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1. I n t r o d u c t i o n 
We s h a l l be concerned he re with t h a t pa r t of the syn tax 

of a f i r s t o rder language which c e a l s wi th t h s decomposi t ion 
of fo rmulas of t h a t l anguage . Mors p r e c i s e l y , we s h a l l be i n -
t e r e s t e d i n the r e l a t i v e p a r t i a l decomposi t ion of f o r m u l a s , 
a device to be desc r ibed i n the seque l i n f u l l d e t a i l , f o r 
the beg inn ing i t s u f f i c e s t o say t h a t t he r e w i l l be g iven 
some i n s t r u c t i o n s f o r decomposi t ion of fo rmulas accord ing to 
which t h e r e proceeds the e l i m i n a t i o n of c e r t a i n ( thence r e l a -
t i v e decomposi t ion) connec t ives and q u a n t i f i e r s from formulas 
which s t o p s a t some chosen formulas of the language ( thence 
p a r t i a l decomposi t ion) and not always a t e lementary ones . 

F i r s t a t t e m p t s i n t h i s d i r e c t i o n go back most l i k e l y to 
mathemat ica l f o l k l o r e . However, i n [2] (pp.221-223) , [A] 
(pp.229-306) and i n [3] t r e e s were connected wi th formulas i n 
ano the r c o n t e x t , namely, as a u s e f u l t o o l i n proof theory but 
i n [3] and [4] w i th sequences of subformulas of a g iven f o r -
mula as e lements and not wi th subformulas themse lves . I t seems 
t h a t i n [1] (pp.128-131) the t r e e s of occurences of subformu-
l a s were f i r s t l y s t ud i ed i n t h e i r own r i g h t . 

Sow t o the language i t s e l f . Let the a lphabe t 9 of our 
language St be composed of mutual ly d i s j o i n t s e t s of s i g n s 
as f o l l o w s : a countable s e t X of i n d i v i d u a l v a r i a b l e s x^ 
( i . e . f o r any n a t u r a l i ) , a countable s e t C of i n d i v i d u a l 
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oonstants Cj ( for any natural i ) , a countable set i of 
k function l e t t e r s P. ( for any natural i and k) , a counta-1 jr 

ble set r of predicate l e t t e r s P., ( for any natural i o 1 
and k) except for P^ in place of which there i s the 
sign = adopted, sets of sentent ia l connectives 1= {~i»v, s } , 
q uant i f iers Q = { V , 3 } and brackets {'( , ) } . 

Throughout this paper we accept the notational system ba-
sed on inner brackets (Cf. [l] , p.128). 

Let* in the sequel Z e W(9) mean tha,t Z i s a word in 
the alphabet 9 , i . e . . a f i n i t e sequence of sings from 9 . 
Let further 

(1 .1) t : x± 

be read as "the word t , t e W(9), i s of the form x^" . Now 
the terms 'of the language Si can be characterized as preci-
sely those words t e W(9) for which t : X j , t : (L or 

k 
t : u . j . . . u k ) , where n j . . . , ! ^ are terms of SL , Having 
terms of SC already defined, the def ini t ion of formulas of 
56 proceeds in a usual way. 

D e f i n i t i o n 1 .1 . (Definition of formulas 
of Si ) 

o k 1 For any predicate l e t t e r P i and any k terms of ¿i 
the word p!£ ( t 1 . . • t f c ) of W(9) i s a formula of & . 

2° For any. two terms t^ and t 2 of £ the word = 
= ( t 1 t 2 ) of W(9) i s a formula of A . The words of W{8), 
?/hich are formulas of X according to 1° or 2° , are called 
elementary formulas of SL . 

3° I f the word A of W(9) i s a formula of <2 , then 
so are the following three words of W(9) : n(A), Vx^(A) 
and 3x^(A), where, in l a t t e r two words, x^ i s any indi -
vidual variable of ¡t . 

4° I f the words A and B of W(9) are formulas of ¡L , 
then so are the following four words of W(8) : |(A)4(B), 
(A) v (B) , U ) = > ( B ) and (A) = (B). 
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On decomposition of formulas 3 

5° The set of formulas of 3t is the least set of words 
of W(8) that contains elementary formulas of St and is 
closed under the formation rules 3° and 4° above. 

6° A word T e W(8) is said to be a subword of a word 
Z € W(8) if there are words U^, U2 t W(Q), possibly empty, 
such that T Ug. Subformulas are defined as subwords 
being formulas. If A is a subformula of B, then B is 
also said to be a superformula of A. 

