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1. Introduction
In this paper we study the generalized differential equa-
tion

%(t) € P(t,x(t)) for almost every t e[0,T]
(1)

x(t,) = x5 t € [o,7],
where PF(t,x) is a compact convex subset of a separable Ba-
nach space. This paper is related to the previous paper (Ref.
[1]) of this author, where the existence of solutions of (1),
with compact, but not necessarily convex, right-hand side,
have been considered. We will consider the equation (1) by
the assumption that F satisfies the Carathéodory conditions
and that therc exists a Kamke function w: [O,T]xR+'—’ R*
such that

(2) x(F(T,b)) cw(t,x(B))

for each bounded set B € X and almost all t e [0,T], where
X(A) denotes the ball measure of noncompactness of a bounded
set A c¢ X. We will prove that the set of all solutions of
{1) is a compact subset of the Banach space Crpe From this
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it will follow that the solution set of (1) is upper semi-
continuous with respect to (to,xo) € M, where M is a com-
pact subset of [0,7] xX. Compactness and upper semiconti-
nuity of the solution set of the generalized differential equa-
tion in a Banach space have been considered by Tolsonogov

(Ref. [2]). But he considered these problems, among others,

by the assumption that for every g£>0 there exists a closed
set B, ¢ [0,7] with Lebesgue measure p [o,T] \E;)z & such
that

éi% X(F(T; 5,B)) < w(t,x(B))

for almost all + € B, and bounded B C X, where Tt’d =
= (t-8,t+8) n [0,T].

The results of this paper generalized some results of
J.L. Davy’s (Ref. [3]).

2. Notations and fundamentals lemmas

Let (x,l-l) be a separable Banach space, B the Lebes-
gue measure on the real line and let Conv(X) denote the me~
tric space of nonempty compact convex subsets of X with the

Hausdorff metric h defined by h(4,B) = max{supcx(x,A),
x€eB

sup «(x,B), where «o(x,C) denotes the distance of x from

xeh

C ¢ Conv(X).

Let Cp * and Ly denote, respectively the Banach space
of all continuous or Bpchner integrable mappings of [O,T]
into X with the usuel norms Il'" and | -|.

By 2a(B) we denote the ball measure of noncompacthness
of a bounded set B C X, defined by (B} = inf {r >0 :B
can be covered by finitely many balls of radius < r}. It is
a measure of noncompactness equivalent to the measure of non-
compsctness introduced by Kuratowski (Ref. [4] and [5]).

The measurability of single-valued and multivalued map-
pings we will mean as strong measurability. The following lem-
ma was proved in the author paper (Ref. [1], Lemma 2.2).
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Lemma 2.1 Let (X,l*} be a separable Banach
space, (xn) an integral bounded sequence of measurable fun-

ctions of [0,7] into X, Then w(t) = 2({x,(t) : n 3 1})
is measurable and

LI ENULEE RN PO
B B

for each measurable set E c[0,T],
We will need the following results presented by J.L.Davy
(Ref, [3], Theorem 2.8) and Tolstonogov (Ref. [6], Lemma 2.2).
Lemma 2,2, Let X be a metric space and Y
a normed linear space., Suppose F : X -» Comp{Y) is upper
semicontinuous at X, € X, where Comp(Y) denotes the space
of nonempty compact subsets of Y. If (xk) is a sequence
of X convergint to Xos then

3

o0
co (M) Flxy) ¢ coF(x,),
k=1

eS8
[}
-

where coA denotes the closed convex hull of A c Y.
Lemma 2.3, Let X be a Banach space and P:[O,T]—’

— Comp(X) measurable multivalued mapping such that

h(r(t),{0}) < m(t) for almost every te [0,T], where

m: [0,T] =R is a Lebesgue integrable function. Then for

every measurable set E c[0,T] we have

[ rterat = § & rioias,
E E

where the integral is meant in Aumann’s sense,

We will now prove the following lemma.

