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THE GROUP AND THE EDGE-GROUPS OF A MULTIGRAPH

1., Introduction, definitiions

In [2] and [5] the authors have proved that for a non-
empty finite graph the group and the induced edge-group are
isomorphic if and only if the graph contains neither K2 as
a component nor two or more isolated vertices.. From Whitney’s
results [6] it follows that for a nonempty finite graph the
induced edge-group and the edge-group are isomorphic if and
only if not both 'K3 and K1,3 areicomponents of a graph
and none of the graphs K4, K4-x, and K1,-+x (x is an edge)
is a component of a graph., In [4] the author has shoved that,
with four exceptions (K2, K4, K,-x, K1’3+x), the group and
the edge-group of a connected graph are isomorphic,

In this paper we shall study the connection between the
group and the edge-groups of a multigraph,

By a multigraphs'G we mean an ordered triple (V(G),X(G),
F(G)) where V(G) is a nonempty set (it may be an infinite
set) ocalled & vertex-set, X(G). 18 an arbitrary set called an
edge-set, and F(G): X(G) — V(G)-V(G) is a mapping from X{(G)
to the set of unordered pairs of V(G)., The mapping F(G)
is called an incidence mapping. If x € X(G) and PF(G)(x) =
= (u,u), x 18 called a loop; if x,y € X{(G) and
F(G)(x) = F(¢)(y), them x and y are called multiple ed-
ges. Por v € V(G), let Sgiv) = {x e X(G):F(G)(x) = (v,v’)
for some v'e V(G)}. Sg(v) is called the cluster at v and
C is a cluster if C = SG(v) for some v € V(G)s, C is cal-
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2 J.Cola

led a star, or star with center v, if C € Sgz(v). & vertex
v € V(G) is a terminal vertex of G if there exists a ver-
tex v’#v such that ¢ # S5(v) € Sp(v’)e If S4(v) = §,
then v 1is called an isolated vertex of G. If every ver-
tex of G is isolated, then G 1is called an empty multi-
graph, The empty multigraph with |V(G)] = 1 is a trivial

multigraph, The union (U Gi of multigraphs Gi' ielI,

iel
where V(G ) n V(Gj) = ¢ for 1 # J, is defined as the multi-
ieI iel iel

and F(KJ_ IG )(x) = F(Gi)(x) for each x ¢ X(Gi) and i e I.
1€

G is a connected multigraph if it cannot be expressed as the
union of two multigraphs; otherwise it is disconnected. Any

disconnected multigraph G can be expressed as the union of
connected multigraphs; each of these connected multigraphs

is called a component of G. 4 multigraph which has neither
loops nor multiple edges is a graph« Another terms and deno-
tions used and not defined in this paper can be found in ﬁ].

2. The isomorphism and the edge-isomorphisms of multi-
graphs

Let G and H be two multigraphs. An isomorphism ¢
of G onto H is a one-to-one mapping of V{(G) .onto V(H)
with the property that for each pair of (not necessarily dis-
tinct) vertices v,v/e V(G), |F(G)'1(v v’)l |F(H)'1(?(v),
y(v’))|. An edge-isomorphism y of G onto H is a one-
-to~one mapping of X(G) onto X(H) such that for each pair
x,x'¢e X(¢), x,x’¢ SG(v) for some v ¢ V(G) if and only if
pi(x), pl(x’) € SH(V’) for some v’e V(H). 4n edge-isomorphism.
v is induced by an isomorphism ¢ if for each x e X(G) we
have, F(G)(x) = (v,v’) if and only if F(H)(y(x)) =
= (¢(v),p(v?)).

We now shall consider simple relationships between the
isomorphisms and the induced edge-isomorphisms of multigraphs.

Theorem 2.1. 4n edge-isomorphism y of G onto
H is induced by an isomorphism ¢ if and only if for every
x ¢ X(G),
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The grcup of a multigraph 3

e(F(G){(x)) = F(H)(y(x)).

Proof., First, let ¢ be an edge-isomgrphism of G
onto H induced by ¢ and let PF(G)(x) = (u,v). Then
P(H)(p(x)) = (plu),p(v)) = ¢lu,v) = o(P(G)(x)).

¥ow let ¢(F(G)(x)) = MH)(yp(x)). I F(G)}(x) = (u,v),
then (p(u),9(v)) = ¢(u,v) = ¢(F(G)(x)) = F(H)(y(x)).- On
the other hand, if F(H)(y(x)) = {¢(u),p(v)), then (u,v) =
= ¢ lp(u,v) = o7 (p(u),0(v)) = ¢ (F(H)(y(x})) =
= ¢ N e(P(G)(x))) = P(G)(x).

Theorem 2.2, If an edge-isomorphism y, of G
onto H 1is induced by 1 and an edge-isomorphism ¥ of
H onto S ig induced by P then ?2w1 is an edge-iso~-
‘merphism of G onto S 1nduced by Pofye .

Prootf. It is clear that Yo¥, is an edge-isomor-
phism of G onto .S. Let P(G)(x) = (u,v). Since y, 1is
induced by ¢, F(H)(y1(x)) = (¢1(u),¢1(v)) and since y,
is induced by ¢,, F(S)(¢2w1(x)) = (¢2?1(u),??¢1(v)). There~
fore ' yoy, ;s induced by ¢,¢,e

. Theorem 2.3 If an edge-isomorphism ¢ of G
onto H 1is induced by ¢, theq m'1 is an edge-isomorphism
of H onto G induced by ¢~'.

Proof. Evidently, ?'1 is an edge-isomorphism of
H onto G. Let ¢ be an edge~isomorphism of G onto H
induced by ¢ . Then, by Theorem 2.1, for every x e X(G),
9-1(F(H)(v(x))) = P(G)(x) = F(G) (¢~ T¢(x)). Since for each
y € X(H) there exists x € X(G) such that y = y(x), the-
refore, for every y e X(H), ¢'1(F(H)(y)) = P(e) (¢~ (),
whence, by Theorem 2.1, y'1 is induced by y'1.

The edge~isomorphisms not induced by any isomorphism was
described by Hemminger in [3]. For the purpose of presenting
these results we need a few additional definitions,

A multigraph G’ is a multiversion of G if G is a sub-
multigraph of G’, with the same vertex-set as G’, such
that there is a partition {M(x): X € X(G)} of X(G') with
M(x) a set of multiple edges containing =x for each
x € X(G).
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4 J.Gela

Let y be a one-to~one mapping of X(G) onto X(H) end
let y preserves multiple edges A pair of mulsigraphs, G*
and H', 1is a y-multiversion.of the pair G and H if G
and H' are multiversions of G and H with partitions
{M(x)x x eX(G)} and {N(y) y € Z(H)} respeotively, such
that there is a one-to-one and onto mapping ' : X(G') —»

— X(H’') ‘with y'(M(x)) = N(y(x)) <for each x.e X(G).

Weo say that G, is a terminal piece of G based at n
if G =G, v G, with V(G,) n V(G,) = {u}.

Now we shall desoribe three pairs of multigraphse G and
H for which there exists an edge-isomorphism y not induoced
by any isomorphism,

(1) G and H are multigraphs with the property that
their edge-sets are clusters or triangles {(with multiple ed-
ges) and y 1is arbitrary except that y or y~| does npt
preserve stars, loops, or multiple edgss. _

(2) The pair, G and H, is a 6-multiversion of the
pair of graphs K4 and K4 or K4-x and K4-x (x is an edge).
where 6 is an edge-isomorphism not induced by any isomor-
phism in either cases. .