7° The sign-!, V or 3 is said to be the leading con-
nective of a word A e W(8) whenever A :~i(B), A : V x ^ B ) 
or A : 3 for some B € W(8). So are the signs v, 
==> and = whenever A:(B) I (C), A:(B) v (C), A:(B)=>(C) 
or A:(B) a (C) for some B, C e W(8). 

2. Decomposition of formulas 
To decompose a given formula F of 5t will mean to de-

termine certain (possibly all) occurrences of some (possibly 
all) subformulas of P. This is achieved by eliminating si-
stematically the leading connectives from F together with 
an appropriate pair (or pairs) of outermost standing brackets 
and variables which immediately follow some quantifier and 
storing the information about the commited transformation» 
However, the definition of decomposition will be given in 
a slightly more general fashion, for words of W(8), as to 
serve equally well as a criterion of wellformedness for for-
mulas of 3t . 

D e f i n i t i o n 2.1. (Definition of decomposition) 
The decomposition <3(Z) of a word Z eW(8) is any sequence 
of subwords Ex of Z, called members or oocurrenoes of 
2)(Z), together with an appropriate instruction to be assigned 
to each Eif which is defined as follows. 

1° Bach B1 is supplied either by a STOP-instruction, 
written as (STOP), or by one among the following seven, oallad 
the instructions for decomposition or elimination» (—i e x), 
( e x ) , (3 xi e x), (lex), (vex), ( =>a x) and 
(=e x). All the instructions will be attaohed to the occur-
rences they are applied to. 
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2° I f E i : ( t 1 . . , t k ) or B± := (t^ t g ) , then eaoh 
such E^ i s supplied by a STOP-instruction. 

3° Suppose i s the least member put into Z) at 
some stage of generating <®(Z), i . e . the member with minimal 
i which i s not yet supplied by any instruct ion, and E^ i s 
the l a s t member put into <S(Z) by then, i . e . the member with 
maximal j . There are three cases to be distinguished. 

3°1 I f Ei s - i ( F ) , V x ^ F ) or 3 x i ( P ) , then each such 
JSj, i s supplied e i ther by a STcr-instruction or, respectively 
by an instruct ion; (~le x ) , (Vx^ e x) or ( 3 * i e x ) . In 
the l a t t e r case put :F. 

3°2 I f B i : ( P ) * (G), (P) v (G), (P )=> (G) or (P) = (G), 
then each such E^ i s supplied e i ther by a STOP-instruction 
or, respect ively , by an instruct ion: (<6 e x ) , ( v e x ) , 
(=£e x) or ( s e x ) . In the l a t t e r case put B j + 1 : P and 
3 -G 

2+2 
3°3 I f Ei i s not of the form mentioned in 3°1 or 3°2, 

then each such Ei i s supplied by a STOP-instruction. 
4° B 1 : F . 

By 4°, <®(Z) contains at l eas t one element. ¿)(Z) i s 
always a f i n i t e set because the process of decomposing a g i -
ven word Z e W(Q) necessari ly stops by 2° or by 3°3. Further-
more, by 3° one sees that <S0(Z) i s uniq|uely determined. 

D e f i n i t i o n 2 . 2 . (Definit ion c f various kinds 
of decompositions)j 

1° Every occurrence E^ of some <0(iZl), which i s supplied 
by a STOP-instruction, i s called a terminal occurrence of 
that <®(Z). 

2° I f in a decomposition £>(Z) there i s at leas t one Ei 
of the form quoted in 3°1 or 3°2, which i s supplied by a 
STOP-instruction, then every such £)(Z) i s called a part ia l 
decomposition of that Z e W(6). I f no- occurrences of some 
3XZ) of the form 3°1 or 3°2 are supplied by a STOP-instruc-
t ion , then every such <5D(Z) i s cal led a t o t a l decomposition 
of that Z J)W(8). 
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3° Let J be the se t of a l l i n s t r u c t i o n s for decomposi-
t ion as given in 1° of the Def in i t ion 2 . 1 . I f there i s some 
subset K • of J omitted by some <S){Z), i . e . i f there i s 
always applied a STOP-instruction to every occurrence E.̂  of 
that <0(Z) whose leading connective i s dea l t with in K, 
then every such 4D(Z) i s ca l led a r e l a t i v e decomposition, 
more p r e c i s e l y , a decomposition r e l a t i v e l y to the s e t of 
i n s t r u c t i o n s L = J - K. I f no i n s t r u c t i o n s from J are 
omitted, then every such £)(Z) i s sa id to be an absolute 
decomposition of that Z. 

