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SOME CATEGORICAL PROPERTIES OF CONVEX PROCESSES

R.T., Rockafellar gave a definition of & convex process
and studied this subject from mathematical and economic points
of view [9], BO], [11], Some categorical properties of poly-
hedral convex processes are given in [13]. The purpose of
this paper is to study the necessity of the assumption about
polyhedrality of the convex processes, when we study them
as a category.

We consider finite dimensional, real, linear spaces X,Y
and their adjoint spaces X*,Y*. A convex cone in the spa-
‘ce X isaset G S X such that G + G €G and tG ¢ G
for any number t 2 0 h(ﬂ. For any set A € X by con A
we denote a convex cone spanned over 4, e,.l:

n
X = :E: a;8y, &y € 4, n 2 1, oy 2 O].

con A = [x
1=1

& cone G 1s said to be a polyhedral convex cone if there
exists a finite set A € X such that G = con A.

4 multivalued mapping T : X —» Y 1is said to be a con~
vex (polyhedral convex) process if its graph:

G(T) = {(x,y)l y € T(x)} € XxY
is a convex (polyhedral convex) cone [10], [11].
Note that every linear transformation is a polyhedral

convex processs
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If G(T) is a closed convex cone, then we say that T
is a closed convex process, Let us note that a polyhedral
convex process 1s always a closed convex process.

In [13] we have introduced the category P whose the
objects are finite dimensional real, linear spaces and the
morphisms are polyhedral convex processes, defining the com~-
position ST : X — Z of polyhedral convex processes
T:X-—=>Y, S:Y-+2 by

ST(x) = s(T(x)) = U 5(y).
yeT(x)

In the same way we obtain ths category € with convex
processes as the morphisms,

Denoting by o the category of linear transformations
we then have

L g PsgcC.

First, let us observe that the class € of all closed
convex processes,with ordinary composition of multifunctions,
is not a category.

Example 1e Let G be closed convex cone in
the space R> defined as follows

G = {t(x1,x2,1) t >0, x? + xg s2x1} .

It is easy to see that for every linear transformation
f : X —+-R, convex process T : X —*—RB defined as

T(x) = f{(x) + G for xeX

is a closed convex process.
Let ar: R3-—#'R2 be a projection on the aspace Rz, Cele

w(x1,x2,x3) = (x1,x2) for (x1,x2,x3) € R2,
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then the composition #T : X——>R2 of these closed convex
procegses is not closed, because the set

({0} xR?) nalsm) = a7(0) = m(6) = {(x,,x,)]x, > 0} v {(0,0)}

is not closed.

We also do, not obtain good results, if we change the de-
finition of composition in the class t s, such that in the
cases of the cdategories o and P it is ordinary composi-
tion,

Ex_ampl‘e 24 For T1:x~>Y, T2:Y—#Z,
I;,Tze € we define composition T2*T1 : X—Z as follows

G(T,% Ty) = 6(2,1,),

where A denotes the closure of 4 in the usual topology
of a linear space. Of course composition T2* T1 is closed
convex process and in the case when both processes T2,T1
are polyhedral then Tz* T1 = T2T1. Unfortunately the class
C with such defined composition does not form a category,
because the associative law of composition of morphisms is
not fulfilled.

Indeed, 12t G € R’ and ar: R> —» R2 be such as in

Example 1. We consider closed convex processes

T
{o}—= &3 AT ILIPY

such that T{0) = G and

(y’y’y) + G, x=0
@, x £ 0.

S(X,'.Y) =

Then

(=1,-1,-1) € (S*(w%T))(0) = 1in(1,1,1) + G,

but (-1,-1,-1) ¢ ((S»#m) % T)(0) = G. This means that
S*({T»T) # (Swuar) =T,
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Let us observe that the second way of composition in the
class €, namely for T, + X —=Y; T, : X—>Y the compo-
sition T2° T1 :t X—» 2 defined as

(e = \UJ 09,
yeT1(x)

is a convex process, but lsads out of the class 3 o More-
over, this composition is not associative which is easy to
see if we compose the same processes from Example 2. i

Example 3, .Nowwe show that the composition
T2° ‘].‘1 leads out of the class C.

Let G € R3 be such as in Example 1. Let us consider two
closed convex processes

R® —= R —= R
defined as follows

o(r) = 6, 6(s) = {(x,3)]x> 0, 73 o}

Then
G(SeT) = {(x,y,z) € R3|x> 0, 232 0} v {(x,y,z)e R3|x=y=0, z;Q}

is not a closed cons, in spite of this, that one of these
processes, * S, 1s polyhedral.

For every cone G € X we can define a polar cone G°
in x* as

¢° = {q € X*l g(x) €0 for all =x € G}.

The polar cone G¢° is always closed, if G is a closed;
if G 1is a closed convex conhe, then G%° - ¢ [10]; if G is
a polyhedral convex cone, then G¢° is also polyhedral [10],

[11].
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Forevery T : X—+ Y of class C we define two ad-
joint convex processes T~ : Y* —» x*, p* . Y* » 1* as fol-
lows

o(2*) = {(p,a)| (-3,p) € 6(1)°}

and

e(7% {(p,q) | (q,-p) ¢ G(T)°}-

Let us note that for fed the adjoint of £ as a con-
vex process is the adjoint linear transformation in the usual
sense and f£¥ = f*.

