DEMONSTRATIO MATHEMATICA
Vol. XV No 3 1982

ON DECOMPOSITION OF FORMULAS
OF A FIRST ORDER LANGUAGE

1. Introduction

We shall be concerned here with: that part of the syntax
of a first order language which ceals with th= decomposition
of formulas of that language. Mor:z precisely, we shall be in-
terested in the relative partial decgomposition of formulas,
a device to be described in the sequel in full detail, For
the beginning it suffices to say that there will be given
some instructions for decomposition of formulas according to
which there proceeds the elimination of certain (thence rela-
tive deccmposition) connectives and quantifiers from formulas
which stops at some chosen formulas of the language (thence
partial decomposition) and not always at ¢lementary ones,

First attempts in this direction go back most likely to
mathematical folklore., However, in [2] (pp.221-223), [4]
(pp.229-306) and in [3] trees were connected with formulas in
another context, namely, as a useful tool in proof theory but
in [3] and [4] with sequences of subformulas of a given for-
mula as elements and not with subformulas themselves. It seems
that in [1] (pp.128-131) the trees of occurences of subformu-
las were firstly studied in their own right.

Now to the language itself. Let the alphabet 8 of our
language Z be composed of mutually disjoint sets of signs
as follows: a countable set X of individual variables x.

i
(i.e. for any natural i), a countable set C of individual
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2 V.G.Kirin

oconstants Ci (forkany natural i), a countable set ¥ of
function letters Fi (for any natural i and k), a counta-
ble set P of predicate letters Pg (for any natural i
and k) except for P? in place of which there is the
gign = adopted, sets of sentential connectives I= {—l v,d,>, _},
guantifiers Q _{V 3} and brackets {( . )}

Throughout this paper we accept the notational system ba-
sed on inner brackets (Cf. [1], p.128).

Let'in the sequel Z € W(8) mean that 2 is & word in
the alphabet 8, 1i,e..a finite sequence of gings from 6,

Let further

(101) t xi

be read as "the word t, t € W(8), is of the form xi". Now
the terms ‘of the language & can be characterized as preci-
sely those words t € W(8) for which ¢t : X4, ¢+ C; or
t o2 Fl{(u1...uk), where Uygeesslly are terms of L . Having
terms of & already defined, the definition of formulas of
% proceeds in a usual way.

Definition 1.1, (Definition of formulas
of e'Z}

1° For any predicate letter P; and any k terms of &

the word P (t1...tk) of W(®) 1s a formula of .

2° For any.two terms t, and %, of Z the word =
= (t, t ) of W(®) is a formula of &£. The words of W(®),
whlch are formulas of & according to 19 or 2°, are called
elementary formulas of < .

3° If the word & of W(8) is a formula of &, then
so are the following three words of W(8) : —{a), ‘v’x (a)
and 3xi(A), where, in latter two words, X5 is any 1nd1-
vidual variable of .

4° If the words A and B of W(8) are formulas of Z ,
then so are the following four words of W(®) : [(4) & (B),

(4) v (B), (a4) =(B) and (4) = (B).

k
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On decomposition of formulas 3

5° The set of formulas of & is the least set of words
of W(8) that contains elementary formulas of & and is
closed under the formation rules 3° and 4° above.

6° 4 word T € W(8) is said to be a subword of a word
Z € W(8) 4if there are words Uy, Uy € w(8), possibly empty,
such that Z:U1 T U2. Subformulas are defined as subwords
being formulas, If 4 1is a subformula of B, then B is
also said to be a superformula of A.

