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ON A GENERALIZATION OF HOSSZU THEOREM

1. Introduction

Post has shown (cf. [11]) that to each (n+1)-group G
there exists a related group G* (called the free covering
group) and its certain invariant subgroup Go (called the
associated group of G). That associated group G0 serves to
reproduce the former (n+1)-group G by itself and a certain
automorphism of G  (cf. [15], [11]). & continuation of
Post’s research is the paper of Hosszu [5] where it occurs _
that an (n+1)-group can be reconstructed by using an appropria-
te group {(the so-called binary retract) and some automorphism
of it, That expression is in a sense unigue (cf. [14]). It is
also known that binary retracts of some classes of (n+1)-groups
are isomorphic (cf. [13], [3]).

In our paper we show that Hosszu Theorem can be generalized
to the (k+1)-ary case (i.e. that instead of the binary retract
an appropriate (k+1)-retract can be used). We show also that
such (k+1)-ary retracts {also in the case of k = 1} of a given
(n+1)-group are isomorphic. The assignement of (k+1)~ary re-
tracts to (n+1)-groups is functorial.,

2. Some notions and notation

We use the usual notations which may be found in papers
on n-groups, in particular in [2], [4], [8].

As in ﬁ1], n-groups are called alsc polyadic groups,
especially when the arity of the operations is not crucial,

- 783 -



2 W.4A.Dudek, J.Michalski

Similarly a sequence Byseceyap of elements of an (n+ﬂ)-group
G is called (after Post) a polyad (shortly an m-ad). Post
has shown that the equivalence class of such a polyad (with
respect to an appropriate relation) is an elementi of the free
covering group G*¥ of G (cf. [11]). Therefore we also adopt
the terminology of group theory to polyads, i.e. we use terms
like (n+1)-adie identity, the m-ad inverse to a given (n-d)-ad,
gentral m~ads and so on.

We use the following abbreviated notation:

(g)
n
X ’xkig+1 !

xg is the empty syambol for

£(

_ k
11....,xk,xk+1,...,xk+q,xk+Q+1,...,xn+1) = f<;1,

'hemver Jﬁ‘k+1 S eee = xk+q = X (
(q

j <1 and for i > n+1; also X
qg=0). .
For an {n+1)-ary operation f one can define a new

is the empty symbol for

(un+1)-ary operation f(u) by
un+1, _ n+1 2n+1 un+t
f(u)(x1 ) - f(f(..of(f(x.] ),Xn+2 )’.un),X(u_1)n+2)o

u

The operation f(u) has been called by Dérnte {cf. [1]) the
long product. If f is an (n+1)-group operation, then f(u)
is a {un+1)-group operation, too (cf. [1]). In eertain situ-
ations, when the arity of such operation does not play a cru-
cial role, or when it will differ depending on additional
assumptions, we will write f(.), to mean f(u) for some
U= 1y2500e o

Introdueing the empty n-group appears to be convenient,
when considering the category Grh of n-groups, because the
empty n~group is an initial object of that eategory (ef. [6]).
Therefore, when defining the functor ret in section 3 we
emphasize where the empty n-group appears. Otherwise an n-group
is always understood to be a nonempty n~-group {(as 3t was used
by Dérnte in [1]).

- 784 -



On a generalization of Hosszu theorem 3

3. (k+1)=-ary retracts

Let (G,f) be an (n+1)-guasigroup. The (k+1)=-ary opsra-
tion g defined by

K+1, _ Py Py Pr4q n~k
g(x1 ) = f(a1 ,x1,ap1+1,x2,...,apk+1,xk+1,apk+1+1),

where k. €n and 8qseeesdy ) are fixed elements of G,

is an (k+1)-quasigroup operation. In general, g is not a
{k+1)=-group operation, even if (G,f) is an (n+1)-group. If

Pr = Oy Pyyq = 0=k, 0= k(py+1), pompy = P3=pp = e = Py q=Py
anc a (i=1,...,p2), then g is

: = 8 s = eee = 8 O
py+i po+i Py+i

$+1) = f ), where

of the form 8(x (x‘]’aﬁ‘,xzsaﬁ‘v'-”a]{,xm*,»]
n==s8k, r=8-1. To avoid repetitions we assume througout
the whole text n = sk (admitting s =1 or n = 1),
r+1 = 0 (mod 8) (exactly r = s-1 or © = su~-1).

The above-defined (k+1)-grupoid (G,g) will be called
a (k+1)-ary retract of (G,f) with respect to 84yee0y8, and

r
it will be denoted by ret® {(G,f) (or simply
a1 ’ LN ] ’aI‘

reta1".',a (G,£)). According to that definition, by ret'(G,f)
r

we shall mean nothing but the (n+1)-group (G,f).
Since in an (n+1)=-group (G,f) to every a € G there
exists a unique element a € G such that

(i-1) _ (n-i) (x (i-1) _ (n-i))
f\ a ,a, a ,x/=f\x, a ,a, =a = x for every xeG and

s
1= 1,000,n (cf, [1]), then ret} (G,£) = rety . G,1)
(n-r) r
where b = f a ,§,a1).
Immediately from the definition of a polyadic group we

110 ,ar

get
Lemma 1 (cf. [5]). The (k+1)-groupoid
ret® (G,f) is a (k+1)m~group.

