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ON A GENERALIZATION OF HOSSZU THEOREM 

1. Introduction 
Post has shown ( c f . [11]) that to each (n+1)-group G 

there e x i s t s a related group G* (called the free covering 
group) and i t s certain invariant subgroup GQ (cal led the 
associated group of G). That associated group Gq serves to 
reproduce the former (n+l)-group G by i t s e l f and a certain 
automorphism of GQ ( c f . [15] , [ l l ] ) « A continuation of 
Pos t ' s research i s the paper of Hosszu [5] where i t occurs 
that an (n+1)-group can be reconstructed by using an appropria-
te group (the so-called binary re t rac t ) and some automorphism 
of i t . That expression i s in a sense unique ( c f . [14]). I t i s 
a l so known that binary re t r ac t s of some c l a s se s of (n+1)-groups 
ara isomorphic ( c f . [13] , [3]) . 

In our paper we show that Hosszu Theorem can be generalized 
to the (k+l)-ary case ( i . e . that instead of the binary re t rac t 
an appropriate (k+1)-retract can be used). We show also that 
such (k+1)-ary r e t r ac t s (a l so in the case of k = 1) of a given 
(n+l)-group are isomorphic. The assignement of (k+1)-ary r e -
t rac t s to (n+1)-groups i s functor ia l . 

2. Some notions and notation 
We use the usual notations which may be found in papers 

on n-groups, in particular in [2] , [4], [8] . 
As in [11] , n-groups are called also polyadic groups, 

especia l ly when the ar i ty of the operations i s not cruc ia l . 
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Similarly a sequence of elements of an (n+lj)-group 
G i s cal led ( a f t e r Post) a polyad (shortly an m-ad). Post 
has shown that the equivalence c l a s s of such a polyad (with 
respect to an appropriate re l a t ion) i s an element of the f ree 
covering group G* of G ( c f . [l 1] ) . Therefore we a l so adopt 
the terminology of group theory to polyads, i . e . we use terms 
l ike (n+t)-adic ident i ty , the m-ad inverse to a given (n-m|)-ad, 
qentral a-ads and so on. 

We use the following abbreviated notations 

k f ( * 1 , . . . , x k , x k + 1 , . . . , x k + q , x k + q + 1 , . . . > x n + 1 ) = f \ x r 
(q) 

x n + 1 ^ k+q 1-1 / ' 

whenavar = . . . = x k + q = x (x^ i s the empty symbol for 
(q) 

j < i and f o r i > n+1; a l so x i s the empty symbol for 
q = 0 ) . 

For an (n+1)-ary operation f one can define a new 
(un+l)-ary operation by 

u 

The operation has been called by Dornte ( c f . [l] ) the 
long product. I f f i s an (n+1)-group operation, then 
i s a (un+1)-group operation, too ( c f . [l] ) . In certa in s i t u -
a t ions , when the ar i ty of such operation does not play a cru-
c i a l r o l e , or when i t wi l l d i f f e r depending on addit ional 
assumptions, we wi l l write 1 :0 ^san "^(u) * o r s o m e 

u = 1 , 2 , . . . . 
Introducing the empty n-group appears to be convenient, 

when considering the category Grfl of n-groups, because the 
empty n-group i s an i n i t i a l object of that category ( « f . [6] ) . 
Therefore, when defining the functor ret in sect ion 3 we 
emphasize wheare. the empty n-group appears. Otherwise an n-group 
i s always understood to be a nonempty n-group (as -vt was used 
by Dornte in [l] ) . 
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3. (k+l)-ary retracts 
Let (G,f) be an (n+1)-quasigroup. The (k+1)-ary opera-

tion g defined by 

«(xk+1) - ffaPl x a P 2 x a
P k + 1 x an"k "l 

where k < 
n and a^ , « • • 9 a^ k are fixed 9 leme nts of G , 

is an (k+1)-quasigroup operation. In general, g is not a 
(k+1)-group operation, even if (G,f) is an (n+1)-group. If 
Pi = 0» Pk+1 = n-k, n = k(p2+1), p2~p1 = P3~P2 = ... = P k + 1~P k 
and a p^ + i = a ^ = ... = a p^ + i (i=1 p2), then g is 
of the form g(xk+1) = f(x1,a^,x2,a^,...,a^,xm+1), where 
n = sk, r = s-1. To avoid repetitions we assume througout 
the whole text n = sk (admitting s = 1 or n = 1), 
r+1 = 0 (mod s) (exactly r = s-1 or r = su-1). 

The above-defined (k+1)-grupoid (G,g) will be called 
a (k+l)-ary retract of (G,f) with respect to and 
it will be denoted by ret® (G,f) (or simply a-|»• • •»ap 
ret (G,f)). According to that definition, by ret1(G,f) a1». • •»ap 
we shall mean nothing but the (n+1)-group (G,f). 

Since in an (n+l)-group (G,f) to every a e G there 
exists a unique element a £ G such that 
/(i-1) (n-i) \ ( (i-1) _ (n-i)V 

fĵ  a , a, a ,xj = f\x, a. ,a, a / = x for every xcG and 
i = 1,..., n (cf. [l]), then .ret® (G,f) = ret® ,(G,f) 

cx̂  | • • « f a* « • • ycLjU 
/(n-r) v 

where b = f ( a »a.a^J. 
Immediately from the definition of a polyadic group we 

get 
L e m m a 1 (cf. [5]). The (k+1)-groupoid 

retf _ (G,f) is a (k+1 )>-group. a1» • • . » Op 
Notice that retracts of commutative (semi-commutative) 

n-groups are commutative (semi-commutative). Binary retracts 
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of semi-commutative n-groups are commutative groups, but r e -
tracts of autodistributive n-groups (cf . [3]) are not necessa-
r i l y autodistributive. 