7° The sign=, V or 3 is said to be the leading con-
nective of a word A € W(8) whenever 4 :—1(B), 4 : \/xi(B)
or A : 3 xi(B) for some B € W(8). So are the signs &, v,
=—>and = whenever A4A:(B) & (C), 4:(B) v (C), A:(B)=(C)
or A:{B}) = (¢) for some B, C € W(8),

2. Decomposition of formulas

To decompose & given formula F of & will mean to de~
termine certain (possibly =211) occurrsnces of some (possibly
all} subformulas of F., This is achieved by eliminating si-
stematically the leading connectives from F together with
an appropriate pair (or pairs) of outermost standing brackets
and variables which immediately follow some guantifier and
storing the information about the commited transformation.
However, the definition of decomposition will be given in
a slightly more general fashion, for words of W(8), as to
serve equally well as a criterion of wellformedness for for-
mulas of & .o

Definition 2.1 (Definition of decomposition)
The decomposition D(Z) of aword Z e W(®) 4is any sequence
of subwords E1 of Z, called members or occurrences of
N2z), together with an appropriate instruction to be assigned
to each Ei' which is defined as follows,

1° Bach Ei is supplied either by a STOP-instruction,
written as (STOP), or by one among the following seven, called
the instructions for decomposition or elimination: (e xJ},
(in e x), (Exi e x), (e x), (vex), (=e x) and
(=e x), All the instructions will be attached to the oaccur-
rences they are applied to.
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2° If B & BY (t,.0at,) or By := (t, t,), then each
such Ei is supplied by a STOP-instruction.

3% Suppose By is the least membsr put into £D{Z) at
some stage of generating £(Z), i.e. the membsr with minimal
i which is not yet supplied by any instructicn, and E. is
the last member put into &{Z) by then, i.e. the member with
maximal Jj. There are three cases to be distinguished.

3% 1f E; : (F), \fxi(F) or :3xi(F), then each such
Ey is supplied either by a STCT-iustruction or, respectively
by an instructions (7e x), (Vx; e x) or (3x; e x). In
the latter case put E.+1:F.

3°%2 1f By :(F) & (G), (F) v (G), (F)=>(G) or (F) = (G),
then each such Ei is supplied either by a STOP-instruction
or, respectively, by an instruction: (& e x), (v e x),

(=>e x)} or =e¢ X). In the latter case put Ej+1:F and
<G,

393 If E; is not of the form mentioned in 3°1 or 3°2,
then each such E; is suppliec by a STOP-instruction.

E
j+e

O [ 3
4 E,:F.

By 4°, &D(z) contains at least one element. D(Z) 1is
always a finite set because the process of deoomposing a gi-
ven word Z € W(8) necessarily stops by 2% or by 3%3, Further-
more, by 3° one sees that D(Z) is uniquely determined,

Definition 2,2, (Definition c¢f various kinds
of decompositions):

1° Every occurrence E; of some (Z), which is supplied
by a STOP~instruction, is called a terminal occurrence of
that D(z).

2% If in a decomposition DH(Z) thers is at least one Ey
of the form quoted in 3°1 or 3°2, which is supplied by a
STOP-instruction, then every such &(Z) is called a partial
decomposition of that 2 € W(8). If no occurrences of some
Hz) of the form 3°1 or 3%°2 are supplied by a STOP-instruc-
tion, then every such &H(Z) is called a total decomposition
of that Z DW(8). : ‘
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On decomposition of formulas 5

3° Let J be the set of all instructions for decomposi=-
tion as given in 19 of the Definition 2.1. If there is some
subcet K- of J omitted by some D(Z), di.e, if there is
always applied a STOP-instruction to every occurrence E; of
that £D(Z) whose leading connective is dealt with in K,
then every such &(Z) is called a relative decomposition,
more precissly, a decomposition relatively to the set of
instructions L = J - K. If no instructions from J are
omitted, then every such $(Z) is said to be an zbsolute
decomposition of that 2.

An interesting case thereof is obtained when the set L
consists of all the instructions for elimination of all sen-
tential connectives so that K = {(\fxi e x), (3 X; @ x)}.

There are many possibilities, even mutually interdepesn-
dent, for a decomposition DH(Z)} to be a relative partial
decomposition of that Z € W(8). The two marginal possibi-
lities are obtained either when no instructions for decompo-
gition are used at all, i.e, when L =@, so that D{(Z}) re-
duces to the sequence: 1., Z(STOP}, or when L = J so that
D(Z) turns out to be an absolute total decomposition of 2.