An i n t e r e s t i n g case thereof i s obtained when the set L 
c o n s i s t s of a l l the in s t ruc t ions for e l iminat ion of a l l sen-
t e n t i a l connectives so that K = { ( Vx.^ e x ) , ( 3 x i e x ) j . 

There are many p o s s i b i l i t i e s , even mutually interdepen-
dent, f o r a decomposition <®(Z) to be a r e l a t i v e p a r t i a l 
decomposition of that Z e W(9). The two marginal p o s s i b i -
l i t i e s are obtained e i ther when no i n s t r u c t i o n s fo r decompo-
s i t i o n are used at a l l , i . e . when 1 = 0 , so that ¿b(Z) r e -
duces to the sequence: 1. Z(STOP), or when L = J so that 
¿D(Z) turns out to be an absolute t o t a l decomposition of Z. 

JD(Z) i s e s s e n t i a l l y a sequence so l e t d(Z) denote the 
se t whose members are a l l the occurrences of «D(Z) and l e t 
d (Z) be the set of a l l the subformulas of Z which occur 
in d(Z) . Obviously, to each occurrence E^ of 5)(Z) there 
corresponds a unique word E? e W(8), the word of th i s E . . 
Note that E^ may be i d e n t i c a l with some E^ though E^ 4 E.. 
in <0(Z). 

In the sequel , i f not otherwise s t a t e d , we s h a l l usually 
take into considerat ion some given r e l a t i v e p a r t i a l decompo-
s i t i o n , wri t ten fo r short RPD. Apparently, the procedure of 
decomposing a given word Z e W(8) i s designed so that i t 
might s i n g l e out the formulas of 5i within the set W(8). 

T h e o r e m 2 . 1 . A word P e W(6) i s a formula 
of 3L i f and only i f every terminal occurrence in any .8(F) , 
an RPD of P, i s a formula. 
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Note that 3°1 and 3°2 , when applied to formulas, yield 
again formulas and tha t , again by 3°1, 3°2 and 3°3, every 
occurrenoe E^ in whatsoever RPD of F wil l be supplied by 
a STOP-instruction i f i t would not be a formula. Hence, eaoh 
such E^ i s a terminal occurrence of any 5)(P). An easy 
proof., of the fac t that a l l the occurrences E.̂  of any <SD(F) 
are formulas of Z i f and only i f F i s a formula of SL i s 
now by induction and therefore can be omitted. Henceforth we 
have the following 

C o r o l l a r y 2 . 1 . A word F e W(8) i s a formula 
of SL i f and only i f a l l terminal occurrences in i t s absolute 
t o t a l decomposition ¿0°(F) are- elementary formulas of SL . 

The next theorem i s stated for formulas, resp. for sub-
formulas,. of SL but i t applies equally well to words, resp. 
subwords, of W(S). 

T h e o r e m 2 . 2 . Let ©(F) be a given r e l a t i v e par-
t i a l decomposition of a formula F of £ and d(F) the set 
of a l l those occurrences which appear in 53(F). Define in 
d(F) : 

( 2 . 1 ) E ± $ Ej i f and only i f the occurrence Eĵ  of 5)(F) i s a 
subformula of the occurrence E. of JD(F). 

tJ 
Then i t holds: 
(1) by ( 2 . 1 ) there i s defined.a r e l a t i o n of p a r t i a l order 

in d(F) , 
(2) E i < Ej holds in d-(F) i f and only i f there i s an 

RPD ¿D(E.), being r e l a t i v e and par t ia l under the same condi-J 
tions as ¿D(F), such that the occurrence E^ of 3)(F) i s 
a term in ¿0(E^) and 

(d) ( d ( F ) , < ) i s a t r e e . 
The proof of ( 1 ) . A < A holds by 6° in Definition 1 . 1 . 

I f B:U1 A U2 and C:V1 B then CsV., U1 A U2 V2 , i . e . 
A < B and B < C imply A ^ C. Suppose A ^ B. Were 
A t B, B would be a proper superformula of A and hence B 
would contain some sign missing in A f o r , going through 
the instruct ions for elimination 3°1 and 3°2 , one sees that 

- 652 -



On decomposition of formulas 7 

by passing from a formula to its proper subformula some signs 
of the first one are always missing. But all sings of B must 
be signs of A if B s? A should hold. Therefore, A $ B 
and B $ A imply A = B. 

