

Wiesław A. Dudek, Jacek Michalski

ON A GENERALIZATION OF HOSSZÚ THEOREM

1. Introduction

Post has shown (cf. [11]) that to each $(n+1)$ -group G there exists a related group G^* (called the free covering group) and its certain invariant subgroup G_0 (called the associated group of G). That associated group G_0 serves to reproduce the former $(n+1)$ -group G by itself and a certain automorphism of G_0 (cf. [15], [11]). A continuation of Post's research is the paper of Hosszú [5] where it occurs that an $(n+1)$ -group can be reconstructed by using an appropriate group (the so-called binary retract) and some automorphism of it. That expression is in a sense unique (cf. [14]). It is also known that binary retracts of some classes of $(n+1)$ -groups are isomorphic (cf. [13], [3]).

In our paper we show that Hosszú Theorem can be generalized to the $(k+1)$ -ary case (i.e. that instead of the binary retract an appropriate $(k+1)$ -retract can be used). We show also that such $(k+1)$ -ary retracts (also in the case of $k = 1$) of a given $(n+1)$ -group are isomorphic. The assignement of $(k+1)$ -ary retracts to $(n+1)$ -groups is functorial.

2. Some notions and notation

We use the usual notations which may be found in papers on n -groups, in particular in [2], [4], [8].

As in [11], n -groups are called also polyadic groups, especially when the arity of the operations is not crucial.

Similarly a sequence a_1, \dots, a_m of elements of an $(n+1)$ -group G is called (after Post) a polyad (shortly an m -ad). Post has shown that the equivalence class of such a polyad (with respect to an appropriate relation) is an element of the free covering group G^* of G (cf. [11]). Therefore we also adopt the terminology of group theory to polyads, i.e. we use terms like $(n+1)$ -adic identity, the m -ad inverse to a given $(n-m)$ -ad, central m -ads and so on.

We use the following abbreviated notation:

$$f(x_1, \dots, x_k, x_{k+1}, \dots, x_{k+q}, x_{k+q+1}, \dots, x_{n+1}) = f(x_1^k \mid x_{k+1}^{(q)}, x_{k+q+1}^{n+1}),$$

whenever $x_{k+1} = \dots = x_{k+q} = x$ (x_i^j is the empty symbol for $j < i$ and for $i > n+1$; also x^0 is the empty symbol for $q = 0$).

For an $(n+1)$ -ary operation f one can define a new $(un+1)$ -ary operation $f_{(u)}$ by

$$f_{(u)}(x_1^{un+1}) = \underbrace{f(f(\dots f(f(x_1^{n+1}), x_{n+2}^{2n+1}), \dots), x_{(u-1)n+2}^{un+1}).}_{u}$$

The operation $f_{(u)}$ has been called by Dörnte (cf. [1]) the long product. If f is an $(n+1)$ -group operation, then $f_{(u)}$ is a $(un+1)$ -group operation, too (cf. [1]). In certain situations, when the arity of such operation does not play a crucial role, or when it will differ depending on additional assumptions, we will write $f_{(.)}$, to mean $f_{(u)}$ for some $u = 1, 2, \dots$.

Introducing the empty n -group appears to be convenient, when considering the category \mathbf{Gr}_n of n -groups, because the empty n -group is an initial object of that category (cf. [6]). Therefore, when defining the functor ret in section 3 we emphasize where the empty n -group appears. Otherwise an n -group is always understood to be a nonempty n -group (as it was used by Dörnte in [1]).

3. $(k+1)$ -ary retracts

Let (G, f) be an $(n+1)$ -quasigroup. The $(k+1)$ -ary operation g defined by

$$g(x_1^{k+1}) = f(a_1^{p_1}, x_1, a_{p_1+1}^{p_2}, x_2, \dots, a_{p_k+1}^{p_{k+1}}, x_{k+1}, a_{p_{k+1}+1}^{n-k}),$$

where $k \leq n$ and a_1, \dots, a_{n-k} are fixed elements of G , is an $(k+1)$ -quasigroup operation. In general, g is not a $(k+1)$ -group operation, even if (G, f) is an $(n+1)$ -group. If $p_1 = 0$, $p_{k+1} = n-k$, $n = k(p_2+1)$, $p_2-p_1 = p_3-p_2 = \dots = p_{k+1}-p_k$ and $a_{p_1+i} = a_{p_2+i} = \dots = a_{p_k+i}$ ($i=1, \dots, p_2$), then g is of the form $g(x_1^{k+1}) = f(x_1, a_1^r, x_2, a_1^r, \dots, a_1^r, x_{m+1})$, where $n = sk$, $r = s-1$. To avoid repetitions we assume throughout the whole text $n = sk$ (admitting $s = 1$ or $n = 1$), $r+1 \equiv 0 \pmod{s}$ (exactly $r = s-1$ or $r = s-1$).

The above-defined $(k+1)$ -groupoid (G, g) will be called a $(k+1)$ -ary retract of (G, f) with respect to a_1, \dots, a_r and it will be denoted by $\text{ret}_{a_1, \dots, a_r}^s(G, f)$ (or simply $\text{ret}_{a_1, \dots, a_r}(G, f)$). According to that definition, by $\text{ret}^1(G, f)$ we shall mean nothing but the $(n+1)$ -group (G, f) .

Since in an $(n+1)$ -group (G, f) to every $a \in G$ there exists a unique element $\bar{a} \in G$ such that $f(a^{(i-1)}, \bar{a}, a^{(n-i)}, x) = f(x, a^{(i-1)}, \bar{a}, a^{(n-i)}) = x$ for every $x \in G$ and $i = 1, \dots, n$ (cf. [1]), then $\text{ret}_{a_1, \dots, a_r}^s(G, f) = \text{ret}_{a_1, \dots, a_r, b}^s(G, f)$ where $b = f(a^{(n-r)}, \bar{a}, a_1^r)$.

Immediately from the definition of a polyadic group we get

Lemma 1 (cf. [5]). The $(k+1)$ -groupoid $\text{ret}_{a_1, \dots, a_r}^s(G, f)$ is a $(k+1)$ -group.

Notice that retracts of commutative (semi-commutative) n -groups are commutative (semi-commutative). Binary retracts

of semi-commutative n -groups are commutative groups, but retracts of autodistributive n -groups (cf. [3]) are not necessarily autodistributive.

The following lemma is needed for the proof of functoriality of ret .

Lemma 2. Let $h:(A,f) \rightarrow (B,f)$ be a homomorphism of $(n+1)$ -groups. If a polyad $a_{t+1}, \dots, a_n \in A$ is an inverse of a polyad $a_1, \dots, a_t \in A$, then the polyad $h(a_{t+1}), \dots, h(a_t) \in B$ is an inverse of the polyad $h(a_1), \dots, h(a_t) \in B$.