Notice that retracts of commutative (semi-commutative)
n-groups are commutative (semi-commutative). Binary retracts
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4 WehA.Dudek, J.Michalski

of semi-commutative n~groups are commutative groups, but re-
tracts of autodistributive n-groups (cf. [3]) are not necessa-
rily autodistributive,

The following lemma is needed for the proof of functoria-
lity of ret. . '

Lemma 2. Let  h:(A,f) —» (B,f) be a homomorphism
of (n+1)-groups, If a polyad By qoeec08y € 4 1s an inverse
of a polyad aj,s..,a; € A, then the polyad h(at+1),...
...,h(au) € B 'is an inverse of the polyad h(a1),...,h(at)e B,

Let n > 1. Given (n+1)-groups (4A,f), (B,f), (C,f), let
r~ads (here r = s-1) ByseesyBy € A, b1,...,br € B,
CrsesssCy € C Dbe arbitrary but fixed. Consider the (k+1)-
1""’8‘1‘(A,f)’ (B,g) = retb1,...,br(B'f)’

(C,g) = ret (¢,f})s If h:{a,f) —> (B,f) 1is a homo~
01,.uo’cr
morphism of (n+1)-groups, then we may define the mapping

ret h:A —» B by the formula

-groups (4,g) = ret,

a1,...,ar;b1,...,br

ret p Blx) = £(h(x),a(a,),ees,hlay), by o)

a1,...,ar;b1,...,

where the {n-r)-ad b bn €¢ B 1is an inverse of the

I‘+1’...’
r-ad b1’ooo,brt

Let XqseoosXy q € 4. Then

ret h(g(xf+1)) =

81,...,ar;b1,...,br

il

Teq)

f(h(f(x1,aﬁ,x2,...,xk,aﬁ,xk+1)),h(a1),.--,h(ar);br+1

u

;(.)(h(x1)’h(a1)""’h(ar)Qh(Xe)yiio,h(xk),h(a1),;oo
everohlan),hlx o )shla),eee,hlay), bl ) =

= £,y (2lalxy),hlay),eee,hla,), b0 10,07, £ (0(xy) hag) ..

1 r+1 1?
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On a generalization of Hosszil theorem 5

eeesnlay), bl 1) yeee, 00, £(h(x, 4 )sh(8,) 000 hla,),b0, 1)) =

This shows that ret

+1

g(ret h(x1[,...,reta

hix_.)).
31,¢oo,ar;b1,...,br 1,o-o’ar;b1,ou,br (xk+'))

h:(A — (B is
Bpsereragibysess o (418) = (B,0)

a homomorphism of (k+1)-groups.

It is easy to see that

I‘eta.l,...,aI.;a‘l,...,a‘.c,id(A,f) = 1dpgy (a,£)°
: oo

Now. let h,:(A,f)— (B,f} and h2:(B,f)-—’ (c,f) be

1

homomorphisms of the corresponding (n+1)-groups, Then

retb h, o ?et

h1(x) =

1'.00’br;c1’000’cr 2 81,...,ar;b1,...,br

he(f(h1(x),h1(a1),oco,h1(ar),bn+1)) =

t
Te b1’o.o’br;c1,oco,cr r

£(hy(£(h,(x),h(ag)yeee,hy (@), 00 1)), hy(h, 0,00,
eeshy(by) ,c§+1) = £5)(hohy(x),hohy(ay), .., hphy(ay) hy(b )yees

n —
r+1) -

oo'hz(bn)th(b1)90..,h2(br),c
£(hohy(x) Ak, (8 )yeee,hohy(an) el 1) =

t h.h .
re Bq9eee98,5C 5000,C 2 1(X)

Choosing in each (n+1)-group a sequence of T = s-1 ele-

ments (perheps with repetitions) and assuming additionally
that for the empty (n+1)-group 4 let ret®4s be the empty
(k+1)=-group for s <n and the one-element group for s = n,

we obtain a functor (in fact a class of functors depending on
the choice of elements) rets:Grn+1—’ Grk+1 from the cate-
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6 | WoA.Dudek, J.Michalski

gory of all (n+1)=-groups to the category of all (k+1)-groups.
We shall show that all these functors are naturelly equiva-
lent,

Consider firstly the particular case of sequences of the
form a; = 85 = .ss = 8 € A, We write Ret:(A,f) (or simply

Reté(A,f)) instead of ret: (4,£) and Ret® for

8
8yec0983

5 1'ooo’ar s
ret . Note that the homomorphism Reta‘bh = ret

:Reta(A,f) —> Ret,(B,f) is given by the formula

bbz

-]
Ret:;bh(x) = f(h(x),éf&),(n b r),B).