The following lemma i s needed for the proof of functoria-
l i t y of r e t . . 

L e m m a 2. Let h : ( A , f ) —• (B,f) be a homomorphism 
of (n+1)-groups,. I f a polyad a ^ + ^ , . . . f a n e A i s an inverse 
of a polyad e A, then the polyad h ( a t + ^ ) , . . . 
. . . » h i a ^ ) e B i s an inverse of the polyad h ( a ^ ) , . . . , h ( a ^ ) € B. 

Let n > 1 . Given (n+1.) -groups ( A , f ) , ( B , f ) , ( C , f ) , l e t 
r -ads (here r = s - 1 ) a ^ , . . . , a r e A, e B, 

e C be arbitrary but fixed. Consider the ( k + 1 ) -
-groups (A,g) = ret ( A , f ) , (B,g) = ret, . ( B , f ) , u -] » • • • » "2-. 
(C,g) = ret „ ( C , f ) . I f h ; ( A , f ) —*• (B,f) i s a homo-

morphism of (n+1)-groups, then we may define the mapping 
ret . , h:A —• B by the formula 

re t a . . b b h(x) = f (h(x) ,h(a ) , . . . , h ( a r ) , b " ) 

where the (n-r) -ad k r + . j , . . . ,b n
 c ® i s an inverse of the 

r-ad b ^ , . . . > b p . 
Let x 1 , . . . , x k + 1 e A. Then 

ret b b h(g(x!f+ 1)) = 
» • • • » =>2»» u 1 > • • • » up 1 

= f ( h ( f ( x 1 , a ^ , x 2 , . . . , x k , a ^ , x k + 1 ) ) , h ( a 1 ) . . , h ( a r ) ) = 

= f # j (h(x 1) , h ( a 1 ) . . .hfa^) , h ( x 2 ) , . . . ,h(xk) , h ( a 1 ) , . . . 

. . . , h ( a p ) , h ( x k + 1 ) , h ( a 1 ) , . . . , h ( a r ) , b £ + 1 ) = 

= f ( . ) ( f ( h ( x 1 ) , h ( a 1 ) h ( a r ) , b ^ + 1 ) , b ^ , f ( h ( x 2 ) , h ( a i ) , . . . 
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On a generalization of Hosqziu theorem 5 

...,h(ap),b£+1) b^,f(h(xk+1),h(a1),...,h(ar),bj+1)) = 

= S(ret . , h(Xl),...,ret b . h(x )). 

This shows that reta _ <v, h h:(A,g) (B,g) is 
a homomorphism of (k+1)-groups. 

It ia easy to see that 

reta1,...,ar;a1,...,ap
id(A,f) = "ret . (A,f)' 

Now. let h., :(A,f) —•• (B,f) and h2:(B,f)-* (C,f) be 
hlomomorphisms of the corresponding (n+1)-groups, Then 

r®"6̂  * „ h o 0 ret,, „ .K K^^(X) = blf...,br;c1f...,cr 2 a1,...,arjb1,...,bp 1 

= M t
b l br;Cl C r V f ( V x > ' V a 1 > V ar>. b? +1>> -

= f(h2(f(h1(x),h1(al),...,h1(ar),b^+1)),ha(b1),... 

...,h2(br),c°+1) = f(2)(h2h1(x),h2h1(a1),...,h2h1(ar),h2(bIM_1),.. 

. . . , h 2 ( b n ) , h 2 ( b l ) . . , h 2 ( b r ) ) = 

= f(h2h1(x),h2h1(a1),...,h2h1(ar),c°+1) = 

= r e ta a -o c hphi<x)' 

Choosing in each (n+1)-group a sequence of r = s-1 ele-
ments (perh&ps with repetitions) and assuming additionally 
that for the empty (n+1)-group A let retsA be the empty 
(k+1)-group for s < n and the one-element group for s = n, 
we obtain a functor (in fact a class of functors depending on 
the choice of elements) re1;S:Gr

n+-| -*• Gr k + 1 from the cate-
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gory of a l l (n+1)-groups to the category of a l l (k+1)-groups. 
We shal l show that a l l these functors are natural ly equiva-
l e n t . 

Consider f i r s t l y the par t icu lar oase of sequences of the 
form a1 = a 2 = . . . - a « A. We write Ret®(A,f) (or simply 
Ret_(A,f)) instead of ret® (A,f) and Ret® f o r a-j»• • • t 

?phism Re 
:Reta(A,f)—+ Retb(B,f) i s given by the formula 
ret®, Kote that the homomorphism Ret®^h » ret® ajb^ 1 

(r) (n-1-r) 
Re t | i b h(x) = f ( h ( x ) , h ( a ) , b ,S) . 

T h e o r e m 1. The functors ret®:Grn+1 —» Gr k + 1 

and Ret®: ~* G r ^ ^ are natural ly equivalent. 
P r o o f . In each (n+1)-group choose a sequence of r 

elements (perhaps with repe t i t ions) and addit ional ly a single 
element. So we get two functors : ret® and Ret®. Let the 
mapping 

A» : re t (A,f) —» Ret . (A,f) be given by A.(x) -A |c^ o H 

(n-1-r) _ 
» f ( x t a 1 t a , a ) . 

Prom the e a r l i e r considerations i t follows that i s a ho-
momorphism of (k+1)-groups. Moreover, X^ i s even an i s o -
morphism. 