(3) Let the pair, G’ and H', be 6~multiversion (with
partitions {M(x)} and {N(x)} respectively) of the pair
of graphs K1 3+Xg and K, ,3%%0 where 6 is an edge-iso~
morphism not 1nduced by any iaomorphism. Let V(K1 +X, ) =
{ O,v1,v2,v3} X(K ’3+x0) = {xo,x1,x2,x3}, F(K +x0)(xo) =
(v1,v2) F(K +xb)(xi) = (vo,vi), i=1,2,3, and 6(x3) = xj,
j = 0,1,2,3. Then M(x ) is a terminal star (with center
vy) of G’ based at vo. Similarly let the star N(_x(’,) of .
H' be based at vo. Now the pair G and H we obtain from
the G’ and H' respectively by replacing M(x ) and N(xo
by terminal stars A based at vo and B based at vo
with IAI = lM(x3)l and I I = 'N(xo)l. Let y be any one~
-to-one mapping from X{G) onto X{H) with the property that
p(4) = N(x3), w(M(xy) v U(x,)) = N(xj) v N{x,), and w(M(xy)) =
= Bo Then ¢ 1is an edge-isomorphism of G onto H that is
not induced by any isomorphism,
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The group of a multigraph 5

Theorem 2.4 (Hemminger 1971). Let ¢ be an
odge-isomorphism of G onto H, G and H oonnected multi-
graphs, where ¢ 1is not induced by an isomorphism and where
G and H are not as in (1), (2), or (3) above, Then G has
a terminal plece G1 based at u and H has a terminal
piece H, based at v such that w(x(G1)) = X(H1),
¢(SG(u)) = SH(v), p restricted vo G1 is not induced by
an isomorphism, and where G1 and H1 are one of the fol-
lowing: (a) terminal stars with center u or v, (b) termi-
nal triangles, or (o) a terminal triangle and a terminal clu-
ster with center w # u,v.

3. The group and the induced edge-group of a multigraph
An isomorphism of G onto itself is called an  automorphism
of G. The set of all automorphisms of G i3 & group (G)
called a grcap of G. An edge-isomorphism of G onto itself
is called an edge-automorphism of G. The sst of all edge-
-automorphisms of G is a group I‘(G) and from Theorems 2.2
and 2,3 it follows that the sst of edge-automorhpisms induced by
all automorphisms of G is its subgroup "(G). The first
group is ocalled an edge-group of G an the second one is
called an induced edge-group of G. For the study of a re-
lationship between the induced edge-group and the group of
a given multigraph we shall define additional two groups. Na-
mely, let us denote by P1(G) the set of all automorphisms
of G which induce the identity mapping on X(G), and let
P:(G) be the sst of all edge-automorhpisms of G induced
by the identity mapping on V(G). It is clear that [,(G)
is a subgroup of M(G) and P:(G) is a subgroup of [*{c).
Theorem 3.1, Let ¢ be an edge~automorphism
of G induced by ¢ . Then ye Mj(G) if and only if
ge r'.'(G).
Proof. Let ye P:(G). Then w'1el“1(G) and so
w-1 1s induced by the identity mapping on V(G). Let ¢ be
any automorphism that induces y . Then, by Theorem 2,2,
v'1q z idx(G) is induced by idV(G)‘?= ¢ and therefore
¢ € P1(G).
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6 JoGela

Conversely, let ¢ el“1(G). Then ¢'1 € P1(G) and 80 ?-1
induces the identity mapping on X(G). Let y be any edge-
-automorphism induced by ¢.. Then, by Theorem 2.2, ?'1¢==
= idy(q) 1induces idyqyy=y. Thus yeT3(G).

' Theorem 3.2, An automorphism ¢ 1is an element
of r"1(G) if and only if ¢ fixes

(1) sach nonterminal vertex of G  which is not an iso-
lated vertex, and

(2’ every terminal vertex that is a vertex of a component
having also at least ome nonterminal vertex, and '

(3) each set of vertices of a component having only fer-.
minal vertices.

Proof., Let ?E'F1(G). Since the identity mapping
on V(G) fixes each vertex of G, we may assume that ¢ #

# idy(g)e Let u be such vertex of G for which ¢ (u) =
= v # u- and leét us consider two cases.

Case Te Assume that there exists x € X(G) such
that F(G)(x) = (u,v). In this case both u ‘and v are:
either nonterminai nonisolated vertices or terminal ones,

If u and v are nonterminal and nonisolated vertices, then
there exists (loop or non-loop) y € X(G) such that F(G)(y) =
= {u,w), where w # v, But then for each edge-automorphism
y of G induced by ¢ ,w(y) # y. Thus y is not the iden-
tity mapping on X(G) and so ?¢.P1(G)“ a contradiction with
the assumption, Therefore, in this case, for each nonterminal
vertex 'u of G, ¢{(u) = u, Now if u and v are termi-
nal vertices, then they are vertices of some component having
as a vertex-set {u,v}. If ¢ (v) =w # u, then for each
edge~-automorphism ¢ induced by ¢ , y(x) # x. Hence q¢F?(G)
and we obtain again a contradiction. Therefore ¢{v) = u,
whence ¢ ({u,v}) = {u,v}.

Casge 2. Assume that for every x € X(G), F(G)(x) #
# (u,v). Purthermore, let u be a nonisolated vertex of G.
Then there exists a vertex w # v such that PF(G)(x) = (u,w).
But, in this case, for each sdge-automorphism y of G in-
duced by ¢, y(x) # x. Similarly as in the Case 1 we obtain

a contradiction and thersfore ¢(u) = u.
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The group of a multigraph 7

Conversely, let us assume that an automorphism ¢ of G
fixes each vertex described in (1), (2), and each set describ-
ed in (3) of our theorem. Then obviously the identity mapping
on X{G) 4is induced by ¢, i, 8. @€ r (G).

Let us denote by fl Il" the direct product of groups My
ie
for i€ I, i.e. the group of all mappings f: -U r
I1i

such that for each 1€ I, f(i)e ri with (fg)(i) =
= f£(i)g(i).

For a multigraph G we consider the set 4 € V(G) such
that u € A 1if and only if u 1is either an isolated vertex
of G or u is a vertex of a component of G having only
terminal vertices, Let <~ be the equivalence relation on A
defined by u ~v 1if and only if either both u and v
are isolated vertices or belong to the same component. Then,
if we introduce the notation 4/~ = {Aiz ieI} we obtain the
following

Theorem 3.3, l’1(G) =N S(4;) where 5(44)

ieI

is. a group of all one-to~one mappings of Ai onto itself for
1eld. B »

Proof. This isomorphism of groups follows from
the preceding theorem. Namely, let us consider a mapping

¢: ", (G) — M _ S(4;) such that for ¢ e[',(G), ¢(p) =
1 1eI 1 1
where f(i}) e S(Ai) for each 1 € I and furthermore

£(i){u) = 7('11) for each u € 4; and for each i e I. Since
for every u e V{G)\U . A; ¢ fixes u, ¢ is well de~-
ie

fined. From the definition of '®- it is obvious that ¢ 1is
one~-to-one and ontos We show that ¢ 1is a homomorphism., ILet
us take ¢,, ¢, € ,(G) and let () = 24, O (g5) = 25,
and ®(¢,¢,) = f. Then for each u € 4 and for each i ¢ I,
£(1)(u) = oy (a) = g,2,(1)(u) = 2 (L), (1)(u) = £,24(1)(n)e
Hence f = f,f, and therefore 0(9?2?1) =f = f2f1 = O(<p2)¢(¢1).
For a multigraph G; let ~* be the equivalence relation
on X(G) defined by x ~*3 4if and only if x and y are
multiple edgess If we shall denote by {Bi: ie I} the set
X(Gg)/~", we obtain the
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8 _ J.Gela

Theorem 3.4, F‘:(G) ~ S(BJ) where S(Bj)

jed
is a group of 8ll one~to~one mappings of Bj onto itself
for j € Je

Proof. Let us consider a mapping ¢

—= N__S(B;) such that for ye rite), oly)
€
£(3) EJ S(Bj) for each j € J and £(j)(x) = yw(x) for each

J €d and for sach x ¢ Bj. Similarly as in the previous
theorem it is easy to observe that ¢ ias one-to~one, onto,
and ¢ is operstion-preserving.