It is easy to see that .T¥%, 1#eC for all Tet , and
for closed Te€ we have (T¥)* =T and (T")* =T, We
have also the following theorem.

Theorem 1 [11]. Let T,,7,eP, then

1

(20" = T2y, (0¥ - ood

By Theorem 1,we obtain immediately the following one
which is similar to that in the category .

Theorem 2, The above mentioned adjoint opera-
tions are contravariant functors [8] from the category ?
into itself,

Bxactly:

a) The mapping ?1
every space X, '5‘1('1‘)
variant functor.

b) The mapping %, : P+ P such that %,(X) = x* for
every space X, 3‘2(T)
riant functor. Moreover 3‘1 o ?2 =5, 'a‘f1 = idg.

Now we show that the adjoint operations are not functors

?+ 9% such that ?1(}() = x* for
¥ for every T e¢®P is a contra-

¥ for every Te€® is a contrava-

in the category C.
Example 4, Iet T :R —»R°, S :R°—= R be
convex processes defined as follows
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T(x) = (x,0) + {{(;‘y,z)l y <0 < 2} v {-(04,0)}} for x €R

and
y for y<0, 250
S(y,z) =
- ¢ in the other cases.
Then
G(sT) = {(x,x) eR2|x SO},
hence

a((st)¥) = {(p,a)| -q + p > 0}.
Let T1 : 'R —*-Rz, T1e $ , be such that G(T1) = G(T).
Then G(T,)° = G(T)°, thus 177 = 7%
Since both processes S and '.I‘.l are polyhedral we ob-
tain that

* *
(ST1) = T1S .

If  (s1)* = 7¥s*, then (s7)* = T¥s* = 778% = (s7,)*

and

st = (s)¥¥ . (ST1)*#= sT,, because ST,ST, €T,

17
but

G(ST1) = {(x,y) e R | y €0, ¥ sx]’.
This contradiction proves that in spite of this we have

Se?P, G(T) is polyhedral convex cone, both ST and T¥g¥*
are closed convex processes, but (ST)* # T*s¥*,
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In Example 4 one of these processes are not closed. Now
we show that (ST)* is not necessarily equal to ™ s* even
if we assume that both S and T are closed.

Example 5 Let T: X—R> and sr: R> — R?
be processes defined in Example 1.

We denote T1 = :lT"f T2 = T#. Then we have

(2,2,)% 2 1913 = («¥®)*(2¥* = ar,
since mTe€ .

Let ¥ be an arbitrary category. We shall say that mor-
phism T ¢ X is a monomorphism (epimorphism) in the catego-
ry ¥ if for any morphisms S,,S, ¢ ¥ such that TS, = T8
(5,7 = 8,7) implies S, = S, [8].

Applying Theorem 2 we have in the category P +the follow-
ing analogous result to that in the category o .

Theorem 3 [13]. Let T e®. Then the following
conditions are equivalent
(i) T is a monomorphism
(ii) ™ is an e pimorphism
(1ii) T is an epimorphism.

Theorem 3 is not true in the category C .
Example 6 Let C ¢ R2 be a convex cone defined

2’

as
C = {(y,z)l ¥y <0 < z} v {(0,0)} -

It is easy to see that a convex process T : R — R? such
thet

T(x) = (x,0) + C for x eR

is a monomorphism in the category €, but T* : R —s R
defined by
p for p, <0 <p
T*(P11P2) = 1 2 ”
¢ in the other cases
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is not sn epimorhpism even in the category P s Dbecause for
81,82 t R—» R defined as follows

6(5y) = {{x,3)] 32 0},
6(s,) = {tx,3) 133 0, x5 2 0}

we have S,T% = ST

Polyhedral convex processes ere continuous in the sense
of the classical definition of a convergence of sets in a to=-
pological space [7].

Let An’ n=1,2,.++, be subsets of a space X. We shall say
that 1lim An = Ao ¢ X if 1i An = Ao = Ls An, where xeLi A
if any neighbourhood of x has common points with sets An
for almost every n, and x € Ls An if any neighbourhood
of x has commoh points with an infinite number of sets A

This continuity of convex processes, which fulfill the
condition T(0) = 0, were studied in [6].

The other types of continuity of multifunction were inve-
stigated by different authors e.g. Berge [1], Dolecki, Role~
wicz [4', 5y 12]. Basgic relations between different types of
semicontinuity may be found in [2, 3].

For the category P we have an analogous theorem to that
in the category d .

Theorem 4 [13]. Let Te¢e®, T :X-—-»1Y,

T(xn) #¢,n=0,1,2y000, and lim x, = Xx,o Then 1lim T(xn) =
= T(xo).

Theorem 4 is not true in the category €, even if we
assume that TeT .

Example Te Let G G R3 be such closed convex
cone as in Example 1. We define T : R2-- R as a convex pro-
cess with a graph G(T) = G. Then

n

n.

2 2
T(x,y) = {zlz; H;L} for x > 0,
7(0,0) = {z]z > o},
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thus

[+]
(2]

[3]
[+]

[e]
(o]
[re]
[11]

lim T(Jﬁ, %) lim{zlz 2 %(1 + %)}: {zlz;%} £ T(0,0).
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