S-valued random
variables defined on a probability space (R,Ml, P). Let

¢ = ess sup sup |P(X e a|Y) - P(X ¢ A)[,
A¢ 53

r=E {Afgg [P(Y € AlX). - P(Y ¢ AH} .

Then there exist a random variable Z defined on Qx <0;1)
such that 2 1is a function of X,Y,t only (t e <0;1>),
2=2Y, 2,X are independent random variables and

(3) P(Y#2Z)=1

(4) P (a(X33)>¢€) < 29 P(d(Y;8) >.§) for every 8 S and £>0,

where P’ = PO®A, A is a Lebesque measure on < 031D,

Proof. ULet x (respectively y) range over all
values of X (resp., Y). Por brevity we will use the follow-
ing notation:

Py = P(X = x)°
9y = P(Y = y)
Px,y = P(X==x, Y=y)

XyJ = vay - pqu.
- 809 ~



4 W.Bryc

Note that

(5) Z ex’y - Z ex’y =0.
N

X

Let (x,y) be fixed and denote by {Bt} = {Bt(x,y)} a dis-
joint partition of <0;1> with the following properties:
By # ## only for a finite set of indexes 1, ’
It °x,3 < 0 then By =<031> and By =¢ for t £y,
If ®x,y 2 0 then

A(B.) = 2L
¥ Py,y
and for t £ 3y
+ —
e e
N % X,t
MBy) = - gk R,
' J . Xy2
where a't = max {a;O},"a' = min {a;O}, A denotes a Lebes-

que measure on <0;71).
Note that since 2; A(Bt) = 1, the partition with re-

quired properties existswu

We define the random variabls Z(w, t) as a function of
X,Y,t only by the following identity:

Z{w, t) = 2z if and only if X(w) = x, Y(w) =y and
t € B, (x,3). _

Then from the properties of the partition {Bt} it fol-
lows that [+

e 7l 5L ST IR
2: %x,t
t 1
(6) ©P(X=x, Y=y, Z=2) = { Pgly if z = y and e,y 2 0
pr,z if z = y and ex,y.< c.
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On the approximation theorem 5

We 'will prove that Y = Z, Clearly we have

P(Z=z) = D P(X=x, Y=y, Z=z) = > Py,z M(By) -
X

X,y
+ -
_ Z ®x,y %x,2
2 ey
X,3 G X,t
and
P(Y=2z) = Z P(X=x, Y=2, Z=y) = Z Px,z A(B,) -
X,y
+ -
_ Z ®x,2 ex,y
S,
X,y > X,t

Thus it suffices to show that

(7) Ze,y X,Z Ze,y X,2°

X,y

However because of (5) we can reduce (7) to the equality

'Z e;,y'_'ze:cz
X x

which is true once more by (5). Thus Y = Z,
For the proof of independence of random variablex X and

Z notice that
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6 w.mc

P(X=x, Z=2) = Z P(X=x, Y=y, Z=2) =
h

PySg it ex,z 2 0

Px,s x,2 X,2

Thus P{X=x, Z=2) = P(X=x) P{(Y=z) and independence follows

from Z = Y (which was proved abova).

It remains to prove (3) and (4). Prom (6) it follows thats

(8) P(X=x, Y=y, Y#2) = e;'y
and
(9) P(X=x, Z=2, Y¥2) = °;,z'

Using (8) and Lemma 2.1 we obtain (3/):

P(YAZ) = :E: e;’y = T,

Xy

For the proof of (4) fix s € S and ¢> 0. Then

P(d(Y32) > €) € P(Y¥2, d(Y3s) > £/2) + P(Y¥Z, d(Z38) > £/2).

By (8)

P(Y¥z,4(Y38) > e/2) = > p N P(X=x,Y=3,Y¥Z) =

{7:d(3;s80>e/2} «x

= b e;'y < ¢ P(d(¥;8) > €/2).
{y=d(y;a)>6/2} x
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On the approximation theorem . T

Similarly by (9)
\
- P(Y#Z, d(Z38) > €/2) < ¢ P(d(Y38) > €/2).

This ends the proof of {(4) and of the lemma,
48 an immediate consequence we obteain (up to multiplica-
tive constant) a well known Ihragimov'a lemmas
Corollary 2.4 If X,Y are real random va=-
riables such that E|X|P < oo, BlY|9< o (1/p + 1/q = 1, g #oo)
then

1

1
41 =
| ExY - BX EY| <2q+7q

Il ello»

where ¢ 1is defined as in Lemma 2.3.