D(2) is essentially a sequence so let d(Z) denote the
set whose members are all the occurrences of D{(Z) and let
d¥(z) be the set of all the subformulas of 2 which occur
in d(zZ). Obviously, to each occurrencs By of D(Z) there
corresponds a unique word EI € W(8), the word of this Ej.
Note that E; may be identical with some E; though By # Ej
in &(z).

In the sequel, if not otherwise stated, we shall usually
take into consideration some given relative partial decompo-
sition, written for short RPD. Apparently, the proocedure of
decomposing a given word 2 e W(®) 1is designed so that it
might single out the formulas of X within the set W(8).

Theorem 2.1. Aword F e W(®) is a formula
of & 1if and only if every terminal occurrence in any O(F),
an RPD of F, 1is a formula,.
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Note that 3°1 and 3°2, when applied to formulas, yield -
again formulas and that, again by 3°1, 3°2 and 303, every
occurrence E; in whatsoever RPD of F will be supplied by
a STOP-instruction if it would not be a formula., Hence, sach
such E; is a terminal occurrence of any JD(F). An easy
proof, of the fact that all the occurrences E; of any D(F)
are formulas of & if and only if F is a formnla of % is
now by induction and therefore can be omitted, Henceforth we
have the following

Corollary 2.1. Aword F e W(6) is a formula
of & if and only if all terminal occurrences in its ahsolute
total decomposition &°(F) are elementary formulas of & .

The next theorem is stated for formulas, resp. for sub-
formulas,. of & but it applies equally well to words, resp.
subwords, of W(8).

Theorem 2.2, let D(F) be a given rsglative par-
tial decomposition of a formula F of & and d(F) the set
of all those occurrences which appear in J(F). Define in

d(F):‘

{2.1) EisEj if and only if the occurrences E; of D(F) is a

subformula of the occurrence Ej of D(F).

Then it holds:

(1) by (2.1) there is defined a relation of partial order
in 4(F), '

(2) E; < Ej holds in &{F) if and only if there is an
RPD D(E.), belng relative and partial under the same condi-
tions as &(F), such that the occurrencs E; of D(F) is
a term in DH(E,) and

(d) (4(F),<) is a tree.

The proof of (1). 4 <A holds by 6° in Definition 1.1.
If ]3:U1 A U2 and C:V1 B V2, then C:V1 U1 A U2 V2, i.e.
A <B and B € C imply A <€ C. Suppose 4 < B. Were
A # B, B would be a proper superformula of A4 and hence B
would contain some sign missing in A for, going through
the instruations for elimination 3%°1 and 3°2, one sees that
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On decomposition of formulas 7

by passing from a formula to its proper subformula some signs
of the first one are always missing. But all sings of B must
be gigns of A if B < A should hold. Therefore, 4 < B

and B <4 imply 4 = B.

The proof of (2). Observe that the formula F 1is the
greatest element of the set d4(F) when it is ordered by
(2.1). Hence, A < B implies A € d(B) so 4 occurs in
D(B) and conversely whenever the conditions on decomposition
in O(F) stay unchanged in <D(B),

The proof of (3). In view of (2), it suffices to show
that the set O(H) = {X € d(F):X » H} 1is a chain in (4(F),<)
fo- every H € d(F). PFirstly, let O(H) be a chain. Since
F e 0(H), F is s maximal element of O(H), hence the chain
Q(H) is well-ordered. Finally, O(H) is a chain indeed be-
cause for any two occurrences A and B in O(H), 4 # B,
it holds by (2): if not A € B, then the occurrence 4
does not appear in 2(B). Hence, the occurrence H cannot
appear in O(B) too because H 1is a subformula of the occur-
rence A. Therefore, either A B or B £ A4 holds for any
two occurrences A and B of O0O(H),

Example 2.1, Let us determine the absolute fotal
decomposition D°(F) of the formula F:(Vx1((1A) 4 ((a) =
=>(B))) => ((4) & ((4) =>(B))), where A:P5(x,C;) and
B:P5(x,C,)e _

Here is the corresponding O(F):

1o (Vx,((a) & ((4) =>(B)))) =>((4) & ((4) =>(B))) (=>e x)