The pi-oof of (2). Observe that the formula F is the 
greatest element of the set d(F) when it is ordered by 
(2.1). Hence, A ^ B implies A e d(B) so A occurs in 
¿0(B) and conversely whenever the conditions on decomposition 
in 5)(F) stay unohanged in 35(B). 

The proof of (3). In view of (2), it suffices to show 
that the set 0(H) = { x c d(P) sX £ h } is a chain in (d(F),<) 
fo."* ever^ H e d(F). Firstly, let 0(H) be a chain. Since 
F e 0(H), F is a maximal element of 0(H), hence the chain 
Q(H) is well-ordered. Finally, 0(H) is a chain indeed be-
cause for any two occurrences A and B in 0(H), A ^ B, 
it holds by (2): if not A $ B, then the occurrence A 
does not appear in 3)(B). Hence, the occurrence H cannot 
appear in fl)(B) too beoause H is a subformula of the occur-
rence A. Therefore, either A < B or B ^ A holds for any 
two occurrences A and B of 0(H). 

E x a m p l e 2.1. Let us determine the absolute total 
decomposition 5)°(F) of the formula F: ( V x 1 ( (Ja) A ((A) => 
=>(B))) = > ((A) A ((A) = M B ) ) ) , where A:P|(x1C3) and 
B t P l ( x ^ C 2 ) . 

Here is the corresponding JD(F): 
1. ( V x ^ A ) A ((A) =>(B)))) = M ( A ) A ((A) =>(B))) (=>e x) 
2. Vx.,((A) A ((A) =»(B)}) (Vx 1 e x) 
3. (A) A ((A) = > (B)) (A e x) 
4. (A) A ((A)=>(B)) (A e x) 
5. A (STOP) 
6. (A) ==> (B) (=>e x) 
7. A (STOP) 
8. (A) (B) (=>e x) 
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9. A (STOP) 
10. B (STOP) 
11. A (STOP) 
12. B (STOP) 

E x a m p l e 2.2. The next Diagram 2.1 represents 
the tree (d°{P),<) of the formula F of Example 2.1. 
Instead of quoting all the occurrences of ¿0°(P) at the 
appropriate knots of the tree, these knots are rather la-
beled by natural number i under which a particular E^ 
appears in 5)°(P). The terminal occurrences of *0o(F) fire 
shadowed in the diagram. 

3. Properties of decompositions 
Here there will be stated some equivalent conditions for 

an RPD of a formula F of A to be determined by all its 

Diagram 2.1 
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terminal occurrences. The following two definitions enable 
us to formulate our next theorem. 

D e f i n i t i o n 3.1. Let J)(F) be a given RPD 
of a formula F of 3L . Let H1,...,Hn be all terminal 
occurrences of 3)(F) and let be the correspond-1) * * 1 
ing subformulas ' H*,...,Hn of P. Then we say that the 
formula P is relatively^) composed of the occurrences 
H_j,...,Hn of its subf ormulas G^,...^^. Let us denote any 
such decomposition by ¿^(H^,...,HQ) and the corresponding 
set of all occurrences by dp(H1,...,Hn). 

D e f i n i t i o n 3.2. Let jf0(P) be that tree 
which, in view of (3) of Theorem 2.2, corresponds to the to-
tal absolute decomposition 5)°(P) of toe formula F of & . 
An initial segment of f°(P), determined by the occurrences 
H_j,...,Hn of subf ormulas of P, is the set 
J'p(H1,... ,Hn/ defined as follows: 

arp(H1f...,Hn) = {x e f(¥):X > H i Tor some H i in j-0^)}. 

where the order relation is that of (2.1). 
It can be easily shown that the set ,... ,Hn), when 

ordered by the relation $ in (2.1), is a tree because the 
set 0(G) = [x e jfp(H1,... ,Hn) :X £ gJ is a chain for any 
G e yF(H.j,... ,Hn). Indeed, since G £ H^ for some H^ and 
A,B e 0(G) by supposition, hence A £ H.̂  and B £ H^ by 
transitivity. The proof now proceeds as in the proof of (3) 
in Theorem 2.2. 

^ Cf. Example 2.1 and Diagram 2.1 where there are six 
different terminal occurrences of only two formulas A and B. 