Remark. The sets Ai for 1€ I and the sets

{u} for ue V(G)\Ui A; are orbits of ,(G). Similar-
€I
1y the sets By for J € J are orbits of ry(cel.

Theorem 3.5  The group r‘1(G) is a normal sub-
group of [I'(G).

Proof. TIet ¢'e¢l(G) and ¢el(G). Then ¢'in-
duces the identity mapping on X(G). If furthermore ¢ in-
duces y, then, by Theorems 2.2 and 2.3, (p'1 ¢' ¢ induces

~1 s 3 -1 .
Theorem 3.6 The group P;‘(G)- is a normal sub~
e
group of ' (G)u

Proofs. Let q)'eP:(G) and yel™(G). Then y' is
induced by the identity mapping on V(G). If y 1is induced
by ¢, then, by Theorems 2.2, 2.3, ‘P-1 y'y is induced by

-1 -1, .
¢ idV(G)(’z idV(G)“v Thus ¢ 'y qper'1(G).
Theorem 347 For a nonempty multigraph G,

ritc) —
f wherse

r*e)/rile) = r(e)/ry(e).

Proof, Let us define a mapping ¢ : r"(d)/r';(c) —-
- r(e)/ry(6) by ¢(ri(e)) =¢r,(G) where peM™(G) and g
is induced by ¢el (G). First, we shall show that ¢ is
well defined. For that purposs, let vy I;':(G) = tp'F:(G),
whence q;—1 p'e F‘:(G). Now we choose, arbitrarily ¢ and ¢’
such that ¢ induces y and ¢’ induces y’, Then by
Theorems 2.2 and 2,3, «p'1 ¢’ induces y~'y's Since
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ply'e P:(G), Theorem 3.1 implies that ¢"1 ¢'e M (G). But
then ¢f‘1(G) = ?’P1(G) and ¢ is well defined. Analogously
we use Theorems 2.2, 2.3 and 3.1 to show that ¢ is one-
~to-one, It remains to verify that ¢ is a homomorphism. Let
y and y’ be any edge-automorphism induced by ¢ and ¢',
respectively. Then, by Theorem 2.3, ¢'yp is an edge-anto-
morphism induced by ¢’ ¢ and Q(ql'P:(G)tpr':(G)) = ¢(tp'qr‘:'_G))
= ¢'¢'T1(G) = ¢' Ty (GlpM(G) = &(y/PY(G))6(prY(G)). This com-
pletes the proof.

Theoren 3.8 If a nontrivial multigraph G
hus at most one isolated vertex and any component of G, dif-
ferent from the isolated vertex, has at least one nonterminal
vertex, then

F(e) = r(e)/rie).

Proof. If G satisfies the hypotheses of the
theorem, then, by Theorem 3.2, any ¢ € F1(G) fixes every
vertex of G. Thus I',(G) = {id and, by Theorem 3.7,

M . 1 v(G)
re) = r%e)/rie).

Corollary 31 For a nontrivial connected
mltigraph G,

r(e) = r*e)/ri(e)
if and only 1f G has at least one nonterminal vertex.

Proof. It suffices to show that if a nontrivial
connected multigraph G has only terminal verticeé, then
P(G)'*'P*(G)/PT(G). But under this assumption V(G) = {u,v},
X(G) is an arbitrary set, and F(G)(x) = (u,v) for each
x € X(G). For such multigraph G, P(6) = 5,, ri(e) = rYe)
and, therefore, F‘*(G)/F'?(G) = 8,
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Corollary 3e2e Let G be a nontrivial multi-
graph and IP(G)|< oo , Then

r(e) = r¥e)/rie)

if and only if G has at most one isolated vertex and each
component of G, different from the isolated vertex, has
at least one nonterminal vertex.

Proof. If g nontrivial multigraph G has more
than one isolated vertex or there exists a component of G
which has only terminal vertices, then, by Theorem 3.3,
r,(6) # {1dy(g)}. Since [(6)] < oo, by Theorem 3.7,

r(e) # P”(G)/P:(G)b (The converse arises from Theorem 3.8)..

Theorem 3.9 If a nonempty multigraph G has
no distinct multiple edges (single loops are allowed), then

r(6) = (6)/r,(c).

Proof. By Theorem 3.4, for a multigraph G without
distinct multiple edges, P1(G) = {idX(G)}‘ The result now
follows immediately from Theorem 3.7.

Corollaczry 3.3; Let G be & nonempty multi-~
graph with |M*(G)] < oo . Then

M™(c) = r(e)/r,(e)

if and only if G has no distinct multiple edges.
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The group of a multigraph 11

Proof., This result follows immediately from Theo-
rems 3.7, 3.9, and from the fact that if G has distinct
multiple edges, then F:(G) # {idX(G)}‘

Combining Theorems 3.8 and 3.9 we obtain the following
Theorem 3,10, If a nontrivial multigraph G
without distinct multiple edges has at most one isolated ver-
tex and each component of G, different from the isolated

vertex, has 8t least one nonterminal vertex, then

P('G) =2 P*(G)o

Corollarry 3.4, If a nontrivial connected mul-
tigraph G has no distinct multiple edges, then

r(e) = r*e)

if and only if G # K, (complete graph with two vertices).
By Q we denote the multigraph with V(Q) = {u,v},
x(Q) = {x,y}, and F(Q)(x) = F(Q)(y) = (u,v).
Corollary 3.5 Let G # K, be a nontrivial
connscted multigraph with |M*(G)|< oo . Then

r(e) = )

if and only if either G has no distinct multiple edges or
G is isomorphic to Q.

4., The induced edge-group and the edge~group of a multi-
graph

In this section we shall use Hemminger®’s theorem to de-
scribe of multigraphs for which the induced edge~-group and
the group are not identioal.

In Fig.4.1 we have the following multigraphs:

Gy, 1=1,2,4,5 are multiversions of multigraphs (with
additional conditions) whose edges being represented by solid
lines. G3 was obtained from a multiversion of the multi-
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grapi whose edges being represented by solid lines by repla-
cing a star with distinot multiple edges by a star with single
edges. Gy, 1=6,7 are arbitrary, multigraphs with terminal stars
with center v, based at V43 e?ch of these stars is a mul-
tiversion of the star whose edges being represented by solid
]_,ines.'G8 is an arbitrary multigraph with a terminal triangle;
this triangle is a multiversion of the triangle-whose sdges
being represented by solid lines. The last multigraph, G9,
is an arbitrary multigraph which has terminal pieces Hi’ i.eIt,
te®, |I] > 2, |?| > 1, based at uy, u; # uy for i £
with IX(Hil[ = ]E(HJ)I for each 1,j € I, where H; is
either one of A1,A2,A3 or B1 and one of Ba’BB’B¢= more-
over there exisf{s an automorppism ¢ of H such that
o{oy: 1 € 1P = {u;: 1 € I,} for each teT and there
exist te T and i,j e I, 1 # j such that Hy # H._j but
plug) = uye

The oren 4,1 Let G be a nontrivial connected
maltigraphe If G # Gy, 1 = 1,.44,9 (of Fig.4s1), then

m™a) = rla).