Theorem 1. The functors retB:Grn+1 — 6,
and Ret®: Gty = Or,,, eare naturally equivelent, '

Proof . 1Ineach (n+1)-group choose a sequence of o
elements (per,lidpa with repetitions) and additionally a single
element. So we get two functors: ret® and Ret®. Let the

mepping

A iret, , (A, L) —» Reta(A,f) be given by AA(x) =

1 ooo'ar ( )
-t
= f(x,—aﬁ, ? a i »8).

Prom the earlier considerations it follows that A’A is a ho~
momorphism of (k+1)=-groups. Moreover, zA is even an iso-
morphism,

Now we show that for every homomorphism hi(A,f) —e (B,f)
the following diagram

A'A
reta1'....ar(A,f) » Ret,(4,f)
reta1.ooo.8r;b1;o'-,bﬂh Reta‘bh
r°tb1,...,br(B'f) - Retb(B,r) |



On a generdligation of Hosszu theorem 7

is commutative. In faot

p (D=1-r)
Rota;bh *A,(x) = Reta‘bh(f(x,a1, a L,a))s=
: -1= N -1~
- ttatete,ad, 0w, S -
. (n-1-r) (r) " (n=t-x) _
= £,)(h(x),h(ay),..c,h(a,), 2(a) ,h(&),h(a), b ,b) =
]

(n=~1-r)

£(5(x),bla,)geve,blay), b ,B) =

a p (D=1-7) _
£(2(n(x),h(a,),e00snla,)ybp 4040y, b ,B) =

= Ag(2(h(x),hla,),ee0,hla,), b0 )) =

= AB'ret h(x),

a1pnoo,ar;b1,ooo’br

which proves that A iret® —» Ret® 1is & natural equivalence.

So we have the well-defined up to a natural equivalence
the functor rets:Grn+1*’ Gry, .- In spite of the fact that
ret® is independent of the choice of elements in (n+1)-groups,
in concrete situations one has to make such choice in one way
or another,

Timm has prioved in [13]'that binary retracts of a commuta-~
tive polyadic group ere isomorphic commutative groups. Dudek
has proved in [3] that also binary retracts of an autodistri-
butive polyadic group are isomorphic. Theorem 1 is a generali-
zation of those results,

Corollary 1e A1l binary retracts of an
(n+1)-group are isomorphic.

Corollary 2. If (G,f) is an (n+1)-group,
then all (k+1)-ary retracte of the (un+1)-group (G,f(u)),
where u 1is fixed, are isomorphic,

Note that dealing with (k+1)-ary retracts of (un+1)-groups
(G,f(u)) is in fact considering the functor retsu!u H
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8 W.4A.Dudek, J.Michalski

G§H4 — Or, 4 which is the composition of the forgetful

functor ?u:GQH4 —"Grun*1 {cf, [6], [7]) with the functor
retsu:Glhn+1—" Gr, 4+ This functor will be denoted briefly

by ret®'% (i.e. 1et®'® = ret®Uyu and Ret®'% = Retsuwu}.
According to that notation, rets’1 = ret®, 4 restriction
to the case of u €k 1is possible since, as it is easy fo
check, for u =t (mod k) the (k+1)-ary retracts of the
(un+1)~-group (G,f(u)) and the (tn+1)-group (G,f(t)) are
isomorphic, Henceforth throughout the paper we assume always
u < ke

One may ask whether the functors ret and retS!Y
are naturally equivalent for t # u (mod k). If we consider
ret5'? and ret®*! as functors from Gr,,q4 to Gr, ., they
are not in general naturally equivalent.

45 an example consider the T7-groupoid {G,f) where G = Z4,
f(xz) S X =Ry +Ey=X,+Xg=Kp+Xn {mod 4). Then (G,f) is non-
commutative, idempotent 7-group. Let

8,1

(G,g) = Retg(G,f) and (G,g’) = Retg(G,f(z)) = Retg’g(G,f).

Hence
3 (2) (2)
g(x1) = f(x1, a ,X5, 8 ,x3) = X -FpHX, {mod 4),
3 (5) (5)
g’(x1) = f(2) Xy 8 95y 8 4X5 = X +Xy+X5-2a {mod 4).

Notice that (G,g) is a noncommutative, idempotent 3-group,
while (G,g’) has only two idempotent elements and (G,g’) is
a commutative 3-group. Therefore (G,g) and (G,g’) are not
isomorphic,

‘ The situation almplifies considerably in the case of tae
functor retn’u:Grn+1:—’ 0[2, to the category of groups. in
this case k = 1, whenoe u = 1. Therefore all functors ret™*4
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On a generalization of Hosszi theorem 9

(for arbitrary u) are naturally eguivalent and there appears
the functor ret?: Grn+1—’ Gl'2 which is unique up to a na-
tural equivalence. In contrast, for k > 1 one has to consi-
der different functors ret®*":Gr ,—=Gr, ., for different
u. To have a natural equivalence of them it is necessary to
restrict both functors {to an appropriate subcategory of Grn+1'
The case of k = 1 was studied in [10]. Pop considered
two functors from (3l'm_1 to Gr2 (for n > 1). One of them

was, in our notation, the functor ret? -, the other
8y0¢e98,8

was the functor which had appeared de facto in the Post’s
construction of a free covering group (cf. [t11], [10]). From
[6], Theorem 1 it follows that the latter is naturally equi-
valent to the functor Retn, which in turn implies, by Theo=~
rem 1, the main theorem of [10].

