

Tadeusz Kreid

APPLICATION OF POLYNOMIALS TO INVESTIGATIONS OF MÖBIUS ALGEBRAS

The main objects of investigations in the branch of combinatorial theory dealing with ordered sets are real-valued functions of one variable x or two variables x, y satisfying $x \leq y$ ranging over an ordered set under consideration. Two-variable functions form the incidence algebra of the set (see [1]). One-variable functions form the Möbius algebra (see [2]) and they are the subject of this article. We propose to introduce a method of investigating such functions by means of polynomials.

Let (P, \leq) be a locally finite partially ordered set with the least element v . To any real-valued function $f: P \rightarrow R$ we assign the following family of polynomials

$$w_p(x) = \sum_{r \leq p} f(r) x^{\varrho(r, p)},$$

where the index p ranges over the set P (we might also add f as a second index), and ϱ denotes the rank function ($\varrho(r, p)$ is the maximal length of a chain from r to p minus 1; we may notice that $w_p \leq \varrho(v, p)$).

To show the possibilities of such an idea we shall present two theorems.

Theorem (the inverse formula for introduced polynomials). Let the ordered set (P, \leq) have the property

$$\varrho(p,q) + \varrho(q,r) = \varrho(p,r)$$

for any $p \leq q \leq r$ and $f: P \rightarrow R$ be a real-valued function on P . For any $p \in P$

$$f(p) = \sum_{r \leq p} \mu(r,p) x^{\varrho(r,p)} W_r(x),$$

where $W_r(x)$ are polynomials defined above for function f .
P r o o f . We denote

$$V_r(x) = x^{\varrho(r)} W_r\left(\frac{1}{x}\right)$$

- another family of polynomials, $\varrho(r) = \varrho(r,r)$. For any $p \in P$ we have

$$V_p(x) = x^{\varrho(p)} \sum_{r \leq p} f(r) \left(\frac{1}{x}\right)^{\varrho(p)-\varrho(r)} = \sum_{r \leq p} f(r) x^{\varrho(r)}$$

for $\varrho(r,p) = \varrho(p) - \varrho(r)$. We apply the Möbius inverse formula and obtain

$$f(p) x^{\varrho(p)} = \sum_{r \leq p} \mu(r,p) V_r(x) = \sum_{r \leq p} \mu(r,p) x^{\varrho(r)} W_r\left(\frac{1}{x}\right).$$

Putting $\frac{1}{x}$ instead of x we get

$$f(p) = \sum_{r \leq p} \mu(r,p) x^{\varrho(p)-\varrho(r)} W_r(x)$$

and use the equality $\varrho(p)-\varrho(r) = \varrho(r,p)$ again.

In the following theorem we shall use the denotation:
for $t, r \in P$

$t \rightarrow r \iff t < r$ and the interval $[t,r]$ is a chain.

Theorem. Let the ordered set (P, \leq) have the properties

$$\varrho(p, q) + \varrho(q, r) = \varrho(p, r)$$

for $p \leq q \leq r$ and

$$|\{t : q \leq t \rightarrow r\}| = \varrho(q, r)$$

for $q \leq r$. For any function $f: P \rightarrow R$ and $p \in P$

$$w'_p(x) = \sum_{r \rightarrow p} x^{\varrho(r, p)-1} w_r(x)$$

(where, denotes the derivative).

Proof. We have

$$\begin{aligned} \sum_{r \rightarrow p} x^{\varrho(r, p)-1} w'_r(x) &= \sum_{r \rightarrow p} x^{\varrho(r, p)-1} \sum_{s \leq r} f(s) x^{\varrho(s, r)} = \\ &= \sum_{s < p} \left(\sum_{s \leq r \rightarrow p} 1 \right) f(s) x^{\varrho(s, r) + \varrho(r, p)-1} = \\ &= \sum_{s < p} \varrho(s, p) f(s) x^{\varrho(s, p)-1} = \left(\sum_{s \leq p} f(s) x^{\varrho(s, p)} \right)' = w'_p(x). \end{aligned}$$

Special cases of this theorem are the following formulas

$$w'_n(x) = \sum_{k=0}^{n-1} x^{n-k-1} w_k(x),$$

where

$$w_n(x) = \sum_{k=0}^n a_k x^{n-k}$$

for $n = 0, 1, 2, \dots$ and

$$w'_A(x) = \sum_{a \in A} w_{A - \{a\}}(x),$$

where

$$w_A(x) = \sum_{B \subseteq A} f(B)x^{|A-B|}$$

for any finite subset A of a set C .

REFERENCES

- [1] G.C. Rota : On the foundations of combinatorial theory I. Theory of Möbius functions, *Z.Wahrscheinlichkeitstheorie* 2 (1964) 340-368.
- [2] G.C. Rota : Finite operator calculus. New York 1975.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF WARSAW

Received February 19, 1981.