Proof . Suppose ™(G) =2 r'(G), Since M*G) is
a subgroup of [’(G), there exists an edge-automorphism y
not induced by any automorphism. THen, by Theorem 2.4, G has
at least ons of the following properties:

{1) The, edge-set of G is a cluster oria triangle and "
or w'1 does not preserve stars, loops, or multiple edges.
Thus G must be isomorphic to Ggy G7, or Ge; H in Fig.4.1
is the trivial or, in the case of multigraphs Gy and G7,
the edge-set of H may be a star with center Ve

(2) The pair G and G is a 6-multiversion of the pair
K, and K4 or K4-x and K,-x where: 6 is an edge-iso-
morphism not induced by any isomorphism., Hence G must be
isomorphic to G4 or GS’

(3) The edge-set of G consists of a terminal triangle
with vertices, say Vs Yoy V4 and a terminal star 4 with
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The group of a multigraph _ 13

|P(6) 7 (vpuvq)] = IF(G1)—1(V1'V4P| 2-1,
|Pe) M vyuvp) | = | Pe vy vg) ] = 1

[rle) " vy, vi) | = IRy Nvv) ] 2 1,
170607 vy v ) | = [ PG, vy vy | = 0,

|F165) " (v ,v5) | [F(e3) 7 g v )oR(ey) ™ (uy, v, duneu
(65 Hup,vydu ] 2 2,

|F(G3)'1(u1,v1)| = !F(GB)'1(u2,v1)| = vee =

= | Bley)  ugvy) | = ven 2 1,

uwd b ou. FE vy, ] - HOCURNIERE

#1607 (v vp) 2| Pla )™ v 50v)] 2 10 [ R(eg) T vy uvy ) | Blog) v g,w )| 5 1,
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|?(e ) vyv ) | 21
[7e )" vpuvg) | 21,

‘F(G4)'1(v2,v4)l >1.

|plog) v, ,v,) | 2 2,

[Plag)=tvyovqd | 2 10

|rag) Y vy,vp) | 2 2,
|Peg) T vyvy) | 3 1y

IF(GS)'1(V1,v3)l > 1.
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|Pes) v pavy0 ] 2,
|75 v puv, )| 21,
|pteg)Hvyvs) | 31,

IF(GS)'1(v2,v4)| > 1.

fre) v v 2 1,

{F(e,) 7 vy, v 0| 2 14
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u; Yy ['H

n v v1\—§-/ va \
: \
\
veerni e
W, Wy
A2 A3 B B2

| 2(a )" uy,u)] 2 10

| P(a) 7 (ugsvy) v eee v Pl Mg v ) v e

|F(A2)‘1(ui,v1)| = eee = IF(AE)"1(ui,vn)| =
IF(AB)-1(ui,v)| > 2

|P(B1)"(ui,v1)| = |re Mg, = 1,
|28, (vy,v,)] 2 1

| p(3,0 " uy,v) | = 2,

l P(Bz)'1(v,x*.v1) v

| F(Bz)f"(v,wﬂl

Fr(e) (0w = 2,
|r)" v 0| > 1,
|F(B4)-1(ui,V)| = 2,

I F(B4)'1(v,w)| 3 2.

Figure 4.1
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-1
center, say v, based at v,. Then IF(G) (vz,v3)| = IAI.

Let B = F(6)"(v,,v,) v F(G)'1(v1,v3). We distinguish three
cases,

(a) B contains distinct multiple edges. Then G is iso-
morphic to G8; the edge-set of H is a star A.

(b) B contains no distinet multiple edges arnd A is a
set of edges c¢f the same kind. The G is isomorphic to G1,
G2 or G3.

(c) B contains no distinct multiple edges and 4 is
a set of edges of the distinect kind. Then G is isomorphic
to Gg or G7; H is then triangle with an eventual star with
center vy based at Vqe

(4) G has a terminal pieces H' and H" based at u
and u” wrespectively, such that y(X(H')) = ¢(X(H")),
p(Sg(u’)) = w(SG(u")); y restricted to H' 1s not induced
by an automorphism and H' and H" are one of the following:
terminal stars, terminal triangles, or a terminal triangle
and a terminal cluster. Hence, if u’ = u" and H' is the
same as H", then G is isomorphic to Ggy Gqp oOF Gg. Con-
versely, G 1s isomorphic to Gg.

Corollary 4.1. Let G be a nontrivial con-
nected multigraph with |F*(G)|<eo. Then

2

r*e) = rg)

if and only if G # Gy, i = 1,...,9 (of Fig.4.1).
Proof. It suffices to observe that if G = Gi’

1 =1,00e,9 (0f Pig.4.1), then there exists an edge-auto-

morphism of G not induced by any automorphism.
Corollanry 4.2, Let G be a nontrivial ocon-

nec¢ted multigraph. Then

™ae) = Mc)
if and only if G # Gy, 1 = 1,440,9 (of Fig.4.1).
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Theorem 4.1 may be generalized to arbitrary multigraphs,
In Fig.4.2 we have shown multigraphs "similar® to the multi-
graphs of Fig.4.1 but not isomorphic to them. G; and G{,
i=1,2,4,5 are multiversions of multigraphs with additional
conditions whose edges being represented by solid lines and
GS and GS was obtained in similar way as G5 (of Fig.4.1).
Gg and G¢ are multigraphs having terminal pieces H{ and HJ
based at ui and u{, ieI, |If 2 1, respectively, and
furthermore:

(a) none of the multigraphs Gy and G; is isomorphic
to G, 1=1,2,3,6,7,8,9 (of Fig.4.1),

(b) for every pair H; and H;, iel, |X(Hi)| =
= |%(8{)| and H #H],

(c) H' and H" are isomorphic and there is an isomorphism
¢ of H’ onto H" such that pluf) = uj for each 1 eI,

(d) H; and H; are either the terminal pieces 4,,
i=1,2,3 or B, and one of Bj, j =2,3,4 (of Fige4.1)
based at . ‘
~ T heorem 4.2, Let G be a nonempty mulicigraph.
If neither

1) Giy 1 = 1,000,9 {of Fig.4.1) ies a component of G nor

2) both a) XKy and Ky, 3 b} G; end G, i,j=1,2,3 (of
Fig.4.2), and ¢) G; and G, 1i=4,5,6 (of Fig.4.2) are
components of G, then

r*(e) = r{ec).

Proof., dssume G to be a multigraph satisfying
1) and 2). Since IM*(G) is a subgroup of M(G), it suffi-
ces to show that any edge-automorphism g of G is induced
by an automorphism. For every component K of G, the sub-
graph (y(X(K))> is also a component of G. If K 4is iso-
morphic to one of multigraphs K3, K1’3, Gi, G;, i=1,400,6
(of Fig.4.2), then, by Theorem 2.4, since G satisfies 2),
we have <(y(X(K))> = K. Therefore, if y is restricted
to K, then ¢ is induced by an automorphism of K., If K
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i
x>

F(GI1 )71(‘71 ’V4) =
Flay) vy ,v,) =
-F(Gs)'1(u1,v1) U sse v

!
&

.

v F(G'B)"1(un,v1)u e = 4y

1¢|a7| <|Blep T vg,v,)]
] <[ 7to3) rgurs]
2 [ay] < |F(G’3)‘1(v2,v3)|.

| #(65) " (v y,v,)| = [P(6]) "Yvy,vy)|=1
for i=1,2,3.

wy =g o
F(G1) (v1,v4) = Ay
F(Gg)-1(v1 )y ) = A'é

P(63) ™ (ag,vq)ue e euba3) Ty, vy)

s

cee = A3

1S|F(G'1')_1(v2,v3)| <| 4
1¢|Po5) T v,,vs)| < | 47
165 v,y <]y

RICARICIRAY
= |R6))Hvg,vy) | =
for 1=1,2,3.

Ll
-

IR ™ tvguvs)| = |4
76 g - [
for 1i,j=1,2,3.
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1<} Ry vyv,) | = | Ri6p) v, v,

1| #0) vpvy) | = [ 260 | <[ #l6) vg,m,)] =
=|F(G{)'1(v3,v4)|.