In [6] (c%. also [8] ) there was introduced a functor
063 GI‘m_1 —.Grk+1 assigning to each (n+1)=-groups its frae
covering (k+1)-group. That functor does not preserve projec-
tive ’imits, in particular the cartesian product (cf. [7]).
In contrast with @, the functor ret®: Gr,,4—~ Gr ., opre-
serves the cartesian product. .

Theorem 2, If “;:'T G:s {!Tt: ter—lT Gt'—’Gt}teT]
is the cartesian product of a family of (n+1)-groups
{(Gt'f)}tem’ then [retB DT Gt;{retsﬁt:rets M ¢, —

teT
——oretsGt ¢ is the cartesian product of the family of
{k+1)=~groups ltre‘l;s(Gt,f)} tem*
Proof, Let (G,f) = M (Gt,f) together with pro-

teD
Jections {16 —» G}, .p be the cartesian product of the

nonempty family of (n+1)-groups (Gt'f)}tcT’ In each
(n+1)=groudp G, choose an element a, € G,. Let (G.,g' =

= Ret:t(Gt,f), (6,8) = Retg(G,f) (where a = (a;)yey €G)
and (G,g') = M (G,,8). Take arbitrary slements x, =
teT v i

= (xi,t)teT € C where for i = 1,...,k+1 we have Xy 4 € Gyo
Then
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10 W.4.Dudek, J.Michalski

) k+1 _ =
g (x.] ) ad \g(x|1,t,u.o’xk+1,t))t€ll\ -

(r) (r)

= (£(xg 4285 seves BpaXyyq gl gen =

(r) K
f(x1, a ,...,xk+1) = g(x1

1y,

Moreover,

(r) (n-1-r)
retsﬂt((xt)teT) = fm((xy)gen)sm(a), a8, ,3,) =

(r) (n=1~r) _
= f(%t’ gy B¢ ’at> = Xg»

s s ] .
which proves that [retsG;{ret ¥, :ret™G —+ ret Gt}teT] is

the cartesian product of the nonempty family {retsGt}teT.
Further note that the functor ret® preserves final objects
{that is the cartesian product of the empty family) and ini-
tial objects (that is the cartesian products of families of
{n+1)=groups containing the empty (n+1)-group). Thie comole=-
tes the proof of Theorem 2,
We end this section with the following
Proposition 1., Let an (n+1)-group (G,f)
be given, If there exist elements By nreeesdy g €G such

k
that for all XyseeosXy g € G we have f(x1,aﬂié,xk+1) =

k+1,aﬁié , then G together with the operation

= f(x1
g(xlf”) f(x}‘{”,aﬁ:;) is a (k+1)-group.
Proof. Simple calcunlations show that the operation
g 1is (1,2)-associative. Obviously it is also a (k+1)-quasi-
group operation, Hence (G,g) is a (k+1)-group (cf. [2], [4]).
Corollary 3. If a (1=kt2,e0a,n+1) are =
central elements of an (m+1)-group (G,f), then (G,g), where g
is defined as in Proposition 1, is a (k+1)-group.

[}
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On a generalization of Hosszd theorem 11

Note, however, that for distinet cholces of the sequence
By prese98p gy the formerly defined (k+1)=~-groups are not
necessarily isomorphic.

4s an example consider the 7-group (Z4,f) defined as abo-
ve., 3=-groups (Z4,g) and (Z4,g'), where g(x%) = f(x?,3,1,1,1)

and g’(x%) = f(x$,1,1,1,1), are not isomorphic.

4, <g,c$)—derived (n+1)-groups

For a given (binary) group (G,*) Timm (cf. [14]) has form-
ed with the aid of a seguence of bijective mappings Trseesln
of G and an element ¢ € G an {(n+1)-ary operation f (in
[14J it was n-ary, in fact) defined by f(x?+1) = x1{51(x2)._..
Jec. The (n+1)=-groupoid defined by this way was

Wn(xn+1
called the <f;,c> -derived (n+1)-groupoid of the group (G,e).