Let $n > 1$. Given $(n+1)$ -groups (A,f) , (B,f) , (C,f) , let r -ads (here $r = s-1$) $a_1, \dots, a_r \in A$, $b_1, \dots, b_r \in B$, $c_1, \dots, c_r \in C$ be arbitrary but fixed. Consider the $(k+1)$ -groups $(A,g) = \text{ret}_{a_1, \dots, a_r}(A,f)$, $(B,g) = \text{ret}_{b_1, \dots, b_r}(B,f)$, $(C,g) = \text{ret}_{c_1, \dots, c_r}(C,f)$. If $h:(A,f) \rightarrow (B,f)$ is a homomorphism of $(n+1)$ -groups, then we may define the mapping $\text{ret}_{a_1, \dots, a_r; b_1, \dots, b_r}^{h:A \rightarrow B}$ by the formula

$$\text{ret}_{a_1, \dots, a_r; b_1, \dots, b_r}^{h(x)} = f(h(x), h(a_1), \dots, h(a_r), b_{r+1}^n)$$

where the $(n-r)$ -ad $b_{r+1}, \dots, b_n \in B$ is an inverse of the r -ad b_1, \dots, b_r .

Let $x_1, \dots, x_{k+1} \in A$. Then

$$\begin{aligned} & \text{ret}_{a_1, \dots, a_r; b_1, \dots, b_r}^{h(g(x_1^{k+1}))} = \\ & = f(h(f(x_1, a_1^r, x_2, \dots, x_k, a_1^r, x_{k+1})), h(a_1), \dots, h(a_r), b_{r+1}^n) = \\ & = f(\dots(h(x_1), h(a_1), \dots, h(a_r), h(x_2), \dots, h(x_k), h(a_1), \dots \\ & \dots, h(a_r), h(x_{k+1}), h(a_1), \dots, h(a_r), b_{r+1}^n) = \\ & = f(\dots(f(h(x_1), h(a_1), \dots, h(a_r), b_{r+1}^n), b_1^r, f(h(x_2), h(a_1), \dots \end{aligned}$$

$$\dots, h(a_r), b_{r+1}^n), \dots, b_1^r, f(h(x_{k+1}), h(a_1), \dots, h(a_r), b_{r+1}^n)) = \\ = g(\text{ret}_{a_1, \dots, a_r; b_1, \dots, b_r} h(x_1), \dots, \text{ret}_{a_1, \dots, a_r; b_1, \dots, b_r} h(x_{k+1})).$$

This shows that $\text{ret}_{a_1, \dots, a_r; b_1, \dots, b_r} h: (A, g) \rightarrow (B, g)$ is a homomorphism of $(k+1)$ -groups.

It is easy to see that

$$\text{ret}_{a_1, \dots, a_r; a_1, \dots, a_r} \text{id}_{(A, f)} = \text{id}_{\text{ret}_{a_1, \dots, a_r} (A, f)}.$$

Now let $h_1: (A, f) \rightarrow (B, f)$ and $h_2: (B, f) \rightarrow (C, f)$ be homomorphisms of the corresponding $(n+1)$ -groups, Then

$$\begin{aligned} & \text{ret}_{b_1, \dots, b_r; c_1, \dots, c_r} h_2 \circ \text{ret}_{a_1, \dots, a_r; b_1, \dots, b_r} h_1(x) = \\ & = \text{ret}_{b_1, \dots, b_r; c_1, \dots, c_r} h_2(f(h_1(x), h_1(a_1), \dots, h_1(a_r), b_{r+1}^n)) = \\ & = f(h_2(f(h_1(x), h_1(a_1), \dots, h_1(a_r), b_{r+1}^n)), h_2(b_1), \dots \\ & \dots, h_2(b_r), c_{r+1}^n) = f(h_2(h_1(x), h_2 h_1(a_1), \dots, h_2 h_1(a_r), h_2(b_{r+1})), \dots \\ & \dots, h_2(b_n), h_2(b_1), \dots, h_2(b_r), c_{r+1}^n) = \\ & = f(h_2 h_1(x), h_2 h_1(a_1), \dots, h_2 h_1(a_r), c_{r+1}^n) = \\ & = \text{ret}_{a_1, \dots, a_r; c_1, \dots, c_r} h_2 h_1(x). \end{aligned}$$

Choosing in each $(n+1)$ -group a sequence of $r = s-1$ elements (perhaps with repetitions) and assuming additionally that for the empty $(n+1)$ -group A let $\text{ret}^s A$ be the empty $(k+1)$ -group for $s < n$ and the one-element group for $s = n$, we obtain a functor (in fact a class of functors depending on the choice of elements) $\text{ret}^s: \mathbf{Gr}_{n+1} \rightarrow \mathbf{Gr}_{k+1}$ from the cate-

gory of all $(n+1)$ -groups to the category of all $(k+1)$ -groups. We shall show that all these functors are naturally equivalent.

Consider firstly the particular case of sequences of the form $a_1 = a_2 = \dots = a \in A$. We write $\text{Ret}_a^s(A, f)$ (or simply $\text{Ret}_a(A, f)$) instead of $\text{ret}_{a_1, \dots, a_r}^s(A, f)$ and Ret^s for ret^s . Note that the homomorphism $\text{Ret}_{a; b}^s = \text{ret}_{a, \dots, a; b}^s: \text{Ret}_a(A, f) \rightarrow \text{Ret}_b(B, f)$ is given by the formula

$$\text{Ret}_{a; b}^s h(x) = f(h(x), h(a), \underset{b}{\underset{(n-1-r)}{\dots}}, \bar{b}).$$

Theorem 1. The functors $\text{ret}^s: \mathbf{Gr}_{n+1} \rightarrow \mathbf{Gr}_{k+1}$ and $\text{Ret}^s: \mathbf{Gr}_{n+1} \rightarrow \mathbf{Gr}_{k+1}$ are naturally equivalent.

Proof. In each $(n+1)$ -group choose a sequence of r elements (perhaps with repetitions) and additionally a single element. So we get two functors: ret^s and Ret^s . Let the mapping

$$\begin{aligned} \lambda_A: \text{ret}_{a_1, \dots, a_r}(A, f) &\rightarrow \text{Ret}_a(A, f) \text{ be given by } \lambda_A(x) = \\ &= f(x, a_1^r, \underset{a}{\underset{(n-1-r)}{\dots}}, \bar{a}). \end{aligned}$$

From the earlier considerations it follows that λ_A is a homomorphism of $(k+1)$ -groups. Moreover, λ_A is even an isomorphism.