2. Vz,((4) & ((a)=>(B))) (Vx, e x)
3e (4) & ((a) =>(B)) (de x)

4. (4) 4 ((a)=>(B)) (e x)

5¢ A (STOP)

6e (4) = (B) (=>e x)
Te 4 {sTOP)

8, (4) = (B) {=e x)
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8 V.G.Kirin

9e 4 (STOP)
10, B (STOP)
11. A (STOP)
12, B (STOP)

Example 2.2, The next Diagram 2.1 represents
the tree (do(Fﬂ, € ) of the formula F of Example 2.1.
Instead of quoting all the occurrences of JP(F) at the
appropriate knots of the tree, these knots are rather la-
beled by natural number i under which a particular Ei
appears in D°(F). The terminal occurrences of DO(F) are
shadowed in the diasgram.

Diagram 2.1

3. Properties of decompositions
Here there will be stated some equivalent conditions for
an RPD of a formula F of & to be determined by all its
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On decomposition of formulas 9

terminal occurrences. The following two definitions enable
us to formulate our next theorem.

Definition 3.1. Let D(F) be a given RPD
of & formula F of &. Let Hy,...,H  Dbe all terminal
occurrences of H(F) and let 'G1,...,Gk be the correspond-

ing subformulas'’ HY,...,Hf of F. Then we say that the

formula P is relativelyz) composed of the occurrences
H1,...,Hn of its subformulas G1,...,Gk. Let us denote any
such decomposition by £%(H1,...,Hn) and the corresponding

set of all occurrences by dF(H1,...,Hn).

Definition 3.2, Let y°F) be that tree
which, in view of (3) of Theorem 2.2, corresponds to the to-
tal absolute decomposition D°(F) of the formula F of Z .
An initial segment of 5°(F), determined by the occurrences
H1,...,Hn of subformulas C-1,...,Gk of P, 1is the set
UF(H1""’Hn) defined as follows:

3@(H1,...,Hn)v= {X € 3p(F):X 2> H; [for some H; in go(F)},

where the order relation is that of (2.1).

It can be easily shown that the set @F(H1,...,Hn), when
ordered by the relation < in (2.1), is a tree because the
set 0(G) = {X e TF(H1’°"’Hn)‘X 2 G} is a chain for any
G € gp(Hy,eee,Hy)e Indeed, since G > Hy for some H; and
A,B € 0(G) by supposition, hence 4 2 H; and B2 H; by
transitivity. The proof now proceeds as in the proof of (3)
in Theorem 2.2.

1) Cf. Example 2.1 and Diagram 2.1 where there are six
different terminal occurrences of only two formulas A and B,

2) I.e., relatively to the same set L of instructions
for decomposition to which O(F) is known to be a relative
partial decomposition. Of course, any chosen partial decompo=-
sition remains unchanged throughout this definition.
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Theorem 3.1. The following three assertions are
mutually equivalent for any formula F of Z whenever
nz 2:

(1) The formula F is relatively composed qf'the occurren~
ces Hjy,eee,H  of its subformulas Gyrooosly;

(2) Qp(Hyyeee,Hy) = gp(Hyyeoa B3

(3) The occurrences H1,...,Hn of subformulas G,,...,Gp
of F from a maximal antichain in ¢°(®).

The case n = 1 should be exsmpt from the formulation
because (3) obviously does not hold for any singlston -{H1}.
However, the equivalence between (1) and (2) still holds in
this case., This follows immediately from the fact that the
corresponding tree reduces to a single chain if n = 1,

The proof consists of proofs of the threee consecutive
implications,

(1) implies (2). There are given an RPD Dp(Hyyeee,Hy),y
where in H1,...,Hn are all its terminal occurrences, and
two sets: dF(H1,...,Hn) and TF(H1""’Hn)’ Let-

e KF(H1,...,HH); i.e. let X > H; for some Hy €

€ dF(H1""’Hn)' Since the occurrence X, being a super-
formule of Hi’ necessarily belongs to the decomposition
15(X1""’Hn)’ hence X € dF(H1,...,Hn). Conversely, let
Xe dF(H1""’Hn')’ "i.e. let X appear in e‘DF(H1,...,Hn).
Since X 1is a superformula of some terminal occurrsnce Hi
of i@(H1,...,Hn), hence the RPD D(X) contains H; and
henceforth it holds by (2) of Theorem 2.2, that X 2 H,.
Thus X € TF(H1,...an).

