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SOME PROPERTIES OF CERTAIN PROCESSES WITH MEMORY

1. Introduction

In the paper [2] the notion of (Q,k)-system and (Q,k)-pro-
cess is introduced and also some properties of (Q,k)-pro-
cesses are examined. Now we recall the basic definitions from
this paper,

Let k be an arbitrary positive number, £ ~ a real fun-
ction defined on the interval <03;k)> and having a bounded
varigtion on this interval, We assume that

(1) 3 Vag Q(8) <1
t'G(O;k) <k"'t ,k)

Let C<O;k> (C<O;+«d) be the set of all real continuous
functions, having as a common domain €0;k> ({0;+o0) respec-
tively). Moreover, let C<0,k> be the set of all functions

r} K ’ Y
fe m(b;k) satisfying the condition

k
(2) [ t(s)aate) = 2(x).
0

The integral on the left-hand side of the above condition
(and also other integrals in this paper) is understood as
a Riemann-Stieltjes integral,

Definition. By an (Q,k)-system we mean an
operator '
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2 W.Kotodziej, J.Wgsowski

M €™ Clp; too)

such that for an arbitrary function f ¢ C<O,k) the follow-
. H
ing conditions are satisfied:

and
k

(4) (we) (s+kc) = [ (ue)(sem)an(s), (%3 o).
0

As it is known ([2]), the operator M is well-defined.

Any function belonging to the range of an (Q,k)-system
ig said to be an (,k)-process.

Let x be an (Q,k)-process. We can write the equation
(4) in the form

k
(5) x(t+k) = j x(t+s)dR(s).
0

For each to 2 0 the function xl(to;to+k) ls said to be

a state of the (Q,k)-system. In particular, the state x|<0;k>
is called the initial state of (R,k)-system.
Let Q ©bYe & set of functions £ : <0;k) — R such that
1) £ 1is a non-decreasing function on the interval <0;k)
2) there exists a point ¢ € (0;k) such that £{(0) < f(ec)
3) there exists a point t* € (0;k) such that f(k)-£(t*) <1.
Lemma 1. If ®eQ then there exists exactly one
real number A such that

k
(6) f ea(s"k)db(s) = 1. .
0
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Certain processes with memory 3

roof. The function h(A) = } éh(s_k)dé(s) is con-

tir .ous and decreasing on R. Moreover, 1lim h(A) = +oo and,
- =00

br condition 3), h(A) <1 for large positive A .
Note that

dd(s) = 1=>2 =0

C Sy

dd(s) <1=>A <0

dd(s)> 1= A > 0.

k
Remark 1. Denote w-=f dbd(s). If A is a real

0
solution of the equation (6}, then

(7) A2 |1 1ow].

Remark 2, Let Qi € Q (i=1,2). 1If Ay 1is a real
solution of the equation (6) with & = %, and (02 - 91) is
a non-decreasing function then A1 £ Az. If, moreover,
(92 - 91) € Q, then A, <A,

2. Absolute value estimation of an arbitrary (Q,k)-process
Assume that

(8) 3 0) -2(a) # 0.
- ce(03k}
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Denote

0 for t=0

(9) ¥t) =

Var L(s) for t ¢ (0O3k> .,
<0;t>

The function @ 1is non-decreasing on <{03;k) and satisfies
the condition 2), 3) from the definition of the set Q. Heh-
ce we have $e¢Q,

Theorem 1, Suppose that the function Q sa-
tisfies the condition (8), If x 1is (Q,k)-prkcess and A*
is a real solution of the equation (6) with the function &
dé¢fined by (9), then

v
o

(10) |x(%)| eﬂyt'p, for t

w.e
Proof, Denote y(t) = o~ A tx(t) and M = max |y(t)].
' <03k>

Hence we have to show that |y(t)]< M for every % > ko

Suppose that this is not true. Then there exists t1> k
such that lx(t1)|> M. Denoting by 7 the lower bound of the
set of a11 t 2 0 such that ‘x(t)|> lx(t1)| we have

Ix(r)l = |x(t1)l, Hence we have 7 > k and
|x(t)} <|=x(z)] for t<<T.
Since
k »*
(11) y({t) = f y(l-k+s)-ex (B'k)dQ(s)
0
then

k k
[y()f I o (e-klap(e) - |y('¢)|<! |3(z-icss)] +e? (5-K)qp(a).
0 0
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Certain processes with memory 5

Hence we have

ko«
"'eﬂ. (s-k) (ly(,z)l - Iy(t'k+s)| })dd(s) < 0.
0

This result contradicts the fact that

C L x
0 <f e (57Kl (13(2)| - |y(e-kes)|)dd(s) <
0

k *
SJ.G% (S-k),(ly(z), - |y(x-k+s)| )ad(s),
0

where ¢ € (03;k) is a number from the condition (8).