Lemma 2,4, Let (X,l*|) be a Banach space and
suppose that (un) is an integral bounded sequence of mea-
surable mappings from [0,T] dinto X. Then
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—_
'

{ ﬁ Cj n, (t)ds € A @ G [ (t)at
E

i= =1 i=1 k=1 E.

for each measurable set E c[0,T].
Proof, Let M(t)={ult), uﬂth.u}fui.12“n
and teé[0,7]. By the definition of the Aumann integral, we

have f P (t)dt = K,J f uk(t)dt for 1 2 1. In virtue of

Lemma 2 3, we have

f g0 My (t)dt = f ry(t)dt = aa.f Fi(t)dt,
B E E

Hence, we get

-8

M f & My(t)dt

o f My (t)dt,
E

i=1 E, i=1
Since
oo o0
[N @rinae e [ oo,
E i=1 i=1 E
then
o0 o0
[ M @rsae s () @ [ ry(elas
E i=1 i=1  E

which completes the pxnof.
Now, we present the following extension of Aumann’s re-
sult (Ref. [7]).
Lemma 2.5 Let (X,]*]|) be a Banach space and let
(xk) be a sequence of absolutely continuous functions
[0,7] — X such that
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(1) = (t) = x(t) as k-—soo , where x : [o,7] —x,

(i1) %, (t)] ¢m(t) for almost every % ¢ [0,T],

where m : [0,T]—+> R is a Lebesgue measurable function. Then
x 1is absolutely continuous and

oo oo
x(t) e () oo [ % (t)
1=1 k=i

for almost every te [0,T]. oo oo
Proof. Let us observe that [(t) = {"\ co k,J ik(t)

_ i=1 k=1
is measurable and integrally bounded. Then there exists a mea-

surable selector f of [ (Ref.[8] ).In virtue of Lemma 2.4,
for every to’ 4 E[O,T]; to < t, we have

8

] o
s U

t
f f(a)ds e f Ms)ds ¢
t t ' =

0 0 0

ik(s)ds = xlt) = x(to),

bﬁ
]
-
W
He
ot Sy

because xk(t)-—o x(t) a8 k-—+o0o0., Therefors, x 1is abso=-
lutely continuous and x(t) e M(t) for almost every t € [0,T].
This completes the proofe

3. Compactness of solution sat

Let us assume that F i1 [0,T]xX — Conv(X) satisfies the
Carathéodory conditions, i.e, that P(+,x) 1is measurable for
fixed x € X, F(t,*) is continuous for fizxed t € [04,T] and
there exists a Lebesgue integrable function m : [O,T]—» R
such that h(F(t,x),-{O}) <n(t$) for x € X and almost all
te [0,7], Purthermore, suppose that condition (2) is satis-
fied. It can be proved (Ref.[1]), that if (X,]+|) is a sepa-
rable Banach space, then the above conditions imply that for
every (to,xo)e [0,T]xX, there exists at least one solution
of (1). Denote by H(to,xo) the set of all solutions of
(1) corresponding to (tq,x ) € [0,7] *X. Furthermore, for a
given nonempty set M <[0,T|xX, 1let H(M) ={,}{H(to,xo) :
: (tg,x,) € M)
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We shall now prove the following theorem.

Theorem 3.1. Let (X,]*]) be a separable Ba-
nach space and suppose that P : [0,T]xX— Conv(X) satisfies
the Caratheodory conditions. If furthermore, F satisfies the
condition (2), then for every nonempty compact set M C [O,T] xX,
the set H(M) is a compact subset of Crpe

Proof. Let us observe that for each x e H(M)
there is (% 09%,) € M such that x(to) = x, ||x"<|x°| +

} m(t)dt and |x(t)| <m(t) for almost all t ¢ [0,T]. Then
0

H(M) is a bounded and uniformly equlcontinuous subset‘of Crpe
Let (xn) be a sequence of H(M) and let A = : 1}