(2) implies (3). Observe that any set {H1,...,Hn} of
some, not necessarily all, terminal occurrences in a given
RPD O(F) always forms an antichain when ordered by the re-
lation (2,1) for 'Hy; < H. implies H. is not 2 minimal ele-
ment of the set dF(H1,...,Hn) when ordered by (2.1). It re-
mains to prove that H1,...,Hn is a maximal antichain of
F2(F) if g (HysooesHy ) = dp(H yees,H ). Consider the set
{H1,...,Hn,ﬁﬁ- for some X € #°(P) and such that K #

# H,],...,K * Hn. If Ke TF(H""'.’HH)’ then K ? Hi for
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On decomposition of formulas 11

some Hi go that {H1,...,Hn,K} is not an antichain, If

K ¢ z‘F(H1,...,Hn), then K ¢ dp(Hy,e..,Hy) for gp(Hy,ee,Hy )=
= dF(H1""'Hn)' Hence, K€ #%(F) must be a proper subformu-
la of some subformula Hi of P, i.e. K Dbelongs to some
D(H;) and henceforth it holds K < H; for some H; by (2)
of Theorem 2.2. Therefore, no proper superset of the set
{H1,...,Hn} is an antichain of ¢°(F).

(3) implies {1). Let us determine the absolute total de~-
composition D°(F) of the formula F of X . Replace therein
each instruction of every occurrence H1,...,Hn by a STOP-in~
struction unless it is already attached there, Next erase in
°(F) =11 successﬁrs of any among the occurrences Hi,...,H,,
i.e, all the occurrences X with X < Hi for some Hi‘

What is left over is Dp(H,,...,H ). Were this not the case,
the set S obtdined from DO(F) by the above deletion would
contain at least one element K such that KX ¢ dF(H1,...,H£),
i.e. such that for no Hi it would hold K 2 Hi' Consequent-
ly, K must be incomparable with every occurrence H1,...,H
because the case K < Hi’ for some Hi' is ruled out by
construction and the case K 2 H;, for some Hy, by suppo~-
sition. Hence, H1,...,Hn can be extended to an antichain
{Byseee K}

Example 3.1. Apparently, each RPD of some given
formula F of & determines in yo(F) the maximal antichain
of all of its terminal occurrences, but, in view of Theo~-
rem 3.1, the converse as also true: each maximal antichain
in ¢°(F), say {H1,...,Hn}, determines a RPD of F, name-
1y the deoomposition 1&(H1,...,Hn), which is obtained from
z?(H1,...,Hn) according to (2) in Theorem 3.1.

Therefore, in ofder to determine all possible RPD’s of
a formula F of X, it is sufficient and necessary to list
all the maximal antichains in WO(F) increased by the single~-
ton '{F}. Here 1s the list of all maximal antichains of
yo(F) of the formula F of Example 2.1 (see also Example 2.2
and Diagram 2.1)3 {2,3}, {4,3}9 {4’5’6}’ {275’6}’ {2!'5[)9’10}9
{4,5,9,10}, {7,8,3,} {7,8,5,6}, {7,8,5,9,10}, {7,11,12,3},
{7,11,12,5,6}, {7,11,12,5,9,12;%

n



12 V,G.Kirin

REFERENCES

[1] v Devidé: Matematidka logika. Matematidki in-
stitut u Beogradu, Beograd 1964,

[2] >. Hii1bert, P. Bernays: Grundlagen
der Mathematik, Bd 1, Berlin 1934.

[3] VoGe Kirin: Gentzen’s method for the many-valued
propositional calculi, Math. Logik, Grundlagen Math., 12
(1966) 317-332.

[4]H, Rasiowa, R Sikorskdi: The mathe-
matics of metamathematics. Warszawa 1963.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ZAGREB, 41001 ZAGREB,

YOUGOSLAVIA
Received December 9, 1980,

- 658 -