Let us note that if the function & does not satisfy the
condition (8), then the equation (6) has no real solutions and
x(t) =0 for t 2 k. In this case the estimation (10} holds
for an arbitrary real number A, Kk

The estimation (10) and the fact that [ d®(s) = Var Q(s)
imply the following propertiess of (Q,k)-progesses: Wik

Corollary 1. Denote V = Var Q(s).
<0;k)
a) Let V = 1. Then we have A¥= 0, 411 (Q,k)-processes
are functions boumded on the interval <{0O;+oo) and

|x(t)] < max [|x(&)].
<03k

b) Let V < 1. Then we have A*<0. 4ll (Q,k)-processes
tend to zero, wheg t—+oo . The rapidity of this convergence
igs at least 0Ofe t). Moreover, for (7) we have

k]
|x(£)] < V*-p.
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c) et V > 1. Then we have A" > 0. The absolute value
of an arbitrary¥(9,k)-process increase when t —® oo not fa-
ster then O(eﬂ t).
3. Properties of (Q,k)-processes if Q € Q
Theorem 2, Let NeQ. If x 1is a (Q,k)-pro-

cess, A 1is a real solution of the equation (6) with @ = Q,

then for every to 20

t it
(12)  &* s (ty) € x(t) ¢e™ep(t ), for t3 %,
where a1(to) = min e-ﬁs.x(s), @1(to) = max e"a%dsh
<to;to+k> (to;to+k>

The proof of vhis theorem is analogical to the proof of
Theorea 1.

Remark 3. It is easily seen that functions on
the both sides of the inequality (12) are (8,k)-processes.
This is the best estimation of (Q,k)-processes,

From Theorem 2 we have

Corollary 2 If there exists a number to 2 0
such that the state x!<to;to+k> is non-negative (non-posi-

tive), then the function x is non~negative (non-positive)
on the interval <to;+eo). k
Corollary 3. Let V=/[dQls)> 1. If there

0
exists a number % 2 0 such that =x(t) # 0 for t €<t 3t +kD>,
then the rapidity of increase of |x(t)| as t— +e0, is
i3
at least O(Vk).

Denote y(t)
equation

n
@

Ll
ol
PAN
o+
—
L]

The function y satisfies the

(13) y{t+k)

k -
f y(t+s)eh(s'k)dﬂ(s), for t 2 O
0
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Certain processes with memory 7

Lemma 2. For an arbitrary <20 +the equsality
k k _ k
(14) f Asdﬂ(s) fy(m-'z)dt = ".ehsdg(s) fy(t)dt
0 5] 0 8

holdEi.
Proof. ©From the equality (13) we have

4 T k -
{15) f y(t+k)dt = j dt f y(t+s}en(s'k)dﬂ(s).
0 0 0

k - k
f dt f ylt+s})= Als- k)dsz(s) = f ex(s'k)dﬂ(s) f y{t+e)dt =
0 0 0 0

k+7

R "kid.Q <f yltldt +

s+k

k _
- [ MeFaas) [ y(oras -
0

i
C

+Iy(t)dt - kfz 3 dt> fy (t+k)dt +f AMs=k) 4o s)fy(t)dt-
S

5+

_ K
el(s'k)dﬂ(s) f y(t+7)ds,
g

ey iy

then tshe equality (15) implies (14).
k -—
Note, that if Q€ (, then f (k-s)et®da(s) # 0.
0

Let g Dbe a number defined by

e'itx(t)dt

ol 8-
|

L

2
badd [

Sdq(s)
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8 W.KoXodziej, J.Wgsowski

and u(t) = e_M;x(t)—g for t 2> 0, From (16) we have
k _ k
fe"‘s aals) j u(t)dt = O,
0 s

Hence, taking into account Lemma 2, we have for 720

k _ k
(17) f e"s dQ(s) f u(t+)dt = 0.

0 <]
We have

k k k k
(18) 0 = [ edls) [ ult+niat = - J' G(s)d [f u(t+z’)dt] -

0 8 0 8

k

= f G{stu(s+7)ds for T2 0

0

where
0 for s =0

(19) G(s) =

8 -
I oAt dg(t) for 8 ¢ (0;k> .
0

Theorem 3. Let S2€Q and let g be the numbér
defined by (16). If =x 1is an (Q,k)-process, A is a real
solution of the equation (6) with ¢ = Q, then the function
u(t) = e"M-x(t)—g have zeros in each interval which length
is k.