Depending on the choice of Tiseeosfn and c € G the (n+1)-

-~groupoid (G,f) is a permutationally associative (n+1)-grouwm
poid, an (n+1)-semigroup, an (n+1)-group and so on. In parti-
cular Timm has proved that <[i,c>—derived {n+1})~groupoid of

a group (G,*) is an (n+1)=~group if and only if the sequence

of mappings 71""’Tn and the element ¢ fulfil the Hosszu
condition (cf. [5], [11], p.245), that is: fq1 1is an auto-
morphism of (G,*) such that 71(0) =cCy, gy = (3'1)l {(i=1,¢4.,n)
and Tn is an inner automorphism given by Tn( x) = c'x-c'1.
By analogy we say that an automorphism ¢ of a (k+1)-group
(G,g) and elements CpseeesCy € G fulfil the Hosszu condi=-

tion, if z(ci) = ¢y (1 = 1,0e0,k) and g(yn(x) ck) =

= g(c$,x) (i.6. yn is an inner automnrphism). Define an
(n+1)-ary operation f on the set G by

£(x3") = g(s+1)(x1’7(x2”""3n(xn+1)’°¥)'

If 4 and CqyeeesCy fulfil the Hosszu condition, we say
that the (n+1)-groupoid (G,f) is <Ficy >-der1Ved from the

(k+1)=-group (G,g) and it will be denoted by der® (G,g)
T‘c1,...’ck ’
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12 _ Wo4.Dudek, J,Michalskl

In certain situations, when the form of ¢ and Oqpeee90y
does not play a orucial role, we call the (f;c 1)-derived
(ne1)-groupoid simply a weakly derived (n+1)-groupoid. In the
case when g= id, the <idG,c >-derived (n+1)-groupoid will
be called shortly the <p Y-derived (n+1)-groupoid and abbre-

viated by Qerc (G,g). Note that those notations are

1"..'°k
meaningful and nontrivial also for s = 1.
Theorsm 3. The . (n+1)=-groupoid derS G,8)

’.c OC.c
is an_(n+1)-group. AL

Proof. The solvability of .equations .for the opera-
tion £, is implied by the solvability of equations for the
(k+1)-group operation : g and bijectivity of the mapping
Ti (1=1,04.,n). We show associgtivity of f. In fact,

2(2(3*1),233"))=

8( )(3( )(x '[(xz)o"nf ( +1)o° )of( +2)9---03’ (x23+1)lc ) =

8( )( 108( )G’(xz)nucf (xn,”)v '7(xn+2))'f( +3)0n001p(x2n+1)0° )=

CRCI OISR NP SRR PSR U RO L R R

8( )(x of(g( )(xgo--uf ( n+1)of( +2)o° ))93’( 4,3)0'-'
2

oo rf (Ko g oo Y = 2hx, 2(57), 22000,

whence f is (1,2)-associative. Thus, by Sokolov's result.

(cf. [12]), £ is associative, which complqtes the.proof,’
Recall that an (n+1)-group (6,f) is derived from a _

(k+1)-group (G,g) (i.e. (G,f) = Y (G,g) 1in nota%tion of [6]),

A =g g (cf. [1] ). The relationship of ‘the terms: de-.

rived end weakly derivéd (n+1)-group is nbdt casual. Let

T = 1dG and let a polyad CqreeesCy be an identity of a

(k+t)-group (G,g). Then ¢ and cy,ee.,c, fulfil obviously
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On a generalization of Hosszi theorem 13

the Hosski condition and der® (G,g) = !k(G,g), i.e,
7’01 ooo,ck

the (n+1)-group (1,0 )-derived is simply the (n+1)-group de-
rived in the sense of .
Under distinct choice of the automorphism § and the ele-

ments C4,...,C, the {n+1)~groups derir s¢qs ...’ck(G,g) may

occur to be non-isomorphic, It happens even in the most simple
case of k = 1, Consider the following example.

Let (G,g) be a group of exponent n (n > 1) and let b
be a central element of (G,g) different from the neutral
one, Then the (n+1)~-groups yn(G,g) and der;;b(G,g) are not
idempotent).

Now, as in the case of derived (n+1)-groups (cf. [7]),
we prove that the cartesian product of weakly derived (n+1)-
-groups of (k+1)-groups is the weakly derived (n+1)-group
of the cartesian product of the (k+1)-groups.

Theorem 4, Given a nonempty family of (k+1)-
-groups {(Gt'g)}teT’ let = (ci t)tcT for ¢y 4 € Gy

(i=1’0-0’k)' t(x) (Tt(xt))tem for X = (xt)t‘T. Then

der 1,c1,...,ck J:] (Gt’g) = I:L d°r5%,01 t,...,ck t( t’g)'

Proof., Let

(G,g) = Dr (G4,8), (Gy,f) = derd (Gy,a),

F3Cq, gre0 20y ¢

(6,2) = dera,’cv'“’c (6,8), (6,f) = Dm (Gyaf).