Now we show that for every homomorphism $h: (A, f) \rightarrow (B, f)$ the following diagram

$$\begin{array}{ccc} \text{ret}_{a_1, \dots, a_r}(A, f) & \xrightarrow{\lambda_A} & \text{Ret}_a(A, f) \\ \downarrow \text{ret}_{a_1, \dots, a_r; b_1, \dots, b_r}^s h & & \downarrow \text{Ret}_{a; b}^s \\ \text{ret}_{b_1, \dots, b_r}(B, f) & \xrightarrow{\lambda_B} & \text{Ret}_b(B, f) \end{array}$$

is commutative. In fact

$$\begin{aligned}
 \text{Ret}_{a,b}^h \circ \lambda_A(x) &= \text{Ret}_{a,b}^h(f(x, a_1^{(n-1-r)}, \dots, a_r^{(n-1-r)}, \bar{a})) = \\
 &= f(h(f(x, a_1^{(n-1-r)}, \dots, a_r^{(n-1-r)}, \bar{a})), h(a_1), \dots, h(b_r), \bar{b}) = \\
 &= f(\dots)(h(x), h(a_1), \dots, h(a_r), h(a_1), h(\bar{a}), h(a_1), \dots, h(b_r), \bar{b}) = \\
 &= f(h(x), h(a_1), \dots, h(a_r), b_r^{(n-1-r)}) = \\
 &= f(f(h(x), h(a_1), \dots, h(a_r), b_{r+1}^n), b_1^{(n-1-r)}, \dots, b_r^{(n-1-r)}, \bar{b}) = \\
 &= \lambda_B(f(h(x), h(a_1), \dots, h(a_r), b_{r+1}^n)) = \\
 &= \lambda_B \circ \text{ret}_{a_1, \dots, a_r; b_1, \dots, b_r}^h(x),
 \end{aligned}$$

which proves that $\lambda : \text{ret}^S \rightarrow \text{Ret}^S$ is a natural equivalence.

So we have the well-defined up to a natural equivalence the functor $\text{ret}^S : \mathbf{Gr}_{n+1} \rightarrow \mathbf{Gr}_{k+1}$. In spite of the fact that ret^S is independent of the choice of elements in $(n+1)$ -groups, in concrete situations one has to make such choice in one way or another.

Timm has proved in [13] that binary retracts of a commutative polyadic group are isomorphic commutative groups. Dudek has proved in [3] that also binary retracts of an autodistributive polyadic group are isomorphic. Theorem 1 is a generalization of those results.

Corollary 1. All binary retracts of an $(n+1)$ -group are isomorphic.

Corollary 2. If (G, f) is an $(n+1)$ -group, then all $(k+1)$ -ary retracts of the $(n+1)$ -group $(G, f(u))$, where u is fixed, are isomorphic.

Note that dealing with $(k+1)$ -ary retracts of $(n+1)$ -groups $(G, f(u))$ is in fact considering the functor $\text{ret}^{SU} \Psi_u$:

$\mathbf{Gr}_{n+1} \rightarrow \mathbf{Gr}_{k+1}$ which is the composition of the forgetful functor $\psi_u: \mathbf{Gr}_{n+1} \rightarrow \mathbf{Gr}_{un+1}$ (cf. [6], [7]) with the functor $\text{ret}^{su}: \mathbf{Gr}_{un+1} \rightarrow \mathbf{Gr}_{k+1}$. This functor will be denoted briefly by $\text{ret}^{s,u}$ (i.e. $\text{ret}^{s,u} = \text{ret}^{su}\psi_u$ and $\text{Ret}^{s,u} = \text{Ret}^{su}\psi_u$). According to that notation, $\text{ret}^{s,1} = \text{ret}^s$. A restriction to the case of $u \leq k$ is possible since, as it is easy to check, for $u \equiv t \pmod{k}$ the $(k+1)$ -ary retracts of the $(un+1)$ -group $(G, f_{(u)})$ and the $(tn+1)$ -group $(G, f_{(t)})$ are isomorphic. Henceforth throughout the paper we assume always $u \leq k$.

One may ask whether the functors $\text{ret}^{s,t}$ and $\text{ret}^{s,u}$ are naturally equivalent for $t \not\equiv u \pmod{k}$. If we consider $\text{ret}^{s,t}$ and $\text{ret}^{s,u}$ as functors from \mathbf{Gr}_{n+1} to \mathbf{Gr}_{k+1} they are not in general naturally equivalent.

As an example consider the 7-groupoid (G, f) where $G = \mathbb{Z}_4$, $f(x_1^7) = x_1 - x_2 + x_3 - x_4 + x_5 - x_6 + x_7 \pmod{4}$. Then (G, f) is non-commutative, idempotent 7-group. Let

$$(G, g) = \text{Ret}_a^3(G, f) \quad \text{and} \quad (G, g') = \text{Ret}_a^6(G, f_{(2)}) = \text{Ret}_a^{6,2}(G, f).$$

Hence

$$g(x_1^3) = f(x_1, a, x_2, a, x_3) \stackrel{(2)}{=} x_1 - x_2 + x_3 \pmod{4},$$

$$g'(x_1^3) = f_{(2)}(x_1, a, x_2, a, x_3) \stackrel{(5)}{=} x_1 + x_2 + x_3 - 2a \pmod{4}.$$

Notice that (G, g) is a noncommutative, idempotent 3-group, while (G, g') has only two idempotent elements and (G, g') is a commutative 3-group. Therefore (G, g) and (G, g') are not isomorphic.

The situation simplifies considerably in the case of the functor $\text{ret}^{n,u}: \mathbf{Gr}_{n+1} \rightarrow \mathbf{Gr}_2$, to the category of groups. In this case $k = 1$, whence $u = 1$. Therefore all functors $\text{ret}^{n,u}$

(for arbitrary u) are naturally equivalent and there appears the functor $\text{ret}^n: \text{Gr}_{n+1} \rightarrow \text{Gr}_2$ which is unique up to a natural equivalence. In contrast, for $k > 1$ one has to consider different functors $\text{ret}^{s,u}: \text{Gr}_{n+1} \rightarrow \text{Gr}_{k+1}$ for different u . To have a natural equivalence of them it is necessary to restrict both functors to an appropriate subcategory of Gr_{n+1} .

The case of $k = 1$ was studied in [10]. Pop considered two functors from Gr_{n+1} to Gr_2 (for $n > 1$). One of them was, in our notation, the functor $\text{ret}^n_{a,\dots,a,\bar{a}}$, the other was the functor which had appeared de facto in the Post's construction of a free covering group (cf. [11], [10]). From [6], Theorem 1 it follows that the latter is naturally equivalent to the functor Ret^n , which in turn implies, by Theorem 1, the main theorem of [10].

In [6] (cf. also [8]) there was introduced a functor $\Phi_s: \text{Gr}_{n+1} \rightarrow \text{Gr}_{k+1}$ assigning to each $(n+1)$ -groups its free covering $(k+1)$ -group. That functor does not preserve projective limits, in particular the cartesian product (cf. [7]). In contrast with Φ_s , the functor $\text{ret}^s: \text{Gr}_{n+1} \rightarrow \text{Gr}_{k+1}$ preserves the cartesian product.

Theorem 2. If $\left[\prod_{t \in T} G_t; \left\{ \pi_t: \prod_{t \in T} G_t \rightarrow G_t \right\}_{t \in T} \right]$ is the cartesian product of a family of $(n+1)$ -groups $\{(G_t, f)\}_{t \in T}$, then $\left[\text{ret}^s \prod_{t \in T} G_t; \left\{ \text{ret}^s \pi_t: \text{ret}^s \prod_{t \in T} G_t \rightarrow \text{ret}^s G_t \right\}_{t \in T} \right]$ is the cartesian product of the family of $(k+1)$ -groups $\{\text{ret}^s(G_t, f)\}_{t \in T}$.