Moreover, if we assume that Q 1is an increasing function
on <0;k)> , then the function u changes its sign in each
intervel naving length k provided +that it is not identi-
cally zerc.
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Certain processes with memory 9

Proof of this theorem is obtained from the given
above equality

k
f G(sju(s+z)ds = 0, for <30
0

and the following facts:

a) if QeQ, then G(s) » 0O for s € <03;k) and G(s)> 0
for s » ¢, where ¢ ¢ (0;k) 1is a number from the defini-
tion of the set Q,

b) if Q& is a function increasing on <(03;k) , then
G(s) > 0 for sed0ik).

Remark 4. If ReQ, then A=A%,

4. Properties of (Q,k)~processes on the irterval on which
they do not change sign

Let 91, 92 be the following non-decreasing functions on
<03k ‘

(20) @, (s) =%.,[<ga§> Q(z)+§2(s)] , Qy(8)= %-I;ga:)n(z)-ﬂ(s)].
; 3

From the Jordan theorem we have

(21) . 8(s) = Q(8) - 8,(8), 8 €03k,

Téking into account the above equmlity we can write the equa~-
tion (5) in the form

N

. k . k
(22)  x(t+k) = [ x(t4a)ag,(s) - [ x(t+a)agy(s).
0 0

Theorem 4, Assume that 91 € Q. Let x De
an (Q,k)-process, A a real solution of the equation (6)
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10 W.Kokodzlej, J.Wasowski

with &= 91. If there exists a 2 0 such that x is 2 non-
-decreasing function on (aj;+oo), then for each t_ 32 a we
have

(23) x(%) < eAt°ﬁ(to} for t > t,
where p(t,) = max e'Asx(s).
ONTRG

Proof of this theorem follows on substituting the
condition (11) in the proof of Theorem 1 by the inequality

k (>4
ylt) € j 7(T-k+s)eMs"k)d91(s), for t 2 a
0

where y(t) = e'“x(t).
Theorem 5. If Q,,x and A setisfy supposi-
tions of Theorem 4 and if there exists a finite limit

lim e'ntx(t) =g,

t® oo

then there does not exist an interval <to;t°+k> (to 2 a)
such, that functiom u(t) = e’zxx(t)-g is negative on this
interval,

Proof of shis theorem is obftained immediately fwom
the estimation

u{t) € max u(s), for 3 %,
o3t vk

where 1A is an arbitrary number from the interval < aj+oo!},

Let us now consider the case x is a non-positive fun-
ction on the interval <a,+ec}, where a 2 O, Then the fun-
ction -x, being also an (Q,k)-process, is non-negative on
{aj+oo)., Taking into account Theorems 4 and 5 we have

Theorem 6. Suppose that Q, e Q. Let x be
an (Q,k)-process and A a real solution of the equation (6)
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Certain processes with memory 11

with ¢ = 91. If there exists a 2 O such that x 1is a
non-positive function on <(a,+oo), then for each %_32 a

)
we have

( it

24) e -a(to) < x(t), for t 2 o
where a(to) = min e'lsx(s).

<t0;to+k)
Theorem 7. If 91, x and A satisfy the suppo-
sitions of theorem 6 and if there exists a finite limit

lim e-z'tx(t) =g

t >0
then there does not exist an interval <to;tokk> (t0 2 a)
such that the function u(t) = e'ajx(
interval,

t)-g 1is positive on this

Remark 5. As it is known, the decomposition of
she function &

2(s) = 9,(s) - 8,(s)

where 91, 92 are non-decreasing functions, is not unique.
The funotions defined by (20) are the most slowly increasing
among all functions 91, 92. This fact and Remark 2 implies
that a real solution of ths equation (6), with & = 8, de-
fined by (20), is the least number of this kind,

Remark 6, Let x be an (Q,k)~process not ehang-
ing its sign on interval < Oj;+oo). PFrom the estimation (23),
(24) we have

|x(t)] eXt.ﬁ, for % > 0,

-

where p = max e'zq']x(s)l. The above estimation of the
<O;k> .
function x 'on the interval <(0Oj;+o0) is not worse (but fre-
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quently better) than the estimation (10). This follows from
the following facts '
al A ¢A*
b) if @, € Q, then A <a%

Remark 7. If the function £ oan be given by
an integral

t .
a(t) = a + [«lalds, te<os>,
0

where o 1is an integrable'fuhction (in Lebesque’s sense) on
03k and a 1is a constant, then

(llz)| -2(2))az.