It is easy to check that if g, and c1 t,...,ck " fulfil
ths Hosszl condition for every t € T, then 7 and CqroesCy
fulfil the Hosszu condition, too. Take arbitrary elements

xi = (xi,t)t‘T [ A G’ (1—1,00.,n+1)o Then

- 795 -



14 W.A.Dudek, J.Michalski

>/n+1_ =
£ ) = (2 preees®pgq,¢) ) ger =

= (g(s+1)(x1’t’wt(x2’t)"'.,(Wt)n(xn+1!t),c1,t’."’ck't))$eT =
= g(s+1)(x1’d(x2)'ooo’a'n(xn+1)’c%lf) = f(x:t]1+1).

5. A generalization of Hosszi theorem
By a translation of an (n+1)-group (cf. [9]) we meen the

mapping g (x) = f(a%'1,x,a9+1). It is always invertible. Its

i1
inverse is the mapping 5'1(x) = f(b?,x,c%) where the polyad
bi,...’bn
polyad CosesesCy is an inverse of the polyad 85 q9eee98pqe

is an inverse of the polyad Bseersdy g and the

A s€ecial case of translations are translations of the
i) {i-1) {n-i) (3)
form o« (x) = £(x, a ,b, a ) and ﬁa,x(x) =

(3-1) " (n-3)
f\ a ,c, a ,x). Dudek has proved {(cf. [3]) that an

{n+1)=-semigroup (G,f) is an (n+1)-group if and only if for

some 1,J = 1,ese,n and all aeG there exist elements
bsc € G suct that aéf%(X) = péfé (x) = x. Obviously, if
(G,f) is an autodistributive {(n+1)-group, then all transla-
tions are automorphisms. Moreover, if the polyad Bpgeas
vevsBi_ 1984 99008, 4 18 an identity of (G,f), then g is
sn sutomorphism of (G,f)., Hence ¢4 is an isomorphism from

s < ’ ~
ret G,F}) cnt = G,7)s Therefor
e 01!""cr( ,F} cnto retﬂ(c1),'._’w(cr)\ » ) erefore,

if T(Ci) = ¢; for i=1,...,r, then y is an sutomorphism

of S G,T).
o} Ire 01’...,CI‘( ’ )

From the above remarks there follows immediately
Lemma 3. A translation of the form g (x) =

(n-r-1) (r) ,
= f£\g, a yX, @ / is an automorphism of the (n+1)-group

(G,f) and of its (k+1)}~ary retract Ret:(G,f).
Theorem 5. Let an {n+1)-group (G,f) be given,

7o every (k+1)~-group Ret:’u (G,f) there exist an automor-

phism g of Retz’u(G,f) and elements cy,+¢.,¢, € G such that
~- 796 -
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8 8.1 _
dex*a,’ 1’.‘.,ckR8ta' (G)f) = (G’,f)-

Namely,

(n-su) (su-1) ({n+k){n-su)) (n+1)
7ix) = f(%, a ,x, a ), = f( ) a y 8 )

C2 = eve ck = 5.

n

Proof. Let (G,g) Ret:’u(G,f), where (G,f) is
an (n+1)-group, and let a € G be a certain element of it.

Define the mapping  ¢:G = G by the formula g(x) =
(nd1-r (r)
= f(_) a, a yX, a where r = s-1, By Lemma 3 it fol-

lows that g is an awutomorphism of (G,g). We prove that the
automorphism gn is an inner automorphism, Let

{{n+k) (n-1-r)) (n+1)
¢y = f(_) a , & s Cp = eeea = Cp = 3,
Then
g(g" (x).c)) =
(n) (n(n-1-r)) \nr) (n+K)(n-1-r\) (n+1)) (k=1) )
<( ) a , a /, a >—
) (nln-1-r)) (nr)\ (r) ((n+k)(n-1-r)) (n+1))
-f()<() 'a ,xsasas() ’ ’
(r) _ (r) _
) B 485440y @ 44 )=
k-1
(n) (n(n=1-r))  ((n+k)(n-1)) (n+k)
=f a , a 9 Xy a y
(+)
( ) (n) (n(n; -r)),x . At the same time g(c:,x) =

- 797 =
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(((n+k)(g-1-r)) (n+1)) (k1)
=g<f(.) a y & sy & .x):

(j <K(n+k)(n-1-r)) (n+1) (r) (»y ()
( ) ( ) s & .8'..., ,a, a ,X

[——
k-1

s (( n) (n(n—1~r))
which shows that g(fn(x),c1) = 3(01,x).

One can easily verify that g(cy) = ¢y for 1 = 1,400,k
Thus ¢ and CqseeesCp fulfil the Hosszu condition, Further-
more,

8(8,.,1)(! oa’(xz)o'ooofn( ,,,1)9‘3 )=
(r) (r) (r) (r) (=)
n ;)

= f(’) Xy @ .1]'(!2)& 8 yeeoy & af( +1), 8 4Cqrecey 8 ,C

(r) _ (n=t-r) (r) (r) (2) (2(n=1-r)) (2r) (r)