Proof, By a standard approximation argument it
suffices to prove the inequality only for disorete random
veriables. Let Z be a random variable defined in Lemma 2, 3.
Then

|5(xv) - x BY| = |® xtv-2)| <] ] Jv-2,.

Corollary follows now from (4) and the identity:

o0
Er-z|9 = jq £9-1 p(|¥-z] > t)at.
0

3. Theorem

The main result of this paper is the following generali-
zation of the approximation theorem of Berkes and Philipp Bﬂ
Theorem 2,

Theorem 3.1. Let (xn)neN be a sequence of
S-valued r.v. 8. Then we can redefine (xn) onto a richer
probability space (Q,f, P) on which there exist a sequen-
ce (Yn) of independent random variables such that
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8 : W.Bryo

(1) Xng Yn (n=1,2,e.4)
(11) P(Xn # Yn) =r,

(iii) P(d(Xn;Yn) > &) € 2¢, P(d(xn;s) > ¢/2) (neN,
se S, €>0),
where r, and ¢, are defined by formilas (1) and (2) res-
pectively, Morever for every n> 1, ¥ and ”(X1,...,Xn_1)

are independent r.v. s.

(n=1,2,ooo)

n

Poof. First suppose that (Xn) is a sequence of
discrete random variables. In this case we redefine (Xn)
on the probability space (Q,M, P) which supports a sequeace
8, of independent uniformly <0,1>-distributed random va-
riables independent of (X, ).

Let Y1 = X1 and suppose that Y1,...,Yn_1 are defined.
Then we apply Lemma 2.3 to random variables

X HE (X1’Qtl,xn-1)

Y := Xn

and we define Y := Z(X,Y,Gn).
It is easy to see that constructed in such a way random va-
riables Yn have all prop?i§ies s?iged in the theorem.

In general case let X = (Xn )neN be a sequence of

discrete random variables such that

o) new in distribution (k-+oo),

For instance one can define ng) = a; iff 1 = inf {j:
zd(Xn;aj) < k'1} where (ak)keN is a dense set in S. By the
discrete part of the proof cne can find (after passing to

a suitable probability space) a sequence Y(k of independent
random variables such that (a), (b) and (c) are satisfied.

Let By be a measure on bkxém generated by the random va-
riable (K(k),Y(K)). rhen p, 1s a relatively compact fa-
mily of probability meesures. Indeed let €> O and dennte
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Cn the approximation theorem 9

by K, a compact set in S such that P(xﬁk) eKn)> 1-¢/28,

Then K = X K * X K, is & compact set such that p (K) > 1-¢
' n n
(k=$,2,ess)s Thus by Prochorov’s theorem (g) 1is relatively

compact, Passing to a subsequence we may assume that
lim B = Be By Lemma 2.2 on every atomless probablility spa-

£®co

ce (Q,M, P) we can fipd a random variable ((X.),(Y,)) with
distribution p. Clearly Yn are independent random variab-
les. It remains to prove (b) and (c), since (a) is obvious.
Let ¢> 0, 8 € S and ne N be fixed and let & be any
point of continuity of the distribution of real random va-
riables d(Xn;Yn) - € and 2d(xn;s) - €
Then

(k) (k)
P(d(xn;Yn) > g +8) =lg.i|:° P(a(X) bY07) > € +8)

thus from the discrete part of the proof (because 5 1is ar-
bitrarily small) we obtain (b) and (¢).

Corollary 3.2 Let f: R+~—> R+ be a conti-
nuous increasing function such that £(0) = 0 and for some
seS, nelN, B f(2d(xn;s)) <oo « Then (xn) can be redefin--
ed on a richer probability space on which there exists a se-
quence (.Yn) of independent random variables. such that Yn'-‘-’x
and B f(d(xn;Yn)) <29, E f(2d(xn;s)).

Proof . This corollary follows from Theorsm 3.1
and from the identity:

o FOr every real random vaeriable T 2 0, E £(T) =

- ] B> 1) at(e).
0
Remark 3.3, The result obtained in Theorem 3.1(b)

is best possible. Indesd, suppose that Y, and (X1,...,Xn_1)

are irdependent, Ly 2 Yn. Then by Lemma 2.1

n

v, = sup IPU(X,p0e0sX,) €A) = P(Xyp0ue, X, _4,Y, ) €4)] =

= s:p IP((2.1,...,Xn) € hy (Xy,eeesX oY) ¢ &) < P(X #T .

e i =
- D
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