Now we show that f o r every homomorphism h : (A, f )—» (B,f) 
the following diagram 

\ 
r e t (A,f) » Bet ( A , f ) » «•• »"p a 

r e t . „ .k i J i a^ , . . .» a
r » D i • •»•>BjP 

*B 
re tv y. (B,f) RetK(B,f) "•J t • • » »Dp 0 

R e t a , b h 
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On a gene ra l i za t ion of Hosszu theorem 7 

i e commutative. In f a o t 

(n-1- r ) 
R« t a ? b h • XA(x) - He t a | b h{f{x ,a i j , a , a ) ) -

_ (n-1- r ) . ( r ) (n -1 - r ) ^ 
- f ( h ( f ( x , a * , a ,5) ) ,h( -a) , b ;E) » 

' n - 1 - r ) ( r ) • (n-1- r ) _ 
« f j . j i h f x j . h i a ^ h ( a r ) , h(a) , h ( a ) , h ( a ) , b ,b) =. 

(n-1- r ) 
- f ( h ( x ) f h ( a 1 ) # . . . , h ^ a r ) , b ,5) » 

^ (n -1- r ) 

i f (f (h(x) ,h(a^) K ^ J . b ^ i . b * , b ,b) -

= A B ( f ( h ( x ) , h ( a 1 ) , . . . , h ( a r ) , b £ + i n -

» A.a • r e t „ K h (x ) , 

which proves that A s r e t 8 — » Se t 8 i s a na tu ra l equivalence. 
So we have the wel l -def ined up to a na tu ra l equivalence 

the func to r r e t 8 t G r n + 1 —* G r ^ . In sp i t e of the f a c t t ha t 
r » t 8 i s independent of the choice of elements i n (n+1)-groups, 
i n concrete s i t u a t i o n s one has to make such choice in one way 
or another . 

Timm has proved in [13] tha t binary r e t r a c t s of a commuta-
t ive polyadic group are isomorphic commutative groups. Dudek 
has proved i n [3] tha t a lso binary r e t r a c t s of an a u t o d i s t r i -
butive polyadic group are isomorphic. Theorem 1 i s a g e n e r a l i -
za t ion of those r e s u l t s . 

C o r o l l a r y 1. All binary r e t r a c t s of an 
(n+1)-group are isomorphic. 

C o r o l l a r y 2. I f (G,f) i s an (n+1 ),-groupt 

then a l l (k+1)-ary r e t r a c t s of the (un+1)-group ( G , f ^ u j ) , 
where u i s f i xed , are isomorphic. 

Note tha t dealing with (k+1)-ary r e t r a c t s of (un+1)-groups 
( G , f ( u ) ) i s in f a c t considering the functor r e t 8 u * u s 
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Gr n + 1 —•> Qr k + 1 which is the composition'of the forgetful 
functor v

u ' G r n + 1 —• Gru x i + 1 (cf. [6], [7]) with the functor 
r e ' f c S U ! G r

u n + - | — * ' G r k + 1 . This functor will be denoted briefly 
by ret 8' u (i.e. ret 8' u = retsu1fu and Ret s» u = R e t s \ ) . 
According to that notation, ret8'"' = ret3. A restriction 
to the case of u £ k is possible since, as it is easy to 
check, for u = t (mod k) the (k+1)-ary retracts of the 
(un+l)-group (G»f(u)) and the (tn+1)-group ( G . f ^ ) are 
isomorphic, Henoeforth throughout the paper we assume always 
u $ k. 

One may ask whether the functors ret8'* and ret 8 , a 

are naturally equivalent for t £ u (mod k). If we consider 
ret3'* and ret s , u as functors from G r n + 1 to G r k + 1 they 
are not in general naturally equivalent. 

As an example consider the 7-groupoid (G,f) where G = Z., 
7 

f(x.j') = x1-x^+xyx^+x^-x^+xrj (mod 4). Then (G,f) is non-
commutative, idempotent 7-group. Let 

G,g) = Ret^(G,f) and (G,g') = Ret^(G,f { 2 )) = Ret^'2(G,f). 

Hence 

3 ( 2 ) ( 2 ) 
g(x^) = f (x,j, a ,x2, a ,Xj) = x^-xi^+xj (mod 4), 

. (5) (5) 
g'(x^) = X^, a ,x2, a ,x3 s x1+x2+x^-2a (mod 4). 

Notice that (Gfg) is a noncommutative, idempotent 3-group, 
while (G,g') has only two idempotent elements and (G,g') is 
a commutative 3-group. Therefore (G,g) and (G,g') are not 
isomorphic. 

The situation simplifies considerably in the case of tne 
functor retin',UsGrn^ .—•> Gf2, to the category of groups. In 
this case k = whenoe u = 1.«Therefore all functors ret n , a 
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(for arbitrary u) are naturally equivalent and there appears 
the functor re t n : —»• Or^ which i s unique up to a na-
tural equivalence. In contrast, for k > 1 one has to consi-
der different functors r e t s , u s Grfl+1 —» Grk+1 for different 
u. To have a natural equivalence of them i t i s necessary to 
restr ic t both funotors to an appropriate subcategory of 

The case of k » 1 was studied in [10]. Fop considered 
two functors from Grn+1 to Gr2 (for n > 1). One of them 

was» in our notation, the functor retf „ the other a, •. •*«»« , 
was the functor which had appeared de facto in the Post s 
construction of a free covering group (of. [11], [10]). From 
[6], Theorem 1 i t follows that the l a t t e r i s naturally equi-
valent to the funotor Retn, which in turn implies, by Theo-
rem 1, the main theorem of [10]. 