-f()1'a|ﬂ, a 'lea'aiao a Xz 8 ¢ & ge00

(r) (n) (a(a-1-r)) (ar) (r) ((n+k)(n-1-r)) (n+1)

eeey & 5 & a ,xn+1, a o a, ’ ’

a 'a’ooo. a

[ ——)
k-1

(r) (r) %> e,

whence (G,f) = der> (G,g), which was to be proved,

f;c yeeeyC
It turns out that formingka weakly derived (n+1)-group

is 8 procedure converse to that of forming s retract, Note,

however, that a special form of retract has been considered

in the proof of Theorcm 5, namely Ret, Dealing with arbitrary

(k+1)-ary retracts the situation slightly complicates.
Lemma 4, If h: (A,g)-—* {B,g) 1is an isomorphism

of (k+1)-groups, then h:der> (A,g) —»

Tusaqresesdy
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derg-B 1"“’bk( ,8), where g = hgyh™', by = h(a;)
(i = 1,004,k), is also an isomorphism of (n+1)-groups.

Proof.

YCICAUNIEETENINCIR XCIO RN ACHIR RS

RURCIER B NCH IR CNI RICH RERICHIE

SN CICR T A TCR  RIN  CICH RS R LR IRRLIC W)

Proposition 2, Let an (n+1)=-group (G,f) be
given. To every (k+1)-group ret (G,f) there exists

..’aI‘
an automorphism g of rets (G,f) and slements

1,0...%
CqseeesCy € G such that the (n+1)-groups

8 .
derfi°1,--¢,°k rets 1,...,a (G,F) and (G,f) are isomorphic.
Namely,
n-'—r) (r)
gix) = f( )<%, ,x,aﬁ, a ,a§+1>,

<((n+k)(n-1-r)) (n+1) (r) n )
(*) , 8 , 8 ’aI‘-H

(r) >
Co = see = Cp = f( ) a, ,ar+1

where a 1s an arbitrary element of G and the polyad
.,q2++++8, 15 an inverse of Byresesle
Pr o of . According to Theorem.1, the mapping

A reta (G,f) —*vRet:’u(G,f) given by the formula
1,.oo,ar

(n-1-r)
Alx) = f<;,a1, a ,8 ) is an isomorphism of (k+1)-groups.

As it is easy to check, the map p= 2~1 is of the form
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18 We Ao Dudek, J.Michalski

(r)
p(x) = filx, a '°:+1) where the polyad Bpyqeseerly is en

inverss of Bysessyde In view of Theorem 5 it follows that

by an appropriate choice of the automorphism (denoted by § )

and elements (denoted by b1,...,bk) the equality

-der%;b1'...'kaet:'u(G,f) = (G,£) holds. Recall that in
(n=1=r) (r)

this case we have §(x) = f(a, 8 ,X, a ), b, =

({n+k)(n-1~1)) (n+1)) _
= f(.) a ’ 8 ’ b2 E o0 B bk = 8 Then, by

Lemma 4, the mapping

vdanB By0 8 8,1
P'derhbv...,kaeta (G,£) —» derﬂcv.“'ckretav.“’ar(c,f),

where ¢ = pJA and oy = !‘(bi)’ is an lsomorphism. Purther-
more,

T(x) =y5€:,a§,(n-;-r,,§> =
/ (n=1-r) . (n-1-r) (g)))g

=p f(,)a, a »X9 81, a ,8, 8

I CICNEE)),

~ (a-1-r) r (®) 4 )

= f(,) a, a »Xs8qy 8 y85 4

and

({n+k) (n-1-r)) (n+1) (r)
o4 = plby) = f(.)< - a s, 8 , 8 ’°:+1>’

7 (r)
02 = P(b2) = f(‘) a8, a8 .§r+1>o.
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This completes the proof of Proposition 2.
If the (n+1)-group (G,f) satisfies additionally the con-

i r) n+1-r
dition: the equelity f 8y X 48y 4 ‘> = b has a solution for

arbitrary elements a,,.e.,8; 4 b € G (for » =1 this is
always true), then the element a € G in Proposition 2 can
be chosen in such a way that the isomorphism p becomes the
identity. Then =8, c¢; = by {i=%,...,k}), whence

8 8,u -
erf;c1,...,ckreta1,....ar(G’f) (G,%).

It may happen that the (n+1)-groups derg bRetg(G,f)
geecey
and (G,f) are non-isomorphic. As an example take the 13-group
(G, T} = der;2(G,+) whers (G,+) = (Z12,+) is the cyclic group

d

of order 12 and b = 3, Then f(x13) =Xyt oeee + x13+3. Con-

sider the S-group (G,g) = Retg(G,f), whence g(x?)x X teoot

+x5+3. Let the 13-group (G,f’) = derg b(G,g). Then
’...'

f'(x]a) = g(4)(x13,(g)) =Xy + e +’x13. Thus the 13-group
(G,£’), Vveing idempotent, is not isomorphic, to the 13-group
(G,f) which is not idempotent.