Proof. Let $(G, f) = \prod_{t \in T} (G_t, f)$ together with projections $\{\pi_t: G \rightarrow G_t\}_{t \in T}$ be the cartesian product of the nonempty family of $(n+1)$ -groups $\{(G_t, f)\}_{t \in T}$. In each $(n+1)$ -group G_t choose an element $a_t \in G_t$. Let $(G_t, g) = \text{Ret}^s_{a_t} (G_t, f)$, $(G, g) = \text{Ret}^s_a (G, f)$ (where $a = (a_t)_{t \in T} \in G$) and $(G, g') = \prod_{t \in T} (G_t, g)$. Take arbitrary elements $x_1 = (x_{1,t})_{t \in T} \in G$ where for $i = 1, \dots, k+1$ we have $x_{i,t} \in G_t$. Then

$$\begin{aligned}
 g'(x_1^{k+1}) &= (g(x_1, t, \dots, x_{k+1}, t))_{t \in T} = \\
 &= (f(x_1, t, a_t^{(r)}, \dots, a_t^{(r)}, x_{k+1}, t))_{t \in T} = \\
 &= f(x_1, a^{(r)}, \dots, x_{k+1}) = g(x_1^{k+1}).
 \end{aligned}$$

Moreover,

$$\begin{aligned}
 \text{ret}^s \pi_t((x_t)_{t \in T}) &= f(\pi_t((x_t)_{t \in T}), \pi_t^{(r)}(a), a_t^{(n-1-r)}, \bar{a}_t) = \\
 &= f(x_t, a_t^{(r)}, a_t^{(n-1-r)}, \bar{a}_t) = x_t,
 \end{aligned}$$

which proves that $[\text{ret}^s G; \{\text{ret}^s \pi_t : \text{ret}^s G \rightarrow \text{ret}^s G_t\}_{t \in T}]$ is the cartesian product of the nonempty family $\{\text{ret}^s G_t\}_{t \in T}$. Further note that the functor ret^s preserves final objects (that is the cartesian product of the empty family) and initial objects (that is the cartesian products of families of $(n+1)$ -groups containing the empty $(n+1)$ -group). This completes the proof of Theorem 2.

We end this section with the following

Proposition 1. Let an $(n+1)$ -group (G, f) be given. If there exist elements $a_{k+2}, \dots, a_{n+1} \in G$ such that for all $x_1, \dots, x_{k+1} \in G$ we have $f(x_1^k, a_{k+2}^{n+1}, x_{k+1}) = f(x_1^{k+1}, a_{k+2}^{n+1})$, then G together with the operation $g(x_1^{k+1}) = f(x_1^{k+1}, a_{k+2}^{n+1})$ is a $(k+1)$ -group.

Proof. Simple calculations show that the operation g is $(1,2)$ -associative. Obviously it is also a $(k+1)$ -quasi-group operation. Hence (G, g) is a $(k+1)$ -group (cf. [2], [4]).

Corollary 3. If a_i ($i = k+2, \dots, n+1$) are central elements of an $(n+1)$ -group (G, f) , then (G, g) , where g is defined as in Proposition 1, is a $(k+1)$ -group.

Note, however, that for distinct choices of the sequence a_{k+2}, \dots, a_{n+1} , the formerly defined $(k+1)$ -groups are not necessarily isomorphic.

As an example consider the 7-group (Z_4, f) defined as above. 3-groups (Z_4, g) and (Z_4, g') , where $g(x_1^3) = f(x_1^3, 3, 1, 1, 1)$ and $g'(x_1^3) = f(x_1^3, 1, 1, 1, 1)$, are not isomorphic.

4. $\langle \gamma, c_1^k \rangle$ -derived $(n+1)$ -groups

For a given (binary) group (G, \cdot) Timm (cf. [14]) has formed with the aid of a sequence of bijective mappings $\gamma_1, \dots, \gamma_n$ of G and an element $c \in G$ an $(n+1)$ -ary operation f (in [14] it was n -ary, in fact) defined by $f(x_1^{n+1}) = x_1 \cdot \gamma_1(x_2) \cdot \dots \cdot \gamma_n(x_{n+1}) \cdot c$. The $(n+1)$ -groupoid defined by this way was called the $\langle \gamma_i, c \rangle$ -derived $(n+1)$ -groupoid of the group (G, \cdot) . Depending on the choice of $\gamma_1, \dots, \gamma_n$ and $c \in G$ the $(n+1)$ -groupoid (G, f) is a permutationally associative $(n+1)$ -groupoid, an $(n+1)$ -semigroup, an $(n+1)$ -group and so on. In particular Timm has proved that $\langle \gamma_i, c \rangle$ -derived $(n+1)$ -groupoid of a group (G, \cdot) is an $(n+1)$ -group if and only if the sequence of mappings $\gamma_1, \dots, \gamma_n$ and the element c fulfil the Hosszú condition (cf. [5], [11], p.245), that is: γ_1 is an automorphism of (G, \cdot) such that $\gamma_1(c) = c$, $\gamma_i = (\gamma_1)^i$ ($i = 1, \dots, n$) and γ_n is an inner automorphism given by $\gamma_n(x) = c \cdot x \cdot c^{-1}$. By analogy we say that an automorphism γ of a $(k+1)$ -group (G, g) and elements $c_1, \dots, c_k \in G$ fulfil the Hosszú condition, if $\gamma(c_i) = c_i$ ($i = 1, \dots, k$) and $g(\gamma^n(x), c_1^k) = g(c_1^k, x)$ (i.e. γ^n is an inner automorphism). Define an $(n+1)$ -ary operation f on the set G by

$$f(x_1^{n+1}) = g_{(s+1)}(x_1, \gamma(x_2), \dots, \gamma^n(x_{n+1}), c_1^k).$$

If γ and c_1, \dots, c_k fulfil the Hosszú condition, we say that the $(n+1)$ -groupoid (G, f) is $\langle \gamma; c_1^k \rangle$ -derived from the $(k+1)$ -group (G, g) and it will be denoted by $\text{der}^s_{\gamma; c_1, \dots, c_k} (G, g)$.

In certain situations, when the form of γ and c_1, \dots, c_k does not play a crucial role, we call the $\langle \gamma; c_1^k \rangle$ -derived $(n+1)$ -groupoid simply a weakly derived $(n+1)$ -groupoid. In the case when $\gamma = \text{id}_G$ the $\langle \text{id}_G; c_1^k \rangle$ -derived $(n+1)$ -groupoid will be called shortly the $\langle c_1^k \rangle$ -derived $(n+1)$ -groupoid and abbreviated by $\text{der}_{c_1, \dots, c_k}^s (G, g)$. Note that those notations are meaningful and nontrivial also for $s = 1$.

Theorem 3. The $(n+1)$ -groupoid $\text{der}_{\gamma; c_1, \dots, c_k}^s (G, g)$ is an $(n+1)$ -group.