In [6] (cf . also [8] ) there was introduced a functor 
Gr Q + 1 —*• G r k + 1 assigning to each (n+1)-groups i t s free 

covering (k+1)-group. That functor does not preserve projec-
tive l imits , in particular the cartesian product (cf . [7]). 
In contrast with the functor r e t 8 : GrQ + 1 G r k + 1 pre-
serves the cartesian product. 

T h e o r e m 2. If [ H OtJ {ii ts H G ,— 0 t } t € J 
i s the cartesian product of a family of (n+1)-groups 
{(G t , f )} t i T , then [ret8 J l G t ,{re t 8« t : re t 8 i l G, — 

—* re tSGt)teTl i s t h e cartesian product of the family of 
{k+1)-groups { ret 8 (G t , f )} t € ! p . 

P r o o f . Let (G,f) = PI (G+,f) together with pro-
r 1 t 6 T 

Sections Gtit€T b e "tiie cartesian product of the 
nonempty family of (n+1)-groups { (° t , f ^}tcT* I n e a c h 

(n+1)-grou> Gt choose an element a t e Gt. Let (Gt,g) = 
= Het8^(G t,f), (G,g) = HetJ(G,f) (where a= ( a t ) t £ t e G) 
and (G,g') » P I (G+,g). Take arbitrary elemedts x4 = 

tcT x 1 

= e G where for i • 1, . . . ,k+1 we have x1 ^ e G .̂ 
Then ' 
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g ' f x ^ 1 ) - ( s ( x i q > t » . . . » x k + 1 ) t ) ) t £ T -

( r ) ( r ) 
= ( f ( x 1 ) t , a t a t , x k + 1 ) t e T = 

( r ) , 
= f ( x v a , . . . , x k + 1 ) = g ( x * + l ) . 

Moreover, 

g ( r ) ( n - 1 - r ) 
r e t j r t ( ( x t ) t e T ) = f ( i r t ( ( x t ) t e T ) , s r t ( a ) , a t , a t ) = 

/ ( r ) ( n - 1 - r j _ \ 
= a t ' a t ' a t / = x t ' 

which proves t ha t [ r e t s G ; { r e t S 3 T t j r e t s G -*• r ^ G - j J t e l ] i s 

the c a r t e s i a n product of the nonempty fami ly { r e 1 ; S < ' t } tcT* 
Fu r the r note t h a t the f u n c t o r r e t 8 p reserves f i n a l o b j e c t s 
( t h a t i s the c a r t e s i a n product of the empty family) and i n i -
t i a l o b j e c t s ( t h a t i s the c a r t e s i a n products of f a m i l i e s of 
(n+1)-groups conta in ing the empty (n+1)-group) . This comole-
te's the proof of Theorem 2. 

We end t h i s s e c t i o n with the fo l lowing 
P r o p o s i t i o n 1. Let an (n+1)-group (G, f ) 

be g iven . I f t he re e x i s t elements a k + 9 , . . . , c G such 

t h a t f o r a l l x 1 , . . . , x J c + 1 e G we have f ( x i » a k+2 ' x k+1) = 

= f » a ^ g ) » then G t o g e t h e r wi th the opera t ion 

g(x!f + 1 ) = f ( * i + 1 ' a k t 2 ) i s a (*+1>-6roup. 

P r - o o f . Simple c a l c u l a t i o n s show t h a t the ope ra t ion 
g i s { 1 , 2 ) - a s s o c i a t i v e . Obviously i t i s a l so a (k+1) -quas i -
group ope ra t i on . Hence (G,g) i s a (k+1)-group ( c f . [2] , [ 4 ] ) . 

C o r o l l a r y 3. I f a.̂  ( i = k + 2 , . . . , n + 1 ) are 
c e n t r a l elements of an (ri+l)-group ( G , f ) , then (G,g) , where g 
i s def ined as i n P r o p o s i t i o n 1, i s a (k+1)-group. 
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On a genera l izat ion of Hosszu theorem 11 

Note, however, that fo r d i s t i n c t choices of the sequence 
a k + 2 ' * " * ' a n + 1 ' f o r m e r l y defined (k+1)-groups are not 
neces sar i ly isomorphic. 

As an example consider the 7-group (Z^, f ) defined as abo-
ve. 3-groups (Z^.g) and ( Z ^ . g ' ) , where g(x^) = f ( x ^ , 3 , 1 , 1 , 1 ) 

and g'Cxij®) = f ( x ^ , 1 , 1 , 1 , 1 ) , are not isomorphic, 

k 
4. <fl-,c^>-derived (n+1)-groups 
For a given (binary) group (G, • ) Timm ( c f . [14]) has form-

ed with the aid of a sequence of b i j e c t i v e mappings ^ , . . . , 
of G and an element c e G an (n+1)-ary operation f ( in 
[14J i t was n-ary, in f a c t ) defined by f ( x " + 1 ) = x1 (x 2 ) • . . . 
. . . * 2Tn(xn+-]) • c. The (n+1)-groupoid defined by th i s way was 
cal led the -derived (n+1)-groupoid of the group (G,« ) . 
Depending on the choice of !Ti>«««»jfn a n d c e G the (n+1)-
-groupoid (G,f) i s a permutationally a s soc i a t ive (n+1)-grou>-
poid, an (n+1)-semigroup, an (n+1)-group and so on. In p a r t i -
cular Timm has proved that < ^ , 0 ) - d e r i v e d (n+1 )-groupoid of 
a group (G, • ) i s an (n+1)-group i f and only i f the sequence 
of mappings fl^,...,<f and the element c f u l f i l the Hosszu 
condition ( c f . [5], [11] , p .245), that i s : jf1 i s an auto-
morphism of (G,*) such that ^ ( c ) = c, = i ^ ) 1 ( i = 1 , . . . , n ) 
and i s an inner automorphism given by ¡Tn(x) = c *x«c~ 1 . 
By analogy we say that an automorphism f of a (k+1)-group 
(G,g) and elements c 1 , . . . , c k € G f u l f i l the Hosszu condi-
t ion , i f y ( C i ) = o i ( i = 1 , . - . . ,k) and g( j f n {x) to!f) = 
= g (c^ ,x ) ( i . e . i s an inner automorphism). Define an 
(n+l)-ary operation f on the set G by 

f ( * ? + 1 ) = g ( 3 + 1 ) ( x 1 , j r ( x 2 ) , . . . , i f Q ( x n + 1 ) , c ! i ) . 