1s|F(G:fL)'1(v1,v4)[ = ]F(G;)'1(v1.v4)| <|F(G{)'1(v2.v3)| =
=|®e{) N v,y0v5) ], 4 = 4,5,

1R vpuvg) | = [ R(e) vy vg) [ < (65 (v, vy) |=|2te5) " v, v ).
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is not isomorphic to KB’ K1,3, Gi, and G;, i=1,44+,6, then,
by 1), Theorem 2.4 implies $that if y 1is restricted to KX,
then y is induced by an automorphism of K. Hence by apply-
ing the above argument to every component of G, we obtain
that ¢ dis induced by an automorphism of G.

Corollary 4.3, Let G be a nonempty multi-
graph with |[M*(G){<oo. Then

rYe) = ra)

if and only if neither G;, i=1,...,9 (of 215.4.1) is'F
component of. G nor both K3 and K1’?, Gy and Gj’
i,3=1,2,3 (of Fig.4.2), and Gi and Gy, 1=4,5,6 (of
Pig.4.2) are components of G.

Corollary 4.4. Let G be a nonempty multi-
graph. Then

r¥e) = re)

if and only if neither G, i=1,...,9 (of Fig.4.1) is a
component of G nor both Ky and K1’3, G; end GT?
i,3=1,2,3 (of Pig.4.2), and Gi and Gi, i=4,5,6 (of Fig.4.2)
are components of G. :
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Adam Kucharz

ON THE DETERMINATION OF HALL POLYNOMIALS

1, Introduction

The aim of this paper 1s to deduce formulas for the Hall
polynomials for the product (n = 3,4; r arbitrary) and for
the exbpnent (n = 3,43 r arbitrary, m = =1). These formu-
las essenflally accelerate the, determination of Hall polyno-
mials, since they require neither the application of the pro-
cegsus of selection, nor the knowledge of the computation
rules. By means of them a method is proposed for determining
Hall polynomials for the exponent (n = 3,4, r and m ar-
bitrary).

The notion of Hall polynomials appears for the first time
in Hall’s paper on nilpotent groups [1], where the asuthor
gives their definition and proves that the defined functions
have in fact the form of polynomiasls. In papers [2], [3] the
Hall polynomials for the product and the inverse were deter-
mined for n €4, r =4, m = -1 and a method was presented
for determining them for n <4 and for an arbitrary number
r of generators., The present paper rests on the results of
papers [1], [2], [3] and on the classification of basic commu-
tators given in [4].

2. Hall polynomials

Let G{X) be a free nilpotent group of a given nil n,
generated by the set X = {x1,x2,...,xr}. Let t Dbe the
number of basic commutators. Any element g € G(X) can be

written in the form
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2 A.Kucharz

g4 & g
g = u11 u22 eee utt,

where Ujypeseyly are basic¢ commutators of weight 1,2,...,0;
i, < u, oo Sy, and 81180100098y 8TE integers. For
the definition of basic commutators we refer to paper [7],
chapter 11.

et a and b be arbitrary elements of the group G(X)
and

a a b b
- 1 1 _ 1 %,

(1.1) a = u1» XX ut ’ b = u1 soe ut H
then, according to [1], for the elements p = ab and q = a®
(m integer) we have the relation

P Py q 9
(1.2) p = u11’co~ ut H g = u11 Prery ut ’

where
pi = ai + bi + Pi(a1,...,81_1;'01,...,1)1._1)

qi = mai + Ei(a1’oo-,ai_1;m)'

wheTe Pi’ Ei are Hall polynomials for the product and
the exponent, respectively (i = 1,ees,t).

3. Formulas for the Hall polynomials

The relations given in tables 1, 2, 3, 4 are based on the
forms, determined in [3], of the Hall polynomials and on the
classification of the basio commutators given in [4]. It has
been observed that to a determined form of the commutator
corresponds aniquely a form of the Hall polynomial,

3.1 Let us now introduce the following classification
of the basic commutators (n = 3,4; we assume the notation:
(ui,uj,...)= ijeeel))s
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basic commutators of weight 3
1. ij3; 2. 3ijs 3. kji, k < i; 4. kji, k> 1
basic commutators of weight 4
te 1333, 1 > J; 2. 1ijji; 3. ijii; 4.1 ikjij, 1 > j; 4.2 ikjd,
i <J; 5. ikji; 6.1 ikij, 1 > j; 6.2. ikij, 1 < j; 7. ijki -
complex commutator; 8.1 ijjk, i <k; 8.2 ijjk, 1> k;
8.3 ijjk - complex commutator; 9.1 ijkt, 1 <k, i < $;
9.2 ijkt, 1 > k, 1 <t; 9.3 ijkt, i > k, 1 > t; 9.4 ijkt,
j <k, J <t - complex commutator; 9.5 ijkt, j > k, J > t -
complex commutator.

3.,2. The commutator of the sfructure 1ij] 1s represented
by the commutator 211 and the corresponding Hall polynomial
has the form

(")
Po1q = 83 \p ) + 8p4Pq.

Hence we can write the general relation for the Hall polyno=-
migls for the product for n = 3, based on the basic commu-
tators of the structure ijj:

Pijj = ay (23) + aij i°

Proceeding as above we can obtain general formulas for the
Hall polynomials for the product and the exponent (n = 3,43
m = -1; * arbitrary). They are given in tables 1-4.

4. Method of determining Hall polynomials for any m
(for n = 3,4)
4,1, Let

a a, o
(4.1)' p = (u-11 oo utt) .

It is easy to reduce the formula (4.1) to the form (1.2) for
m=2; to do this we have merely to modify formulas for the
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Hall polynomials for the product (tables 1 and 3) by setting
bi = aio Then

Teyo = Byl o

i%8y

where Ik 2 is the Hall polynomial for the exponent, with
’

number k and m= 2, Pk ig the Hall polynomial for the

product with number k, Moreover, we have for m < 0

o =

a a, ~m a a
¢ YL I I

_ 1
p = (u1 e Uy )

t

4,2, et m > 0O, For nm

2 we have

. a 2 a a . a;+a; +Py
p = (.couii'oo) = (o-ouiio'o)(c..uii.o.) = onouil i 1...

where Pi is obtained from Pi by substituting bj = aj,
1

j = (1,.00,1—1)0
For m = 3 we have

a 3 a 2 a
p = (QOOuii'.O) = (ooouiiooo) ({oouiitoo) =
i iBai+Pi1+Pi2
T eeedy sve

where Pi is obtained from Pi by substituting aJ =
2 i .
= 233 + P31, bj = aj, j = (1,0.0,1-1)0
For arbitrary m

ma, +P, +P +esostP '
a m i 11 12 . im_1

p = (...uii...) = eee Uy - ces
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Determination of Hall polynomials 5

where

P, =P
i i
=a.,b.=
1 xa.‘.j aJ, j a:j

P. = P,

i i _ -

2 a.‘.j-2&1‘_j+Pj1,bj'a:j

m aj=maj+Pj1+"’+Pdn_1’ 3=aj.

Pinally, for arbitrary m > 0 the i-th Hall polynomial for
the exponent takes the form

(4.2) I o= Py (m > 0).