Proof. The solvability of equations for the operation f , is implied by the solvability of equations for the $(k+1)$ -group operation g and bijectivity of the mapping γ^i ($i=1, \dots, n$). We show associativity of f . In fact,

$$\begin{aligned}
 & f(f(x_1^{n+1}), x_{n+2}^{2n+1}) = \\
 & = g(\dots)(g(\dots)(x_1, \gamma(x_2), \dots, \gamma^n(x_{n+1}), c_1^k), \gamma(x_{n+2}), \dots, \gamma^n(x_{2n+1}), c_1^k) = \\
 & = g(\dots)(x_1, g(\dots) \gamma(x_2), \dots, \gamma^n(x_{n+1}), c_1^k, \gamma(x_{n+2})), \gamma^2(x_{n+3}), \dots, \gamma^n(x_{2n+1}), c_1^k) = \\
 & = g(\dots)(x_1, g(g(\dots)(x_2, \dots, \gamma^{n-1}(x_{n+1}), c_1^k, x_{n+2})), \gamma^2(x_{n+3}), \dots, \gamma^n(x_{2n+1}), c_1^k) = \\
 & = g(\dots)(x_1, g(g(\dots)(x_2, \dots, \gamma^{n-1}(x_{n+1}), \gamma^n(x_{n+2}), c_1^k)), \gamma^2(x_{n+3}), \dots \\
 & \dots, \gamma^n(x_{2n+1}), c_1^k) = f(x_1, f(x_2^{n+2}), x_{n+3}^{2n+1}),
 \end{aligned}$$

whence f is $(1, 2)$ -associative. Thus, by Sokolov's result (cf. [12]), f is associative, which completes the proof.

Recall that an $(n+1)$ -group (G, f) is derived from a $(k+1)$ -group (G, g) (i.e. $(G, f) = \text{der}_{\gamma; c_1, \dots, c_k}^s (G, g)$ in notation of [6]), if $f = g_{(s)}$ (cf. [1]). The relationship of the terms: derived and weakly derived $(n+1)$ -group is not casual. Let $\gamma = \text{id}_G$ and let a polyad c_1, \dots, c_k be an identity of a $(k+1)$ -group (G, g) . Then γ and c_1, \dots, c_k fulfil obviously

the Hosszú condition and $\text{der}^S_{f; c_1, \dots, c_k} (G, g) = \psi_b (G, g)$, i.e. the $(n+1)$ -group $\langle f; c_1^k \rangle$ -derived is simply the $(n+1)$ -group derived in the sense of [1].

Under distinct choice of the automorphism f and the elements c_1, \dots, c_k the $(n+1)$ -groups $\text{der}^S_{f; c_1, \dots, c_k} (G, g)$ may occur to be non-isomorphic. It happens even in the most simple case of $k = 1$. Consider the following example.

Let (G, g) be a group of exponent n ($n > 1$) and let b be a central element of (G, g) different from the neutral one. Then the $(n+1)$ -groups $\psi_n (G, g)$ and $\text{der}^n_{f; b} (G, g)$ are not idempotent).

Now, as in the case of derived $(n+1)$ -groups (cf. [7]), we prove that the cartesian product of weakly derived $(n+1)$ -groups of $(k+1)$ -groups is the weakly derived $(n+1)$ -group of the cartesian product of the $(k+1)$ -groups.

Theorem 4. Given a nonempty family of $(k+1)$ -groups $\{(G_t, g)\}_{t \in T}$, let $c_i = (c_{i,t})_{t \in T}$ for $c_{i,t} \in G_t$ ($i = 1, \dots, k$), $f(x) = (f_t(x_t))_{t \in T}$ for $x = (x_t)_{t \in T}$. Then

$$\text{der}^S_{f; c_1, \dots, c_k} \prod_{t \in T} (G_t, g) = \prod_{t \in T} \text{der}^S_{f_t; c_{1,t}, \dots, c_{k,t}} (G_t, g).$$

Proof. Let

$$(G, g) = \prod_{t \in T} (G_t, g), \quad (G_t, f) = \text{der}^S_{f_t; c_{1,t}, \dots, c_{k,t}} (G_t, g),$$

$$(G, f) = \text{der}^S_{f; c_1, \dots, c_k} (G, g), \quad (G, f') = \prod_{t \in T} (G_t, f).$$

It is easy to check that if f_t and $c_{1,t}, \dots, c_{k,t}$ fulfil the Hosszú condition for every $t \in T$, then f and c_1, \dots, c_k fulfil the Hosszú condition, too. Take arbitrary elements $x_i = (x_{i,t})_{t \in T} \in G$ ($i = 1, \dots, n+1$). Then

$$\begin{aligned}
 f'(x_1^{n+1}) &= (f(x_1, t, \dots, x_{n+1}, t))_{t \in T} = \\
 &= (g_{(s+1)}(x_1, t, \gamma_t(x_2, t), \dots, (\gamma_t)^n(x_{n+1}, t), c_1, t, \dots, c_k, t))_{t \in T} = \\
 &= g_{(s+1)}(x_1, \gamma(x_2), \dots, \gamma^n(x_{n+1}), c_1^k) = f(x_1^{n+1}).
 \end{aligned}$$

5. A generalization of Hosszú theorem

By a translation of an $(n+1)$ -group (cf. [9]) we mean the mapping $\gamma(x) = f(a_1^{i-1}, x, a_{i+1}^{n+1})$. It is always invertible. Its inverse is the mapping $\gamma^{-1}(x) = f(b_i^n, x, c_2^i)$ where the polyad b_1, \dots, b_n is an inverse of the polyad a_1, \dots, a_{i-1} and the polyad c_2, \dots, c_i is an inverse of the polyad a_{i+1}, \dots, a_{n+1} .

A special case of translations are translations of the form $\alpha_{a,b}(x) = f(x, a, b, a)$ and $\beta_{a,x}(x) = f(a, c, a, x)$. Dudek has proved (cf. [3]) that an $(n+1)$ -semigroup (G, f) is an $(n+1)$ -group if and only if for some $i, j = 1, \dots, n$ and all $a \in G$ there exist elements $b, c \in G$ such that $\alpha_{a,b}^{(i)}(x) = \beta_{a,c}^{(j)}(x) = x$. Obviously, if (G, f) is an autodistributive $(n+1)$ -group, then all translations are automorphisms. Moreover, if the polyad $a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_{n+1}$ is an identity of (G, f) , then γ is an automorphism of (G, f) . Hence γ is an isomorphism from $\text{ret}_{c_1, \dots, c_r}^s(G, f)$ onto $\text{ret}_{\gamma(c_1), \dots, \gamma(c_r)}^s(G, f)$. Therefore, if $\gamma(c_i) = c_i$ for $i = 1, \dots, r$, then γ is an automorphism of $\text{ret}_{c_1, \dots, c_r}^s(G, f)$.

From the above remarks there follows immediately

Lemma 3. A translation of the form $\gamma(x) = f(\bar{a}, a, x, a)$ is an automorphism of the $(n+1)$ -group (G, f) and of its $(k+1)$ -ary retract $\text{Ret}_{\bar{a}}^s(G, f)$.