I f ft and f u l f i l the Hosszu condition, we say 
that the (n+1)-groupoid (G,f ) i s <ar;c!f>-derived from the 
(k+1)-group (G,g) and i t w i l l be denoted by der®. (G,g). 

jTi c-j»• • • »c]j 
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In c e r t a i n s i t u a t i o n s , when the form of f and o ^ , . . . , ^ 
d»e? not play a c ruc i a l r o l e , we c a l l the <fjc*>-derived 
(n+1 )-grolipoid simply a weakly derived (n+1 )-groupoid. In the 
oase when y» idg the <idG}o^>-derived (n+1)-groupoid w i l l 
be cal led shor t ly the <c^>-derived (n+1)-groupoid and abbre-» 

viated by der® . (G,g). Note tha t those nota t ions are 
» • • • »a]£ 

meaningful and n o n t r i v i a l also f o r s = 1. 
T h e o r e m 3. The. (n+1)-groupoid der® (G,g) O » »•••fClr 

i s an (n+1)-gr'o up. 
P r o -o f , The s o l v a b i l i t y of aquations .for the opera-

t i o n . i f i s implied by the s o l v a b i l i t y of equations f o r the 
(k+1)-group operat ion ;. g and b i j e c t i v i t y of the mapping 
y 1 ( i = 1 , . . . , n ) . We show a s s o c i a t i v i t y of f . In f a c t , 

D Jt H k 
= g ( . ) ( g ( . ) ( x 1 , T ( x 2 ) , " - , y ^ n + l ^ ^ ^ f ^ n + Z 5 7 ^ W ' 0 ^ = 

= 8 ( , ) (V®( . ) 1**2 > rn<xn+1>'°v2Kxn+2))'f'2(xn+33 i*(x2n+1 = 

= 8 ( . )(x1 . v . .jrn"1 ( v ^ ' 4 ' V z f (*„+3) J T ^ a n * c i >" 

=:<?(. .*•(«(. • • • •. J-n '1t*n+1 j . ) • . « ? : f (xn+3 5 ' ' ' ' ' 

whence f i s ( 1 , 2 ) - a s s o c i a t i v e . Thus, by Sokolov's r e s u l t , 
( c f . [12]), f i s a s soc i a t i ve , which completes t h e . p r o o f . ' 

Recall tha t an (n+1)-group (G,f) i s derived from 
•(k+t)-group"(G,gj ( i . e . (G,f) = Vg(G,g) in nota t ion qf [6 j ) , 
i f '̂  ' -"6(8) ( c i . [ l ] ) . ^ e r e l a t i o n s h i p of the terms: de- . 
rived and weakly derived (n'+1)-group'is nbt casual . Eet 
f = idg and l e t a polyad C^, . . . ,C] . be an i d e n t i t y of a 
(k+T)'-group (G,g)V Then f 8nd c ' . , , ' c k f u l f i l obviously 
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the Hossb u condit ion and der®. (G.g) • G,g), i . e . 
J*0] I • * • tC]£ p 

the (n+1)-group <ff;c^>-derived i s simply the (n+1)-group de-
r ived in the sense of [1]. 

Under d i s t i n c t choice of the automorphism y and the ele-
ments c 1 , . . . v o L . the (n+1)-groups der® „ (G,g) may 

1 K fl , > • • • »Cfc 
occur to be non-isomorphic. I t happens even i n the most simple 
case of k = 1. Consider ' the following example. 

Let (G,g) be a group of exponent n (n > 1) and l e t b 
be a c e n t r a l element of (G,g) d i f f e r e n t from the neu t ra l 
one. Then the (n+1)-groups ipn(G,g) and dery# t )(G,g) are not 
idempotent). 

Now, as in the case of derived (n+1)-groups ( c f . [7]) , 
we prove that the ca r t e s i an product of weakly derived (n+1)-
-groups of (k+1)-groups i s the weakly derived (n+1)-group 
of the ca r t e s i an produat of the (k+1)-groups. 

T h e o r e m 4. Given a nonempty family of (k+1)-
-groups { ( G t , g ) } t € T , l e t o± = ( o i f t ) t c T f o r c ^ c Ot 

( i = 1 , . . . , k ) , y(x) = ( j T t ^ t ^ t e T f o r x = ( z t ^tcT* T h a n 

der® n (G t ,g) = l~I der®. (G t , g ) . 

P r o o f . Let 

(G,g) *= n (G t , g ) , ( G t , f ) = der® (G t , g ) , 
tcT z x «t»c1 , t ' * " » c k, t x 

(G,f) = der® (G,g), (C,fO = f~l ( G t , f ) . 