Since A C H(M), A is a bounded and uniformly equicontinuous
subset of Cp, t00. Let {(to,x )} be a sequence of M such

that xn(tg) = xg. By the compactness of M, there exists a
subsequence of {(tﬁ,xﬁ)}, say again {(tg,xg)} and (to,xo)e:
n n
€ M, such that lto-tol + Ixo-x°|—> 0 as n-+o0, For each
t
n21 and te[0,7] we have x (%) = x2 +f x,(s)ds, Then
o v

0
tO

x({xn(t) :ny 1})gx f %,(s)ds : n > 1 <

n
%o
to t
<X f x (s)de : n > 1p |+ x f x,(s)ds : n> 1y
s . t
LS ]

for te[0,T]. In a similar way, as in the previous paper
of the author (Ref. [1:| ), we can show that |t -t |—> 0,
d |x, (t)| < m(t) for almost all t [0,T], imply that

t

0

X(f )'cn(s)ds t:ny 14| +»0 as n —» oo, Therefore, we have
n

+

\! "o
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x(a(t)) $g w(s, x(A{s))ds, Then A 1is a compact subset of

Cpe Suppose that (xk) is a subsequence of (xn) such that
“xk-x“-»o a8 k-»o00, where x ¢ Ch. In virtue of Lem-
ma 2.5, uxk-x“-o,.o and |ik(t)| ¢m(t) for almost every

te [0,T]°,° imply that x 1is absolutely continuous and

x(t) € Q o = % (t) for almost every te[0,T]. Hence
and Lemma 2.2, it follows that. x(t) € F(t,x(t)) for almost
all te [0,7]. Since, "xk-xll——(), tl;-tol + xl;-u:o -0 as

k—e o0 and xk(to) =x, for k= 1,2,,.. imply that x(to) =

=x then =x ¢ H(M) and the proof is complete.

0’
4, Upper semicontinuity of the solution set

As a Corollary of Theorem 3.1, it follows that for every
compaoct set MC [0,T]xX, the mepping H : M—» Comp(CT) is
upper semicontinuous, Let Sr(z) be an open ball of Cp,
centered at z € CT and with the radius r > 0. Furthermors,
for AcCyp and >0 let & =\ 5(x).

Theorem 4als Let (Xﬁfl) be a separable Ba-
nach spaée and suppose that the assumptions of Theorem 3.1
are satisfied« Then for every nonempty compact set M c [0,T]*X
the multivalued mapping H : M 3 (to,.xo) — H(to,xo) e'Comp(CT)
is upper semicontinuous,

Proof . Let M be a given nonempty compact subset
of - [0,T]xX and (t,0%x,) € My Assume that H is not upper
semicontinuous at (to,xo). Then there exists €,> 0 such

5 fo
that for all > 04 H(Ss(to,xo)nn) ¢ H (to,xo)-. Choose
Xy € H(S-;E(to,xo) n M) and Xy ¢ H °(t°,x°). Since x, ¢ H(M)

for k= 1,2,ee» and H(M) is a compact subset of Cr»s
there exists a subsequence of (xk), say again (xk), and
x € H(M) such that “ xkl-xl -+ 0 as k —oco. Furthermore,

:
there is a sequenee {(to,xo)} of Sl(to,xo) n M such that
k
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K ang |tg-t°| + =

it is easy to see that =x(t )

xk(tg) = X -xol -+ 0 as k-—+o0 , Hence

o x,. Thus, x e H(to,xo). On

the other hand, x, ¢ Heo(to,xo) for each k 2 1. There-
fore, x ¢ H(to,xo). From this contradiction we conclude that
H is upper semicontinuous on M. This complefes the proof.

Remark 1. We can take in the above theoréms, F
such that P(t,*) is upper semicontinuous for fixed 1t € [0,T],
instead of continuous.
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