Theorem 5. Let an $(n+1)$ -group (G, f) be given. To every $(k+1)$ -group $\text{Ret}_{\bar{a}}^{s,u}(G, f)$ there exist an automorphism γ of $\text{Ret}_{\bar{a}}^{s,u}(G, f)$ and elements $c_1, \dots, c_k \in G$ such that

$$\operatorname{der}_{f; c_1, \dots, c_k}^s \operatorname{Ret}_a^{s, u}(G, f) = (G, f).$$

Namely,

$$g(x) = f\left(\bar{a}, \frac{(n-su)}{a}, x, \frac{(su-1)}{a}\right), \quad c_1 = f(\cdot) \left(\frac{((n+k)(n-su))}{a}, \frac{(n+1)}{\bar{a}}\right),$$

$$c_2 = \dots = c_k = \bar{a}.$$

P r o o f . Let $(G, g) = \operatorname{Ret}_a^{s, u}(G, f)$, where (G, f) is an $(n+1)$ -group, and let $a \in G$ be a certain element of it. Define the mapping $g: G \rightarrow G$ by the formula $g(x) = f(\cdot) \left(\bar{a}, \frac{(n-1-r)}{a}, x, \frac{(r)}{a}\right)$ where $r = s-1$. By Lemma 3 it follows that g is an automorphism of (G, g) . We prove that the automorphism g^n is an inner automorphism. Let

$$c_1 = f(\cdot) \left(\frac{((n+k)(n-1-r))}{a}, \frac{(n+1)}{\bar{a}}\right), \quad c_2 = \dots = c_k = \bar{a}.$$

Then

$$\begin{aligned} & g(g^n(x) \cdot c_1^k) = \\ & = g\left(f(\cdot) \left(\frac{(n)}{\bar{a}}, \frac{(n(n-1-r))}{a}, x, \frac{(nr)}{a}\right), f(\cdot) \left(\frac{((n+k)(n-1-r))}{a}, \frac{(n+1)}{\bar{a}}\right), \underbrace{\frac{(k-1)}{\bar{a}}}_{k-1}\right) = \\ & = f(\cdot) \left(f(\cdot) \left(\frac{(n)}{\bar{a}}, \frac{(n(n-1-r))}{a}, x, \frac{(nr)}{a}\right), \underbrace{\frac{(r)}{a}, \frac{(r)}{\bar{a}}}_{k-1}\right), f(\cdot) \left(\frac{((n+k)(n-1-r))}{a}, \frac{(n+1)}{\bar{a}}\right), \\ & = f(\cdot) \left(\frac{(n)}{\bar{a}}, \frac{(n(n-1-r))}{a}, x, \frac{((n+k)(n-1))}{a}, \frac{(n+k)}{\bar{a}}\right) = \\ & = f(\cdot) \left(\frac{(n)}{\bar{a}}, \frac{(n(n-1-r))}{a}, x\right). \quad \text{At the same time } g(c_1^k, x) = \end{aligned}$$

$$\begin{aligned}
 &= g\left(f(\cdot) \left(\begin{smallmatrix} ((n+k)(n-1-r)) & (n+1) \\ \bar{a} & \bar{a} \end{smallmatrix} \right), \begin{smallmatrix} (k-1) \\ \bar{a} \end{smallmatrix}, x \right) = \\
 &= f(\cdot) \left(f(\cdot) \left(\begin{smallmatrix} ((n+k)(n-1-r)) & (n+1) \\ a & \bar{a} \end{smallmatrix} \right), \underbrace{\begin{smallmatrix} (r) \\ a, \bar{a}, \dots, \bar{a} \end{smallmatrix}}_{k-1}, \underbrace{\begin{smallmatrix} (r) \\ a, \bar{a}, \bar{a} \end{smallmatrix}}, \begin{smallmatrix} (r) \\ a, x \end{smallmatrix} \right) = \\
 &= f(\cdot) \left(\begin{smallmatrix} (n) & (n(n-1-r)) \\ \bar{a} & a \end{smallmatrix}, x \right),
 \end{aligned}$$

which shows that $g(f^n(x), c_1^k) = g(c_1^k, x)$.

One can easily verify that $f(c_i) = c_i$ for $i = 1, \dots, k$. Thus f and c_1, \dots, c_k fulfil the Hosszu condition. Furthermore,

$$\begin{aligned}
 &g_{(s+1)}(x_1, f(x_2), \dots, f^n(x_{n+1}), c_1^k) = \\
 &= f(\cdot) \left(x_1, \begin{smallmatrix} (r) \\ a \end{smallmatrix}, f(x_2), \begin{smallmatrix} (r) \\ a \end{smallmatrix}, \dots, \begin{smallmatrix} (r) \\ a \end{smallmatrix}, f^n(x_{n+1}), \begin{smallmatrix} (r) \\ a \end{smallmatrix}, c_1, \dots, \begin{smallmatrix} (r) \\ a \end{smallmatrix}, c_k \right) = \\
 &= f(\cdot) \left(x_1, \begin{smallmatrix} (r) \\ a, \bar{a} \end{smallmatrix}, \begin{smallmatrix} (n-1-r) \\ a \end{smallmatrix}, x_2, \begin{smallmatrix} (r) \\ a \end{smallmatrix}, \begin{smallmatrix} (r) \\ a, \bar{a} \end{smallmatrix}, \begin{smallmatrix} (2) \\ a \end{smallmatrix}, \begin{smallmatrix} (2(n-1-r)) \\ a \end{smallmatrix}, x_3, \begin{smallmatrix} (2r) \\ a \end{smallmatrix}, \begin{smallmatrix} (r) \\ a \end{smallmatrix}, \dots \right. \\
 &\quad \left. \dots, \begin{smallmatrix} (r) \\ a \end{smallmatrix}, \begin{smallmatrix} (n) \\ a \end{smallmatrix}, \begin{smallmatrix} (n(n-1-r)) \\ a \end{smallmatrix}, x_{n+1}, \begin{smallmatrix} (nr) \\ a \end{smallmatrix}, \begin{smallmatrix} (r) \\ a \end{smallmatrix}, \begin{smallmatrix} ((n+k)(n-1-r)) \\ a \end{smallmatrix}, \begin{smallmatrix} (n+1) \\ \bar{a} \end{smallmatrix} \right),
 \end{aligned}$$

$$\underbrace{\begin{smallmatrix} (r) \\ a, \bar{a}, \dots, \bar{a} \end{smallmatrix}}_{k-1} = f(x_1^{n+1}),$$

whence $(G, f) = \text{der}_{f; c_1, \dots, c_k}^S (G, g)$, which was to be proved.

It turns out that forming a weakly derived $(n+1)$ -group is a procedure converse to that of forming a retract. Note, however, that a special form of retract has been considered in the proof of Theorem 5, namely Ret. Dealing with arbitrary $(k+1)$ -ary retracts the situation slightly complicates.

Lemma 4. If $h: (A, g) \rightarrow (B, g)$ is an isomorphism of $(k+1)$ -groups, then $h: \text{der}_{f_A; a_1, \dots, a_k}^S (A, g) \rightarrow$

$\text{der}_{\mathcal{T}_B; b_1, \dots, b_k}^S (B, g)$, where $\mathcal{T}_B = h \mathcal{T}_A h^{-1}$, $b_i = h(a_i)$ ($i = 1, \dots, k$), is also an isomorphism of $(n+1)$ -groups.