Hosszli has proved in [5] that (using our notation) an
(n+1)=-groupoid (G,f) is an {n+1)=-group if and only if (G,f) =
- dern,c(G,g) for some (binary) group (G,g). From Theorem 3
and Tgeorem 5 we can draw a corollary being a generalization
of Hosszu Theorem. Note that in the case of k = 1 (hence
8 = n) Corollary 4 becomes Hosszu Theorem (cf. [5]).

Corollary 4. An (n+1)-groupoid (G,f) is an
(n+1)-group if and only if £ 1is of the form

£0x3) = 81 g01) (Xqo8(X0) senerg™xy ) ,08) s wheTe (G,a) 1s
a (k+1)=-group and g is an automorphism of (G,g) such that
g(tn(x),cﬁ) = g(c?,x) and f(°1) =c; for 1= 1,...,k
Prom Theorem 5 it follows immediately
Corollary 5. Bvery (n+1)~-group is <f;c$)-do-
rived from a (k+1)-group.
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20 W.A.Dudek, J.Michalski

In the proof of Theorem 5 the (k+1)-ary retract of the
(n+1)-group (G,f) has been chosen to obtain the needed
(k+1)~group (G,g). The question arises whether such a choicg
of the (k+1)-group is unavoidable. In other words - is the
following theorem: "If an (n+1)-group is of the form (G,f) =

derg,c1,...,c (G,g), then the (k+1)-group (Gy,g) is iso-

morphic to the (k+1)-group ret (G,£)v.
trus for k = 1,2,¢00 ? "t
In the case of k = 1 the answer is positive (cf. [14]).
Proposition 3. Let a (binary) group (G,g;
be given. To every (n+1)-group der (G,g) there exist ele-

ments a;,...,a, 4 € G such that ret&?""’an— T C(G,g) =
= (G,g). Nemaly, a; = ... = &, 5, = ¢ (the neutral element
of (G,g), ap_4 = ¢! (the inverse of ¢ in (G,g)}.

Proof.

f(X,e,..o,G,G—1oy) =
= g(n+1)(x,5'(e),a~ (e),...,@n'z( Joy '1(0"1)3~n(.7),0)=

- g(n+1)(Xoe,.-.,e,c'1.c,y.0’1,c) = glx,y),

which was to be proved.

It points out that in the case of k = 1 forming retracts
is a procedure converse to that of formihg weakly derived
(n+1)~groups. It reminds of the situatioh in Theorem 5 and
Proposition 2. But there the automorphism g and elements
CqseeeyCy had to be chosen in an appropriate way. Otherwise
the (n+1)=-groups der ret(G,f) and (G,f) appeared not necessa-
rily isomorphic (see the example following Proposition 2).
From Proposition 3 and Corollary 2 we can draw the following

Corollary 6, The groups (G,g) and

ret’ der® (G,g) are always isomorphic (under an
Y P £ 1 .
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arbitrary choice of the elements BysseesBy _49C € G and the
automorhpism ¢ ).

From Corollary 6 and the functoriality of retracts we ob-
tain

Proposition 4. If (n+i)groups der;H;a1(G,g1)

n

LE
(B,gz) are isomorphic, too.

Now we show that in the case of k > 1 the answer is ne-
gative.

Proposition 6. If an (n+1)-group (G,f) is
derived from a (k+1)-group (G,g) (where n = tkz, i.e.
8 = tk), then any (k+1)-ary retract of (g,f) has an idempo-
tent element.

Proof. Given a (k+1)-group (G,g), let {G,f) =
= ¥,(G,8) (where s = tk), (G,g') = Ret:(G,f) (a being
an arbitrary element of G), Let & denote the skey element
to a 1in tae (s+1)-group ¥,(G,g) = (G,g(t)). Then

g’((kt1) ) (} (8=1) _ _ (s-1)

a8 = fla, a ,8,e..,3, @& ,a8) =8, which proves
that & is an idempotent element in (G,g’). By Theorem 1
all (k+1)-ary retracts of a given .(n+1)-group are isomorphic.
Thus every {k+1)-retract of the (n+1)}-group (G,f) = wb(G,g)
has an idempotent element,

Proposition 6, If (G,») is a group of ex-
ponent k, _then for any element b different from the neu-
tral one the (k+1)-group (G,g) = derg(G,-) has no idempotent
element.

Proof. Let (G,g) = derg(G,-) and x be an ar-

and der .a (G,gz) are isomorphic, then the groups (G,g1) and
192

(k+1)
bitrary element of G. Then g<‘ X /= Xeeee*Xeb = Xeob,

(( k+1 )) k+1
Hence g\ =x # x (since, by assumption, b # e), which
was to be proved.
From Proposition 5 and Proposition 6 we obtain °*
Corollarxry Te Let k> 1 and n = tk2 (i.e.

8 = tk). Then there exists an (n+1)-group of the form
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(G,£)

and

[1]
(2]
[5]

[5]
[r0]

[11]
[r2]

8
= derb"..,b’s(G,g) such that the (k+1)-groups (G,g)
retS (G,f) are never isomorphic.,
81,...,ar
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