1,m n-1

4,3. Let now m < 0; then, taking into account §§4.1,4.2
and the definition of the Hall polynomisls we have:

- a m\~1
(oov u:i ooo) = ((O-o uii ooo) ) =
M= P -1
(;.. u:ai+k=i ik..,) =

m=1
- mai+ E—1: Pik +Ii(a1 pee .'81’4’ =
cee Uy B 8

el
]

m1

maJ + :E: ij.
k=1

Finally, for arbitrary m <0 the i-th Hall polyaomial for
the exponent has the form
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(403) Ii’m ’.Ii,-'“ (m <0)o

ay=ma; + > Py

Examploe, We shall determine the Hall polynomial
for the exponent for n= 3, » = 4, m = -3, From relation
(4.3) we get

Ii 3= Iy

aj=Baj+Pji+sz

(it should be observed that i may be -considered not only

as the number of the commutator, but also as the form of the
basic commutator). We shall find the form of the Hall polyno=-
mial based on the commutator Jii; according to table 2 we
have

_aj
Iijj=-<2>ai+ajaij ) .
aj-3&j+Pj1+P32

We next calcvlate P:j and Pj , where J € (i,j,1ij), sub=-
1 2
stitute and get

- 3 a'j
Iijj = - < » > 3ai + Baj3aij + 3aiaj‘

5. Remarks on the determination of the Hall polynomials
for n> 4

It is probable that this problem may be solved by deter-
mining, by means of an arbitrary method, formulas for the Hall
polynomials for several initijal values of n, for polynomialy
based on basid commutators of similar structure.
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Table 1
Hall polynomials formulae for the product, nil = 3
commutator formula
®
(Y
k<i
4. k3i iji = akbjbi + akjbi + akibj
£>1
Table 2
Hall polynomials formulae for the exponent, nil = 3
commutator formula
r ()
10 iaj Iijj = - 2 ai + ajaij
. -8y
2. iji Iiji = - ( > ) aj + aiaiJ
k>4
4, kji iji = -858y) + 8;8
k <i
Table 3
Hall polynomlals formulae for the product, nil = 4
commutator formula
! () + oy ()
() () + sy () + e
2. ijji Pijji = \s 2 + aibi o + aijbibj +
+ aijjbi + aijibj
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a a8, \- b
" Y ) ()
b
1
+ aij (2 ) + aijibi
a 1h b
- 3 ( 3 3
401 1kJ§ | Pyygy = 830y (z ) + 2 \2 ) + 8y (2 ) +
1< oo
42 1k v (39) + o (59)
' i> 3 :
+ aikjb;j + a’ijjbk
a
. i
a; + 1
i ) ‘ »
J<1 .
+83uPyy = 83510
a a
_ i) 1
6.2 ikij Pikij = (2 ajbk + (2 ) bjbk + aiajbkbi +
j>1i . .
+ 833305 = 8y13b
b b
8.1 133k | Pyygp = 8y (23) + ayb (23) + a3 4dyby +
k>1 (bj)
= apg\p"/ t 8yy5Pk + 8yyKby
. bj : bj
8.2 13jk | Pyy5 = 830y 02 ) + a5y (2 ) + 834040 +
k<i

+ aijjbk + aijkbj
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i, <k v
i<t + aibjbkbx + aijbkbt - akibjbt - atibjbk +
+ 855Ps * 835¢P% ~ Bk1tPy ~ BeixP;

i>k |
1> k

9.4 1jkt Pijkt = aiaktbj + aibjbkt + aijbkt +
J <k
J <% ; + aikbjbt - aktibj + aijkbt

9.5 1Jkt | Pyguy = 8j8)¢Py + 85bybyy + 8y biby +
J> k
J> ¢ - aktibj + aijkbt
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Table 4 .
Hall polynomials formulae for the exponent, nil = 4
comnutator formula
s ('aj) ('aj)
1o 133 Tiggg = = \3'/8 =\ 2%/855 + 858444
- (330
2. ijji Iijji = 5 5 - ajaiaij + ajaiji + aiaijj
s ~84 'ai)
3. il Iijis = - ( 3 ) By - ( 2] Bij * 818333
oy s ('aj)
4.1 1kjj Iikjj = \ 2"/ &8 = @y84855 + a8y 44 +
i>
(%)
"\ 27/ Bix t 8584k
; (‘aj)
4.2 ikj] Iikjj = akajaji - akajij + ajaikj -\ 841
i<j -
I ('ai)
5. ikji Iikji = akaj 5 - akaiaij + akaiji - ajaiaik+
* B8y t 8384y
—
. Cai + 1)
J<i v
*tA585p3 T BBigy t 83384k
>3 *8584k1
T. 1jkj Iijkj = 85858,8; - 848485y - 858,8;4 - 8;8,44 +
+ 85843 t B8y
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-2
i (7%9) ey -
8.1 1ijik Iijjk = ( > 84 ajakaij + ajaijk + akaijj
k>1i
. ~8y ~8j
8.2 1k Liy5k = ( 2 ) 88y - ( 2 ) 8 =~ 85885 *
k<i
8.3 1jik Iijjk = akajajai - 2akajaij + akaij + zakaijj +
" 83Fiki * 33Kty
9.1 iakt I'_‘,jkt = aaakatl + ajataki = aaakit - ajatik +
i<k
i<t - akataij + akaijt + ataijk
9.2 ijkt Iijkt = 848y 8¢5 ~ 8584843 < 8584y — 884854 +
i<t
i>k + akaijt + ataijk
9.3 1jkt Iijkt = aiajakat - ajakait - ajataik + ajaikt +
i>t
1>k = BK8t8y 5 t B854 T BBy
9,4 ijkt Iijkt = aiajakat - ajataik - ajakti - atakaij +
j <k
j<t
+ ataijk + 81424 4
9.5 ijkt Iijkt = aiajakat - atakaij - ajakti - atajaik +
i>k
i>t
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12 A.Kuciarz

On the ground of tables 1 and 3 it is possible to find
the general form of the Hall polynomials for the product for
any n, based on the commutator of the form 1ijj ...;- thus
we obtain a relation of the form.

=]
N

b
) k 3 >
P. . s = 8y
lecuo O'OJJ 2 lj (n—(k+1)

w
4

where jk = jj‘oojjo

\q—J

k

To establish this general formula we had merely to apply the
form of the polynomial for n = 3, 4, owing to the simple
structure of the basic commutator. If the commutator has a
more complex structure, this does not suffice; the polyno-
migls based, for instance, on the commutators of structures

iji, ijii contain monomials of the structurs

a. b. b.
1 1 L
X : . : b. .
% (n-1> & <n-2> PR <n—2>

Should we know the polynomials for ‘some further values of n,
based on the commutator ijiise. s.eil, it should be probab-
1y possible to find the general relation.
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Romuald Matecki, Ewa Zielifiska

CONTOUR-INTEGRAL METHOD APPLIED FOR SOLVING A CERTAIN
MIXED PROBLEM FOR A PARABOLIC EQUATION OF ORDER FOUR

In this papar, the existence and uniqueness of & certain
mixed problem with nonhomogeneous boundary conditions is prov-
ed by using the contour-integral method introduced by M.L.Ra~
sﬁlov [1]. In the case of nonhomogensuvas bourdary conditions
it is necesssary to use a certaln generalirzed Lapi-ace’s trans-
form given by the relation

+o00
£(A) =va(f(t))(A) = f exp(-APt)£(t)dt,
0

where p 1is & natural number,

For the dgbove tramnsform L the following theorem has
been proved in [2].

Theorem 1. If

1°¢ is continuously differentiable for t 2> 0, except
may-be countable number of points in which f and its deri-
vative can possess discontinuity of first kind, but on each
bounded interval <0,t> +the number of such points is finite,

2% there exists a M > 0 and a s 2 0 such that

[£(t)] <M exp(st),

3° there exists an ¢ (0, 21) such that for an analitio
continuation f(A) the following formula holds: i'l._i’m F(A)=0
[o o]

uniformly with respect to arg A for |argA| < 2_91[; +o,
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4% S is an infinite curve lying in a region |argld|g
< gL + o« and coinoides, for sufficiently large Iﬁl s With
half-lines |argA| = EﬂB +oy

then in sach point of continuity of function f we have

£(4) = AP~ exp(APt)E(A)dA.

2APV71 !

The L2 transform will be applied to solve the follow-

ing problem

1 4-2k _
k+1
(1) iﬂig_ Z Z A (%) a—ﬁéﬁﬂ for (x,t)e(a,b)x(0,D,

)

= gs(t) for 8 =1,2,3,4, t € (0,T>,

(3) akV£x§tz

3t

k+l
vix,t
+ Pa1 a_k‘("_lt .