I t i s easy to check that i f j t and c., t , . . . , c k t f u l f i l 
the Hosszu condit ion f o r every t 6 T, then f and c ^ , . . . , c j c 

f u l f i l the Hosszii condi t ion, too. Take a r b i t r a r y elements 
= ( x i f t ^ t « T e G ( i = 1»•••»n+1) . Then 
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f - (f(x
1jt»"'»:x:n+1,t))t6T = 

= ê( s +1)( x1^ x2 ,"-"/ l ( xn +1 ,' cï ) = f( xî + 1 )' 

5. A generalization of Hosszu theorem 
By a translation of an (n+1)-group (cf. [9] ) we mean the 

mapping f{x) = f ( â -"* ,x,a?£j ). It is always invertible. Its 
inverse is the mapping = fib^jX.Cg) where the polyad 
bi,...,bn is an inverse of the polyad and the 
polyad c2,...,c^ is an inverse of the polyad an+1* 

A special case of translations are translations of the 
U ) / (i-1) {n-i ) v ( i ) 

form a a b(x) = f(x, a ,b5 a J and flà= 
/(j-ll (n-j ) ) ' 

= f \ a ,c, a ,xj. Dudek has proved (cf. [3J ) that an 
(n+1)-semigroup (G,f) is an (n+1)-group if and only if for 
some i,j = 1,...,n and all aeG there exist elements 
b,c e G suci: that «¿^(x) = ft^' ( x) = x. Obviously, if a y U ' a f C 
(G,f) is an autodistributive (n+1)-group, then all transla-
tions are automorphisms. Moreover, if the polyad a^,... 
. . . , a i + 1 , . . . , a n + 1 is an identity of (G,f), then y is 
on automorphism of (G,f). Hence ¡f ia an isomorphism from 
ret® (G,F) onto ret®, , , >(G,f). Therefore, L-j»»'»>cr 2(A ĉ  j,... cr/ 

if 2f(°j_) = i = 1»««»>ri then y is an automorphism 
of ret® (G,f). 

Prom the above remarks there follows immediately 
L e m m a 3. A translation of the form fix) -
( ( n-r-1 ) (r)\ 

= f\i, a ,x, a / is an automorphism of the (n+1)-group 
(G,f) and of its (k+1)-ary retract Ret®(G,f). 

T h e o r e m 5. Let an (n+1)-group (G,f) be given. 
To every (k+1)-group Ret®,a (G,f) there exist an automor-a 
phisrn ¡f of fîet®'u(G,f) and elements c^,...^^ e G such that 
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d e r r - c c Ret®' u (G, f ) = ( G , f ) . 

Namely, 

/_ (n-su) ( sa -1 )\ (.{(n+k) (n - su ) ) (n+1)\ 
y (x ) = f^a , a , x , a J , c1 = a , a J , 

<^2 ~ • • • =Cjf = a> 

P r o o f . ' Let (G,g) = Re t® ' u (G , f ) , where (G,f ) i s 
an. (n+1)-group, and l e t a E G be a c e r t a i n element of i t . 
Define the mapping -*• G by the formula g"{x) = 

/_ (nM1-r) ( r )\ 
= f ( ' ) V ' a , X ' a / w h e I ? e ? = s - 1 . By Lemma 3 i t f o l -
lows that_ y i s an automorphism of (G',g). We prove that the 
automorphism ftn i s an inner automorphism. Let 

/((n+k) (n-1 - r ) ) (n+1)\ 
°1 = f ( * ) \ a , a J , c2 = . . . = c k = a . 

Then 

g(5rn(x).cip = 

/ ({n) (n(n-1-r)) (nr)\ f((n+k)(n-l-r)) (n+1)\ (k-1 k 
= g ( f / . A a , a ,x, a / , f , A a , a a ) = 

s t < 

/ /(n) (n(n-1-r)) ( n r ) \ ( r ) /((n+k)(n-l-r)) (n+l)\ 
. ) ( f ( . ) \ a , a ,x, a J, a a . a 

( r ) _ ( r ) _ 
» Q- ) • • • f & | cL 

k-1 

f(n) (n(n-1-r)) ((n+k)(n-1)) (n+k)\ 
" f ( . y a » a »x» a , a / = 

/(n) (n(n-1-r)) \ 
= f ^ a , a ,xj. At the same time g(c^,x) 
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/ /((a+k)(a-1-r)) (n+l)\ (k^l) \ 
= 8 v ( 0 a , a J, a ,i)s 

/ f((n+k)(n-1-r)) (n+l)\ (r) (r) (r) s 
= f(.)r(.) a . • 5 ' > ,a a »x ) = 

k-1 
/(a) (n(n-l-r)) \ s 5 ' a * 

n k k whioh shows that g(f (x),o^) = g(c*,x). 
One can easily verify that y(o^) = c^ for i = 1,...,k. 

Thus jp pnd o1,...,clc fulfil the Hosszu condition. Further-
more , 

= a a " " a 'f ̂ ^ a ' V " " a ' V s 

f (r) (n-1-r) (r) (r) (2) (2(n-1-r)) (2r) (r) 
= f^jb^, a ,a, a .Xg, a , a , a , a ,Xj, a , a 

(r) (a) (n(n-1-r)) (nr) (r) ((a+k)(a-1-r)) (n+1) 
a , a , a »xn+-j» a • a • a • a » 

a a ,al = f(»1 ), 
k-1 

whenoe (G,f) = der®, (G»g)» which was to be proved. Of » • •• t0]̂  
It turns out that forming a weakly derived (n+1)-group 

is a procedure converse to that of forming a retract. Note, 
however, that a special form of retract has been considered 
in the proof of Theorem 5, namely Ret. Dealing with arbitrary 
(k+1)-ary retracts the situation slightly complicates. 