P r o o f .

$$\begin{aligned} h(f(x_1^{n+1})) &= h(g_{(s+1)}(x_1, \mathcal{T}_A(x_2), \dots, \mathcal{T}_A^n(x_{n+1}), a_1^k)) = \\ &= g_{(s+1)}(h(x_1), h(\mathcal{T}_A(x_2)), \dots, h(\mathcal{T}_A^n(x_{n+1})), h(a_1), \dots, h(a_k)) = \\ &= g_{(s+1)}(h(x_1), \mathcal{T}_B(h(x_2)), \dots, \mathcal{T}_B^n(h(x_{n+1})), b_1^k) = f(h(x_1), \dots, h(x_{n+1})). \end{aligned}$$

P r o p o s i t i o n 2. Let an $(n+1)$ -group (G, f) be given. To every $(k+1)$ -group $\text{ret}_{a_1, \dots, a_r}^{S, u} (G, f)$ there exists an automorphism γ of $\text{ret}_{a_1, \dots, a_r}^{S, u} (G, f)$ and elements

$c_1, \dots, c_k \in G$ such that the $(n+1)$ -groups

$\text{der}_{\gamma; c_1, \dots, c_k}^S \text{ret}_{a_1, \dots, a_r}^{S, u} (G, f)$ and (G, f) are isomorphic. Namely,

$$\gamma(x) = f(\cdot) \left(\bar{a}, \frac{(n-1-r)}{a}, x, a_1^r, \frac{(r)}{a}, a_{r+1}^n \right),$$

$$c_1 = f(\cdot) \left(\frac{((n+k)(n-1-r))}{a}, \frac{(n+1)}{\bar{a}}, \frac{(r)}{a}, a_{r+1}^n \right),$$

$$c_2 = \dots = c_k = f(\cdot) \left(\bar{a}, \frac{(r)}{a}, a_{r+1}^n \right),$$

where a is an arbitrary element of G and the polyad a_{r+1}, \dots, a_n is an inverse of a_1, \dots, a_r .

P r o o f . According to Theorem 1, the mapping $\lambda: \text{ret}_{a_1, \dots, a_r}^{S, u} (G, f) \rightarrow \text{Ret}_a^{S, u} (G, f)$ given by the formula

$\lambda(x) = f(x, a_1^r, \frac{(n-1-r)}{a}, \bar{a})$ is an isomorphism of $(k+1)$ -groups.

As it is easy to check, the map $\mu = \lambda^{-1}$ is of the form

$\mu(x) = f(x, a, a_{r+1}^n)$ where the polyad a_{r+1}, \dots, a_n is an inverse of a_1, \dots, a_r . In view of Theorem 5 it follows that by an appropriate choice of the automorphism (denoted by δ) and elements (denoted by b_1, \dots, b_k) the equality

$\text{der}_{\delta; b_1, \dots, b_k}^S \text{Ret}_a^{S, U}(G, f) = (G, f)$ holds. Recall that in

this case we have $\delta(x) = f(\bar{a}, a, x, a)$, $b_1 = f(\cdot, \bar{a}, a, a)$, $b_2 = \dots = b_k = \bar{a}$. Then, by Lemma 4, the mapping

$$\mu: \text{der}_{\delta; b_1, \dots, b_k}^S \text{Ret}_a^{S, U}(G, f) \rightarrow \text{der}_{f; c_1, \dots, c_k}^S \text{ret}_{a_1, \dots, a_r}^{S, U}(G, f),$$

where $f = \mu \delta \lambda$ and $c_1 = \mu(b_1)$, is an isomorphism. Furthermore,

$$\begin{aligned} f(x) &= \mu \delta \left(x, a_1^r, \bar{a} \right) = \\ &= \mu \left(f(\cdot, \bar{a}, a, x, a_1^r, \bar{a}, a, \bar{a}) \right) = \\ &= \mu \left(f(\cdot, \bar{a}, a, x, a_1^r) \right) = \\ &= f(\cdot, \bar{a}, a, x, a_1^r, a, a_{r+1}^n) \end{aligned}$$

and

$$c_1 = \mu(b_1) = f(\cdot, \bar{a}, a, a_1^r, a, a_{r+1}^n),$$

$$c_2 = \mu(b_2) = f(\cdot, \bar{a}, a, a_{r+1}^n).$$

This completes the proof of Proposition 2.

If the $(n+1)$ -group (G, f) satisfies additionally the condition: the equality $f(a_1^{(r)}, x, a_{i+1}^{n+1-r}) = b$ has a solution for arbitrary elements $a_1, \dots, a_{n+1-r}, b \in G$ (for $r = 1$ this is always true), then the element $a \in G$ in Proposition 2 can be chosen in such a way that the isomorphism μ becomes the identity. Then $\gamma = \delta$, $c_i = b_i$ ($i = 1, \dots, k$), whence

$$\text{der}_{\gamma; c_1, \dots, c_k}^s \text{ret}_{a_1, \dots, a_r}^{s, u} (G, f) = (G, f).$$

It may happen that the $(n+1)$ -groups $\text{der}_{b, \dots, b}^s \text{Ret}_b^s (G, f)$ and (G, f) are non-isomorphic. As an example take the 13-group $(G, f) = \text{der}_b^{12} (G, +)$ where $(G, +) = (Z_{12}, +)$ is the cyclic group of order 12 and $b = 3$. Then $f(x_1^{13}) = x_1 + \dots + x_{13} + 3$. Consider the 5-group $(G, g) = \text{Ret}_b^3 (G, f)$, whence $g(x_1^5) = x_1 + \dots + x_5 + 3$. Let the 13-group $(G, f') = \text{der}_{b, \dots, b}^3 (G, g)$. Then $f'(x_1^{13}) = g(x_1^{13}, b^{(4)}) = x_1 + \dots + x_{13}$. Thus the 13-group (G, f') , being idempotent, is not isomorphic to the 13-group (G, f) which is not idempotent.

Hosszú has proved in [5] that (using our notation) an $(n+1)$ -groupoid (G, f) is an $(n+1)$ -group if and only if $(G, f) = \text{der}_{\gamma; c}^n (G, g)$ for some (binary) group (G, g) . From Theorem 3 and Theorem 5 we can draw a corollary being a generalization of Hosszú Theorem. Note that in the case of $k = 1$ (hence $s = n$) Corollary 4 becomes Hosszú Theorem (cf. [5]).

Corollary 4. An $(n+1)$ -groupoid (G, f) is an $(n+1)$ -group if and only if f is of the form

$f(x_1^{n+1}) = g_{(s+1)}(x_1, \gamma(x_2), \dots, \gamma^n(x_{n+1}), c_1^k)$, where (G, g) is a $(k+1)$ -group and γ is an automorphism of (G, g) such that $g(\gamma^n(x), c_1^k) = g(c_1^k, x)$ and $\gamma(c_1^k) = c_1^k$ for $i = 1, \dots, k$.

From Theorem 5 it follows immediately

Corollary 5. Every $(n+1)$ -group is $\langle \gamma; c_1^k \rangle$ -derived from a $(k+1)$ -group.