9

X=8

@ 33 fa gt

k=0 1=0

=0 for k=0,1, x e (a,b),

t=0

where Akl are given functione and the constants T > 0,
%1y Pgyxy 8ré real numbers,
Let us suppose that the following conditions are satis-

fied:

ct<a,p>), 2kl =241 for 1i=1,2,

(I) 4 €
C ((a’b> ), 2k+1 X2 for k=0’1; l=0’ooo,4'—2k,

A04(x) #0 for x e <a,b>,
(11) 8gs 8 = 1,2,3,4, satisfy conditions 1%, 2° and 3°

of Theorem 1 for p = 2,
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(III) there exists §e (0, ) such that I +§ < argy <

2
SB—ZL- 8, where py satisfies the characteristic squa-
:tion
(4) A04(x) - A‘]Z(I)F- 3"2 = Qg

This means that equation (1) is parabolic in the Petravsky
sense. . ' ,

Applying formally L, to (1), (2) and making use of (3)
we arrive at the following speciral problem

1 4-2k

1l
(5) 22 A g lx) SREAL L gt uxw) - o,
. ,

k=0 1=0

3

(6) > > { asklzﬁujﬂi_l_) . %Ml‘-“ﬁ“i“"
{ X

X=8a
+o0
8 = 1,2,3,4, where g (A) = Ly(g(t))(A) = | exp(=A%t)x
0

2
k=0 1-0 dx

} =EB(2')’

x=b

The solution of the problem (5) - (6) has the form

4 4
(1) ulx,A) = zh7 20 Bld) D 34(x,A)0 0, (2),
k=1 i=1

where yi(x,A), i=1,2,3,4, 1is a fundamental system of
particular solutions of (5),

(8) AR = det [uki(m]4 K
x
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3 2 ly ql 9
(9) wy(A) =Y Z ongy =)+ By 1

1=0 r= R PN x=b

and Ay, (A) denotes the cofactor of uki(/’l) in A(A). Sub-

s8tituting
gy (A) = Z Ao,
( S=1,2,3,4,
(10) < . 1=0,1,2,3
r
Py (A) = Z A" Prrr
] r=0
into (9) we get
3 oL 1
' I3 47y,
(11) u . (A) = o + .
ki l}:_; K gl | Py — 1
= =8 x=h

To obtain an asymptotic representation of the solution
(7) and of its derivatives, we use the Tamarkin theorem [1],
Consider the differential equation

n
=1

d q®
(12) %, Py (x,A) SF = 0

dx" gé; T xR
with' coefficients having expansions of the form

o0
Pi(x,ﬂ) = Z Ai‘rpir(x)’

r=0

for x €<a,b> and |Al> R, where R >0 4is sufficiently
large.
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Tamarkin’s theorem, If

© the functions Py, i=1yeeesny r<0,1,04s, are conti-
nuous and uniformly bounded on interval <a,b) ,

2° at least one of the functions Py , 1=1,...,n, is
not identically zero on the interval <a,b) ,

3° the solutions <p1€(x),‘ k=1,ee440, o0f the quasi-cha-
racteristio equation of (12) i.e. of

n
(13) o™ + Z Py (%) gt o ¢
i=1

a3 distinct for all values of x e¢<a,b>,
m m=1
APy 4 Py
, Cd
ax™ ax™ 1

4° veees Pyp € €< ayb>), i=1,.4.,n,
where q 2'1 and h 2 1 are natural numbers,

5 there exists an unbounded portion SZ of the region
& i={%; 1Al 2 R} in which the inequalities
Re 71?1(::) < Re )\.rpz(x) »«n € Re ngn(x)
hold for all x e <a,b> with sultable numbering of the so-
lutions Prr

then {12) has fundamental system of particulsr solutions
¥g{xyA)y, 8=14een,n, which together with their first n~1
derivatives have asymptotic representations of.the form

d 2 mel (1‘) E
(14) ——Z‘—:-:—:-il = A¥exp (ﬁ cps(f)df> —E—E- —L;—;fl—m "

k = Oyseepn=1; 8 = 1,,4+,8, where the functions Eks are
contim(zmjm with respeact to x e ¢a,b)> and bounded for AGSB
and Q ks € Cq-1( <a'b> ’n

Remark 1, The coefficients Qfm)(x) can be ob-

) x
tained by differentiating the expression exp (ﬂ.[ tps(g)df) x
a

me1
x zgo Arrhg)(x) and expanding the result in decreasing po-
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wers of A. It can be shown as well that NgoolX) 2=

(°)(x)
= is independent of the index k,

6:,.3(:[))1E

Asymptotic representation of y(n) is obtained by sub-
stituting into (12) the representations (14) for k=0,...,n=-1.

In our case the quasi-characteristic equatiop of (5) has

the form
(15) Boy(x) ot 4 By,(x) 82 - 1 =0,

From (4) and (15) we have

6 : =\/.l
(16) ) 5

5 arg(—"—) + 2kw
and arg 0 = 5+ —-I——2 s k =0,1. Hence, under Con~-
dition (III), we get

st b i
(17) 271-+kﬂ’+—2- sarg9<54+kﬂ--g-, k=0,1.

Further we assume the condition

(IV) the solutions ©(x) of equation (15) are distinct
for all x e {a,b)> and their arguments and the arguments of
their differences are independent of x i.e. arg(®,(x)-8,(x))=:
=: w, o = const, k # s, Hence

Re( A8, (x)) - Re(A8.(x)) = |a lek(x) 8 (x)l cos(argh + gy )
Consequently, by condition (IV), we have
(18) Re A8, (x) = ReAB (x)e=sargd = % ’—2' - Wyge

The last equalities determine the straight lines passing

through the coordinate origin and dividing the A-plane into a
finite number of seators Zj. In each of these sectors, for
suitable numbering of the solutions gokj(x), the inequalities

{13) Re 2.7;'3(1) € Re Acfza(x) < Re 71?’33(1‘) < Re /1-5”43(1)
are satisfied for all x e <a,b) .
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Let

(20) A= {A; |arg Al sﬂ—z—ﬁ}.

Consider the sectors l"j = /\ “Zj- By (17), it is easy

to see, that in each sector [, # #§ <for suitable numbering
of the solutions Vi(x) of (15) the following inequali-
ties hold

(21) Re A?j(x) < Re /’lcpJ(x) € - IMI'}’%(X)' € <0<
<|A||c,o%(x)| € < ReMp%(x) Re 2.7 (x),

where

(22) € := Bin % > 0,

Thus, by condition I, for suitable numbering of the solutions
of (15) and for a sufficiently large |A] , the fundamental
system yi(x,aJ, i=1,2,3,4, of (5), has asymptotic represen=
tations

(x, sA
(2 )—yi—x—— exp<af «pg(g)dg><r,‘°’(x)+ 1(: )>,

dx

where E,; are bounded functions for Al 2 R
Substituting (23) into (9) we get

3

E,;(a,A)
(24) uki(ﬂ,) = g{akl(ﬂ)l G(O)(a) . l:l.a )

b .
By, (b,2 4
+ b (WA (v) + _liz_’> exp@ { 7i(§)df>].
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Denoting

b
= [ oatpas,
a

3
by (M) = D e (atipd ()
1=0

3
By (A) = D py(matipd ()t
120

and keeping in mind Remark 1, we get

(25) ey (A) = A4 (A) (‘Yioo a) + E(M)

+ Bkim) ( 1oo(b) + I.E;A)> exP(;‘Wi):a

where E denotes an arbifrary bounded function.
Let

(26) A := min  inf |¢i(x)|'> 0.
1¢1¢4 x¢<a,b>

From (21) and (26) we get inequalities

Re{AW,) < - |A| ea(b=a) for k=1,2,
(27) o |
Re(A W) > |A| ¢ A(b-a) for k=3,4.