L e m m a 4. If h:(A,g) —* (B,g) is an isomorphism 
of (k+1)-groups, then hsder® U , g ) — • 

k 
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^ . b : . , b k ( B ' S ) . where T b = h ^ h " 1 , b. = H(a ± J 

( i = 1 , . . . , k ) , i s a l s o an isomorphism of (n+1) -groups . 
P r o o f . 

h( f (x^ + 1 ) ) = h ( g ( s + l ) ( x 1 > i r A ( X 2 ) , . . . , ^ ( x n + 1 ) , a ! [ ) ) = 

= g ( s + 1 ) (h(x 1 ) f h(-J- A (x 2 ) ) h ( T ^ ( x n + 1 ) ) , h ( a i ) h(a k ) ) = 

= g ( s + 1 ) ( h ( x 1 ) , ? r B ( h ( x 2 ) ) i ,g(h(xn+^ ) = f ( h ( x i ) , . . . , h ( x n + 1 ) ) . 

P r o p o s i t i o n 2 . Let an (n+1)-group ( G , f ) be 
g iven . To every (k+1)-group r e t f , u ( G , f ) there e x i s t s a 1 , . . . , a r 

an automorphism cr of r e t ' ( G , f ) and elements 
a-| » • • • »Oj, 

e G such t h a t the (n+1)-groups 

d e r * > . c r r e t n ' U « (G»p> a n d ^ isomorphic . 6 t«-J » • • » 
Namely, 

( ( n - 1 - r ) ( r ) \ 
j f U ) = a » x » a v a ' a r + 1 / ' 

f{ (n+k) ( n - 1 - r ) ) (n+1) ( r ) \ 
-C1 = f ( » A a , a , a 

f- ( r ) n ^ c 2 = . . . = c k = f ( . , V f . a , a 

where a i s an a r b i t r a r y element of G and the polyad 
a r + 1 , . . . , a n i s an inveijsie of ^ Sp. 

P r o o f . According to Theorem-1, the mapping 
A s r e t f * u o ( G , f ) - * R e t ® ' u ( G , f ) g iven by the formula a-j > • • •»«J. a 

f • ( n - 1 - r ) \ 
A,(x) = f l x j a ^ , a , a ) i s an isomorphism of (k+1) -groups . 

As i t i s easy to check, the map p = i s of the form 
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ji(x) « f ( x , a where the polyad a r + 1 , . . . t a n is an 
inverse of a^ t . . . ta ] , . In view of Theorem 5 it follows that 
by an appropriate choice of the automorphism (denoted by 8 ) 
and elements (denoted by b^, . . . ,b k ) the equality 

•derVv, v Retf»u (G,f) = (G,f ) holds. Recall that in a * » 
( (n-1-r) ( r )\ 

this case we have 5 (x) = f\Bf a ,x, a y , b1 = 
/( (n+k)(n-1-r)) (n+lA 

= a , 5 /, b^ • . . . = bjj. = a. Then, by 

Lemma 4, the mapping 

r - d « ! i b l -

where jf « and o^ « ^ ( b ^ ) , is an isomorphism. Further-
more, 

(n-1-r) 

/ / (n-1-r) (n-1-r) ( rk\ 
( f j . j ^a , a ,x,a1t a ,a, 5 ))• 

_/ r U -1 - r j \ 
fl"(x) =^5(x,a1t a , a j 

" ^ ( f ( - ) ( S ' ( n * r , ' x » a l ) ) B 

/I (n-1-r) ( r ) \ 
= f , . j ( a , a ,x,a1, a ,Bp+1 ) ( 

and 

/Un+k)(n-1-r)) (n+1) ( r ) \ 
»1 « " f ( - ) V a • 5 • a t ar+V* 

c2 » ii(b2) = 

- 800 



On a g e n e r a l i z a t i o n of Hosszu theorem 19 

This completes the proof of P r o p o s i t i o n 2 . 
I f the (n+1)-group ( G , f ) s a t i s f i e s a d d i t i o n a l l y the con-

f1 ( r ) n + 1 _ r \ 
d i t i o n : the e q u a l i t y f (a^, x ) = b has a s o l u t i o n f o r 
a r b i t r a r y elements a-|»* * * , a n + 1 - r , b ® G ( f o r r = 1 t h i s i s 
always t r u e ) , then the element a c G in P r o p o s i t i o n 2 can 
be chosen in such a way tha t the isomorphism ji becomes the 
i d e n t i t y . Then f 6 , c i x ( i = 1 , . . . , k ) , whence 
d e r * t c c r 9 t a ' U a _ ( G » f ) = ( G » f ) ' 

I t may happen that the (n+l ) -groups der^ b R e t ^ ( G , f ) 
and ( G , f ) are non-isomorphic. As an example take the 13-group 

12 

( G , f ) « der^ (G,+) where (G, + ) = ( Z 1 2 , + ) i s t i i e c y c l i c group 

of order 12 and b r 3 . Then f ( x ' ^ ) = x1 + . . . + *-|3+3. Con-

s i d e r the 5-group (G,g) = R e t ^ ( G , f ) , whence g(x^) • . . + 
+Xc+3. Let the 13-group ( G , f ' ) =» derj? u ( G , g ) . Then o (4 ) D , . . . , o 
f ' ( x ^ ) » b ) « x 1 + . . . + x ^ y Thus the 13-group 
( G , f ' ) t being idempotent, i s not isomorphic , to the 13-group 
( G , f ) which i s not idempotent. 

Hosszu has proved i n [5] that (using our n o t a t i o n ) an 
(n+1)-groupoid ( G , f ) i s an (n+1)-group i f and only i f ( G , f ) » 
* f ° r s o m e group ( G , g ) . Prom Theorem 3 
and Tneorem 5 we can draw a c o r o l l a r y being a g e n e r a l i z a t i o n 
of Hosszu Theorem. Bote tha t in the case of k * 1 (hence 
8 m n) Corol lary 4 becomes Hosszu Theorem ( c f . [ 5 ] ) . 