) S
Var @(s) = [ lofz)| az, Q,(s) = 3
<038 { 1 2

O© =, 1

5. Limit of (Qlk)-process if t—+oo

It is proved in the paper [2] that if for at least one
{R,k)=-process x there exists a finite and non-zero limit
lim x(t) = g then

t>oo
k

(25) f d(s) = 1.
0

Theorem B8, Suppose that the function Q sa-
tisfies the condition (25) and '

k

(26) f (k-s)dQ(s) £ 0.
0

If x is an {Q,k)-process and there exists a finite limit
1im x(t) = g, then

t+oo

k k
J aa(s) [ x(t)dt
0 8

(27) g

} (k-s)dQ(s)
0
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Proof. Writting the function x 1in the form

x(t) = g+e(t) we have 1im €(t) = O. The funct.on x sa-
t+ o0

tisfies the equation (14) when A = O, This implies

k k K k K
j,dg(s) f x(t)at = g f (k-s)dQ(s) + f ae(s) fe(t+z)dt,~ > 0.
0 8 o) 0 8

Passing in above equality to the limit as t—+ce , we get
(27).

Suppose that the function Q satisfi:s the conditions
(<5), (26). Let g be a number defined by (27). Taking into
acccunt -results obtalned in section 3 we conclude that the
function u(t) = x(t)-g satisfies the equation

k 8
! n(s+t)d [f (Rz) - Q(O))d% =0, t20.
0 0

Since
k

u(t+k) = ! u{s+t)dQ{..), t2 0
0
then for an arbiirary real number § we have

k
t+k) = t)d ,t,
uf{ t+k) g u(s+t) yf(s) 20

where
8

(28) w(s) = a(s) + § | (a(z)-a(0))az.
0

This fact and the Corollary 1b) imply
Theorem 9, Suppose that function & satisfies
the conditions (25), (26). If there exists a number § such
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that k ,f(s) ¢ 1, then for every (Q,k)-process x the~
<0'
re exlsts a finite limit 1im x(t).
t* o

Theor»enm 10, Suppose that the fmnction Q can' be
glven in the form

g
Q(s) = a + I a(t)dt + g(s),
0

where « 1is an integrable (in Lebesque’s sense) function

on <03k> , a 1is a eonstant and ¥ is a functlion of jumps
of the function Q(g{0) = 0). Let the function Q satisfy
the eondition (25). If o is a function positive almost eve-
rywhere on the interval <0O3;k> and @ 1is non-decreasing fun-
ction on the interval <0;k) then there exists a number t
such that <Var wt(s) < 1.

Proof . Writting the function yf(s) in the form

g t
lpf(s) =!) [a(t) + f-gx(z)dzﬂ'a*(t)]dt + y(8) + a

we have

dt + (k).
O3k 7

k t .
" Var vy (s) =f a(t>+§'f «(z)dz +§ +g(t)
0 0

Consider now the function ¢ of real variable § defined
by

k
o(f) = fla;(S)ldS,
0

where a;(s = o + 4§ ? (z)dz + g-g s)e We will show that

this function has the derlvatlve at the point § =0 and
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Certain processes wlth memciy 15

k t
(29) plo) = f dt<] a(z)dz + g(t)}.
0 0
We have
k
(30) ¢(§)E (o) _ f IG (s)-?b(s) .
0

and for svery o € <0;k>

8
|qi(9)|;l°‘ov(ﬂ)l < fa(z)dz +g(s).
0

For almost all s from <{0O;k) (namely for all s such that
a(s) > 0) we have

a(z)dz.

o b =il

From (30) and Lebesque ‘s theorem (on the passing to the limit
under the integrel) it follows that there exists ¢’(0) having
the form (29),

From (29) i follows that ¢'(0) > 0., Hence, we have

k
var g (s) = plf) + (k) <9(0) + glk) = fatt)atepte) =1
<03k) O
for negative, sufficiently near zero numbers f .

Remazrk Ye The suppositions about the function «
from theorem 10 can be weakened., Let R be a can interval
{sum of intervals) on which «(t) = 0. Ve have
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t
alt)+} j'a(z)dz+§°3(t) at +

0

p(§) = /
<03k>-R

w15 f

R

t

f a(z}dz + g(t)
4 | .

dt,.

If we suppose that the function o« is positive almost every-
where on (<0;k> - R), then

t %
¢'(0=) = f at f af(z)dz+p(t)| - f dt f afz)dz+p(t)] .
<03k>-R 0 R 0

This implies the condition ¢’(0-) > 0.

Remark 10, In particular case, if Q is a fun=-
ction of jumps ((Q,k)=-process after reduction to the set of
natural numbers is (& ,k)-computation), then the properties
of (Q,k)~processes presented in this paper are known (cf. [1],

31).
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