By (27), putting AO(M = exp{~ M,W3+W4)) a{A), we can state
that the real parts of the exponential functions oacurring in
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the determinant zﬁo(A) approach to zero as ]Ki—» + 0O more
rapidly than any positive power of |%]_1. Thus,‘Ao(A) has
following asymptotic representation

(28) By(A) =0+ (a0t m(a) + EAL)

where

A,4(4), 4,5(2), B13(M, BM(M
459(A)y 855(2), Bys(A), By,(A)
A34(R), A435(A), By34(A), By,(R)
A1(A), A4p5(A), Bys(A), By,(n)

det M(A)

and

? = 100(8) 200(2) 7300(P) My00(P).

Further we assume the condition

(V) ¥# 0, det M(A) # 0 for |A]|2R, R being a sufficient-
ly large numbers Let d denote a degree of polynomial
det M(A) and p coefficient of ad, Thus, we oan put

det M(A) = Ad (p+ E%"—’) .
Finally )

(29) a(a)

exp(MW3+W4)) b,(x) =

exp(A(Wy+W,)) A9 (yv+ %ﬂ) .

Let us observe that it comes out from the asymptotic
representation (29) that zeros of function A(A) for A e A
lie in certain circle with radius R. Really, if lgg?l <pv
for |A|= R, then by the Rouche theorem, the function

(iv';-gzél- has not zeros outside the circle with radius R,
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Thus, the function desoribed by (7) is analytic with respect -
to A on the set QpnA, where Qp := {A; IAI>R}
From (29) and abOVe consideration we obtain in Qp n A

(30) la(a)|2c Iﬂ.ld |exp /'\(W3+W4)| ,

where C > O depends on R.

To get an asymptotic estimation of the function u and
of its derivatives, we must find estimations of the cofaators
Ayy(A)s et o be the maximum of degres in A for all de:-
terminants of 3-rd degree of elements of matrix M(A). Thus,
for Ae SZR n/\ we have :

|age(a1] € DJAP [oxp(a(Wyew, )|, s=142,

(31) {|ag)] < D|af |exp(a W,)|,

|8gy()] € D|AF |expla W,)],

for k=1,2,3,4, D being positive constant.
By (7), (23), (30) and (31) we get estimations

| .m 4 4 x
(32) lm,a_) ¢ 20 15| D 1A fexo (a [ pi(5rap)x
ax™ k=1 1=1 a ‘
E - (x,4) || Ayq(A)
x|nighx) + B AT | €

< H max Iék(l)l |1|m-d+° {exp(- ed|r|(x-a)) +
1<kg4

+ exp(-¢€a I/"l (b-x))}-s n=0,1,2,3,4,

where H :=§% max sup |q(°)(x)| + 1).
Osmg4 xe<a;b>
1¢1¢4
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Now for the problem (1) - (3) we shall prove the following
theorem,

Theorem 2, 1r

1° the conditions (I)-(V) are satisfied,

2° s is an infinite curve lying in QR n /. and coinecid-

ing with half-lines |argA] =’T—X§ for sufficiently
large |A] ,

then the problem (1)-(3) has in the space C3 ((0,>)n

n Ci((a,b)) the solution

(33) v(x,t) = —F jﬂexp(nzt)u(x,z)da.
ny=-1 S

Proof. We shall first prove that the integrals

m
". z'21(4'1 exp(azt) d u(;,ﬂ) dA o
S dx k

are uniformly convergent with respect to x € <a,b> for any
t e (0,7« Let Q, and Qg denote points on S in the

distance respsctively T, and Ty from O, We assume that

8> n and lim T, = +oos We must prove that
n-»oo

m
(34) f AZKHT 20 (a%t) %”Z‘—) dA = 0 for all s> n.

~—

X
—-
Q nQ g . n-+=o0

By (32), we obtain estimation

o
(35) f APk o xp(a2t) Q_Eiglél dA | <

dx
Qan

H

s
2k+1+h

a
s 4]

- 2
1:?3\:4 m () exp(-¢€,t¢%) {exp(-eAg(x-a)H

4

H

n
+ exp(~¢d g(b—x))}dq,
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where
m+§ = _ = .
€ =--c08 5~ >0, ms(g) _|Aj:% }gs(ﬂjl, h = m+c~d.
Thus

m
f 22k+1+h exp(?tzt) gi(;i_,hl diLI <
. dx I

= 2
<H max m,{r_ lexp(~e,tr%) {exp(-eAr (x-a)) +
= 1¢ica i**n 17 n { n

pok+2+h r§k+2+h
2k+2+h

+ exp(~ e Ar (b-x) )}

which implies

m
(36) 1lim f a2k oyp(aZt) d—l"-({-il A =0 8> n,
T oo dx
a QHQS

for all % € (0,7> and x ¢ <a,b> or te<0,T> and
x € (a,b).
We prove analogically that

- m
(37)  1lim \rf/ ACEH1 oyp(A%%) d_:%z&z dA = 0, 8 > n,
Ir o0 i X

n Qnu's
where Q;, Q; denote the mirror image points of Qg, Qg
with respect to the real coordinate axis. From (36) and (37)

we conclude that v e CZ°((0,T>) n Ci(<a,b>). By (5), we
have
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]
‘ ¥y (x,8) _ 2%v(x,t) _
Z by (%) ax a:k ate

1 4-=2k
= -—-‘/-_—_‘-f exp(A “{Z Z AZkAk (x) —u({—i A4u(x,ﬂ.)}dﬂ.=0.
Jr -

k=0 1=0

We shall verify the boundary conditions, From boundary condi-
tions (6) and by Theorem 1, we get
x=b]

3
Z Xty (x,t . o5ty (x4
gkl ‘_E(_‘I‘l Psi1 ’_'kJ‘l'“.'L
X=8

At dx

4t 9x

2 3
- ] 1exp(22t) Z Z{O‘skIAZk iu_(.?fa&

dx

2k d u(x A)
skl A b

dx

1 2. 1=
dA = —— (A°%)8_(A)dA = (¢)
x_b} NS _!’ exp 8g 85

for 8 = 1,2,3’4. .
PFinally, for initial condition (3) we must state that

[ 2®*y(x,a)aa = 0 for k=0,1.
S

From the analysis of asymptotic representation of the fun-
ction u there results its analyticity in QRn/\ inecluding
contour S, Suppose that Sn is an arc of the curve S lying
ingside the circle with radius Tpo and 0n - is an aro of
this cirele lying in .QRn/\; By the Cauchy theorem we ob-~
tain
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f'AZk“u(x,z)dA 1im f A2 (x,0) a8 =
8 A+ o
n

= lim f 12k+1u(x A)da.
n-=o0
0y

In virtmwe of (32), we obtain

f 12k+1u(x,i)d1 2k+1+h

On

€ H max m (r )X

1¢8¢<4 s

+§
f

_n+d
4

x{exp(—mern(x-a)) + exp(-Aern(b-x))}dy <

<H w+b I.2k+1+h

5 T max i (r )e {exp(-Acrn(x-a)) +

1<8¢4

+ exp(-Aern(b—x))}.

Finally

k
9y —Lfl—l f A2k+1u(x,h)da 0 for x e {a,b).

Assuming additionally that the function v increases
at least exponentially i.e. the application of transform L2
to (1)~(3) is sensible, we can prove, by Theorem 1, the uni-
city of (33)« Let us suppose that v, end vV, are distinct
golutions of the problem (1)-(3). Hence, v(x,t) = v1(x,t) -
- v2(x,t) is the solution of the same problem with homoge-
neous boundary conditions. The corresponding spectral problem

- 708 =



Contour-integral method 15

is a problem (5)-(6) with homogeneous boundary conditions.
Let u(x,A) be the solution of this spectral problem. But
u{x,A) = 0, by (32). Thus.by Theorem 1, we get v{(x,t) = 0
on the set <a,b>x<0,T> which contradicts the assumption
v, # Ve
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