C o r o l l a r y 4. An (n+1)-groupoid ( G , f ) i s an 
(n+1)-group i f and only i f f i s of the form 

. g ( 3 + 1 ) ( x 1 , r ( x 2 ) , . . . , f n ( x n + 1 ) t c ^ ) . Where (G.g) i s 

a (k+1)-group and r i s an automorphism of (G.g) such that 
n k lr g ( r Q ( x ) , c i ^ • 8 ' c i » x ' a n d r ( ° i ) " ° i f o r 1 • i f « » k * 

Prom Theorem 5 i t follows immediately 
C o r o l l a r y 5 . Bvery (n+1)-group i s <yjcij>-de-

riTed from a (k+1)-group. 
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In the proof of Theorem 5 the (k+l)-ary retract of the 
(n^-1)-group (G, f ) has been chosen to obtain the needed 
(k+1J-g3?oup (G,g). The question arises whether such a choice 
of the (k+1)-group is unavoidable. In other words - i s the 
following theorem: " I f an (n+1)-group is of the form (G, f ) = 

= der®,„ . ( G » g ) » then the (k+1)-group (G,g) is i so-0 »c-| » • • • »Cjj 
morphic to the (k+1)-group r e t ? ' u ( G , f ) " . 

a1»•••» Sp 
true fo r k = 1 ,2 , . . . ? 

In the case of k = 1 the answer is positive ( c f . [14]). 
P r o p o s i t i o n 3. Let a (binary) group (G,gJ 

be given. To every (n+1)-group der" (G,g) there exist e le -JTf c 
ments a,.,...,a,_ 1 e G such that ret** der" (G,g) = I n—i a,|,,.. • , J> c 
= (G,g). Nemaly, â  = . . . = an_2 = e (the neutral element 

of (G,g), an_^ = •c""' (the inverse of c in (G,g ) ) . 
P r o o f . 

— 1 f ( x , e , . , . , e , c ,y) = 

= 8 ( n + 1 ) ( * . f ( e ) f ^ ( e J ?Tn-2 (6) , j r n-1 (c-1 )T n (y ) ,c) = 

= 8 ( n + 1 ) ( x » e f . . . , e , c ~ 1 , c , y , c ~ 1 , c ) = S (x ,y ) , 

which was to be proved. 
I t points out that in the case of k = 1 forming retracts 

is a procedure converse to that of forming weakly derived 
(n+1)-groups. I t reminds of the situation in Theorem 5 and 
Proposition 2. But there the automorphism j and elements 

had to be chosen in an appropriate way. Otherwise 
the (n+1)-groups der r e t (G , f ) and (G, f ) appeared not necessa-
r i l y isomorphic (see the example following Proposition 2,). 
Prom Proposition 3 and Corollary 2 we can draw the following 

C o r o l l a r y 6. The groups (G,g) and 
r e i f o der" (G fg) are always isomorphic (under an 

a-| »• • • > a n_ i JT»c 
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arb i t ra ry choice of the elements a ^ , . . . , c e G and the 
automorhpism y ) . 

Prom Corollary 6 and the func to r i a l i t y of r e t r a c t s we ob-
t a in 

P r o p o s i t i o n 4. If (n+1)groups der*L (G,g.J 
_ r 1 » a 1 1 

and der (G,g,,) are isomorphic, then the groups (G,g.J and 
" 2 ' 2 

(lG,g2) are isomorphic, too. 

Now we show that in the case of k > 1 the answer i s ne-
ga t ive . 

P r o p o s i t i o n 5. If an (n+1)-group (G,f) i s j. o 
derived from a (k+l)-group (G,g) (where n = tk , i . e . 
s = t k ) , then any (k+1)-ary re t rac t of ( g , f ) has an idempo-
tent element. 

P r o o f . Given a (k+1)-group (G,g), le-t (G,f) = 
= *B(G,g) (where s = t k ) , (G,g') = Ret®(G,f) (a being 
an arb i t ra ry element of G). Let a denote the skey element 
to a in the (s+1)-group = ( G »S ( t ) ) » Then 

/(k+1 )\ /_ (s-1) (s-1) \ 
g ( a ) = f l a , a , a , . . . , a , a , a ) = a , which proves 
that a i s an idempotent element in (G,g ; ) . By Theorem 1 
a l l (k+1)-ary r e t r ac t s of a given .(n+1)-group are isomorphic. 
Thus every (k+1 ) - re t rac t of the (n+1)-group (G,f) =• i|>s(G,g) 
has an idempotent element. 

P r o p o s i t i o n 6. If (G,*) i s a group of ex-
ponent k, .tfren for any element b d i f ferent from the ne'u-i . 
t r a l one the (k+1)-group (G,g) = der^iG,«) has no idempotent 
element. 

P r o o f . Let (G,g) = derb(G,«) and x be an a r -
Ak+1 )\ 

b i t rary element of G. Then g\ x /= x « . . . « x »b = x«b. 
/(k+1 )\ k+1 

Hence g^ x / x (s ince , by assumption;,, b ^ e ) , which 
was to be proved. 

Prom Proposition 5 and Proposition 6 we obtain • 
C o r o l l a r y 7. Let k > 1 and n ;= tk 2 ( i . e . 

s = t k ) . Then there ex i s t s an (n+1)-group of the form 
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22 W.A.Dudek, J.Michalski 

(G,f) = d0rb,...,b,b^G»g^ s u c h t h a t t h e (k+1)-groups (G,g) 

and ret® (G,f) are never isomorphic. 
*1 »• • •» 
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