In the proof of Theorem 5 the $(k+1)$ -ary retract of the $(n+1)$ -group (G, f) has been chosen to obtain the needed $(k+1)$ -group (G, g) . The question arises whether such a choice of the $(k+1)$ -group is unavoidable. In other words - is the following theorem: "If an $(n+1)$ -group is of the form $(G, f) = \text{der}_{f; c_1, \dots, c_k}^s (G, g)$, then the $(k+1)$ -group (G, g) is isomorphic to the $(k+1)$ -group $\text{ret}_{a_1, \dots, a_r}^{s, u} (G, f)$ ". true for $k = 1, 2, \dots$?

In the case of $k = 1$ the answer is positive (cf. [14]).

Proposition 3. Let a (binary) group (G, g) be given. To every $(n+1)$ -group $\text{der}_{f; c}^n (G, g)$ there exist elements $a_1, \dots, a_{n-1} \in G$ such that $\text{ret}_{a_1, \dots, a_{n-1}}^n \text{der}_{f; c}^n (G, g) = (G, g)$. Namely, $a_1 = \dots = a_{n-2} = e$ (the neutral element of (G, g)), $a_{n-1} = c^{-1}$ (the inverse of c in (G, g)).

Proof.

$$\begin{aligned} f(x, e, \dots, e, c^{-1}, y) &= \\ &= g_{(n+1)}(x, f(e), f^2(e), \dots, f^{n-2}(e), f^{n-1}(c^{-1})f^n(y), c) = \\ &= g_{(n+1)}(x, e, \dots, e, c^{-1}, c, y, c^{-1}, c) = g(x, y), \end{aligned}$$

which was to be proved.

It points out that in the case of $k = 1$ forming retracts is a procedure converse to that of forming weakly derived $(n+1)$ -groups. It reminds of the situation in Theorem 5 and Proposition 2. But there the automorphism f and elements c_1, \dots, c_k had to be chosen in an appropriate way. Otherwise the $(n+1)$ -groups $\text{der}(G, f)$ and (G, f) appeared not necessarily isomorphic (see the example following Proposition 2). From Proposition 3 and Corollary 2 we can draw the following

Corollary 6. The groups (G, g) and $\text{ret}_{a_1, \dots, a_{n-1}}^n \text{der}_{f; c}^n (G, g)$ are always isomorphic (under an

arbitrary choice of the elements $a_1, \dots, a_{n-1}, c \in G$ and the automorphism g).

From Corollary 6 and the functoriality of retracts we obtain

Proposition 4. If $(n+1)$ -groups $\text{der}_{g_1; a_1}^n(G, g_1)$ and $\text{der}_{g_2; a_2}^n(G, g_2)$ are isomorphic, then the groups (G, g_1) and (G, g_2) are isomorphic, too.

Now we show that in the case of $k > 1$ the answer is negative.

Proposition 5. If an $(n+1)$ -group (G, f) is derived from a $(k+1)$ -group (G, g) (where $n = tk^2$, i.e. $s = tk$), then any $(k+1)$ -ary retract of (g, f) has an idempotent element.

Proof. Given a $(k+1)$ -group (G, g) , let $(G, f) = \psi_s(G, g)$ (where $s = tk$), $(G, g') = \text{Ret}_g^s(G, f)$ (a being an arbitrary element of G). Let \bar{a} denote the skew element to a in the $(s+1)$ -group $\psi_t(G, g) = (G, g_{(t)})$. Then $g'(\bar{a}) = f(\bar{a}, a, \bar{a}, \dots, \bar{a}, a, \bar{a}) = \bar{a}$, which proves that \bar{a} is an idempotent element in (G, g') . By Theorem 1 all $(k+1)$ -ary retracts of a given $(n+1)$ -group are isomorphic. Thus every $(k+1)$ -retract of the $(n+1)$ -group $(G, f) = \psi_s(G, g)$ has an idempotent element.

Proposition 6. If (G, \cdot) is a group of exponent k , then for any element b different from the neutral one the $(k+1)$ -group $(G, g) = \text{der}_b^k(G, \cdot)$ has no idempotent element.

Proof. Let $(G, g) = \text{der}_b^k(G, \cdot)$ and x be an arbitrary element of G . Then $g(x) = \underbrace{x \cdot \dots \cdot x \cdot b}_{k+1} = x \cdot b$. Hence $g(x) \neq x$ (since, by assumption, $b \neq e$), which was to be proved.

From Proposition 5 and Proposition 6 we obtain

Corollary 7. Let $k > 1$ and $n = tk^2$ (i.e. $s = tk$). Then there exists an $(n+1)$ -group of the form

$(G, f) = \text{der}_{b, \dots, b, \bar{b}}^s(G, g)$ such that the $(k+1)$ -groups (G, g) and $\text{ret}_{a_1, \dots, a_x}^s(G, f)$ are never isomorphic.

REFERENCES

- [1] W. Dörnste : Untersuchungen über einen verallgemeinerten Gruppenbegriff, Math. Z. 29 (1929) 1-19.
- [2] W.A. Dudek : Remarks on n -groups, Demonstratio Math. 13 (1980) 165-181.
- [3] W.A. Dudek : Autodistributive n -groups, Comment. Math. Prace Mat. 23 (in print).
- [4] W.A. Dudek, K. Głązak, B. Gleichgewicht : A note on the axioms of n -groups, Colloq. Math. Soc. J. Bolyai, 29. Universal Algebra, Esztergom 1977, 195-202.
- [5] M. Hosszú : On the explicit form of n -group operations, Publ. Math. Debrecen 10 (1963) 88-92.
- [6] J. Michalski : On some functors from the category of n -groups, Bull. Acad. Polon. Sci. Ser. Sci. Math. 27 (1979) 437-441.
- [7] J. Michalski : Inductive and projective limits of n -groups, Bull. Acad. Polon. Sci. Ser. Sci. Math. 27 (1979) 443-446.
- [8] J. Michalski : Covering k -groups of n -groups, Arch. Math. (Brno) 17 (1981) 207-226.
- [9] D. Monk, F.M. Sioson : On the general theory of m -groups, Fund. Math. 72 (1971) 233-244.
- [10] M.S. Pop : On the reduction of n -groups to groups (Romanian), Studia Univ. Babeş-Bolyai Math. 24 (1979) 38-40.
- [11] E. Post : Polyadic groups, Trans. Amer. Math. Soc. 48 (1940) 208-350.
- [12] E.I. Sokolov : On the theorem of Gluskin-Hosszú on Dörnste n -groups (Russian), Mat. Issled. 39 (1976) 187-189.

- [13] J. T i m m : Kommutative n -Gruppen, Diss., Hamburg 1967.
- [14] J. T i m m : Zur gruppentheoretischen Beschreibung n -stelliger Strukturen, Publ. Math. Debrecen 17 (1970) 183-192.
- [15] A.M. T u r i n g : The extensions of a group, Compositio Math. 5 (1938) 357-367.

INSTITUTE OF MATHEMATICS, PEDAGOGICAL UNIVERSITY, CZĘSTOCHOWA;
INSTITUTE OF TEACHER EDUCATION, WROCŁAW

Received April 2nd, 1981, revised version February 9, 1982.