2) 
' I.e., relatively to the same set L of instructions 

for decomposition to which 2)(F) is known to be a relative 
partial decomposition. Of course, any chosen partial decompo-
sition remains unchanged throughout this definition. 
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T h e o r e m 3.1. The following three assert ions are 
mutually equivalent for any formula P of i whenever 
n > 2: 

(1) The formula F i s r e l a t ive ly composed of the occurren-
ces H 1 , . . . , H n of i t s subiormulas 

(2) dp(H-j Hn) - g-pt^ HQ); 
("3) The ocourrenoes of subformulas 

of F from a maximal antichain in jf°(P). 
The case n = 1 should be exempt from the formulation 

because (3) obviously does not hold for any singleton 
However, the equivalence between (1) and (2) s t i l l holds in 
this case. This follows immediately from the fact that the 
corresponding tree reduces to a single chain i f n = 1. 

The proof consists of proofs of the threes consecutive 
implications. 

(1) implies (2) . There are given an RPD ^ ( H ^ , . . . ,Hn), 
where in H 1 , . . . , H n are a l l i t s terminal occurrences, and 
two s e t s : dp(H 1 , . . . .H^} and f p ( H 1 , . . . , H n ) . Let 
X e 2Tp(H1,...,Hn)', i . e . l e t X £ Hj_ for some % e 
e dp(H.j , . . . ,Hn). Since the occurrence X, being a super-
formula of H^, necessari ly belongs to the decomposition 
< Sp(X 1 , . . . ,H n ) , hence X e dp(H1 Hn). Conversely, l e t 
X e dp(H 1 , . . . ,H r i ) , i . e . l e t X appear in 5 )p (H 1 , . . . ,H n ) . 
Since X i s a superformula of some terminal occurrence H^ 
of 4Dp(H1,...,H Ja)> hence the RPD <SD(X) contains H^ and 
henceforth i t holds by (2) of Theorem 2.2, that X 2 H^ 
Thus X c J p i H ^ . . . , ^ ) . 

(2) implies (3) . Observe that any set j H ^ , . . . ,H n j of 
some, not necessari ly a l l , terminal occurrences in a given 
RPD ffl(F) always forms an antichain when ordered by the r e -
lat ion (2.1 ) for H. < H. implies H. i s not a minimal e le -^ j j 
ment of the set dp(H 1 , . . . ,H n ) when ordered by (2 .1 ) . I t r e -
mains to prove that i s a maximal antichain of 
y°(P) i f 2fp(H 1 , . . . ,Hn) = d p ( H 1 , . . . , H n ) . Consider the set 
jH1 H n » K } f o r s o m e K e 2T°(F) and such that K i 
i H1 K t Hn. I f K e ^ p ( H 1 t . . . , H n ) , then K £ H± for 
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some H^ so that ,...,Hn,KJ is not an antichain. If 
K i JTp(H1,...,Hn), then K t dp(H.,,... ,Hn) for ffpiH.,,... ,Hn) = 
= ,... ,Hn). Hence, KeJ0(P) mast be a proper subformu-
la of some subformula H^ of F, i.e. K belongs to some 
¿H^) and henceforth it holds K < H i for some H^ by (2) 
of Theorem 2.2. Therefore, no proper superset of the set 
jH1,...,Hn| is an antichain of $T°(P). 

(3) implies (1). Let us determine the absolute total de-
composition cZ)°(P) of the formula P of X , Replace therein 
each instruction of every occurrence by a STOP-in-
struction unless it is already attached there. Next erase in 
S)°(P) ¿11 successors of any among the occurrences H^,...,Hn, 
i.e. all the occurrences X with X < H^ for some H^. 
What is left over is ,...,Hn). Were this not the case, 
the set S obtáined from <®°(P) by the above deletion would 
contain at least one element K such that K t dF(H1,... ,Hn"), 
i.e. such that for no it would hold K ? H ^ Consequent-
ly, K must be incomparable with every occurrence 
because the case K < H^, for some H^, is ruled out by 
construction and the case K £ H^, for some H^, by suppo-
sition. Henoe, can be extended to an antichain 

E x a m p l e 3.1. Apparently, each RPD of some given 
formula P of St determines in ¡f°(F) the maximal antichain 
of all of its terminal occurrences, but, in view of Theo-
rem 3.1, the converse as also true: each maximal antichain 
in fl^F), say {H.|,...tHnJ, determines a RPD of P, name-
ly the decomposition •®p(H1,...,Hn), which is obtained from 
ip(H1,...,Hn) according to (2) in Theorem 3.1. 

Therefore, in ofcder to determine all possible RPD's of 
a formula P of 2 , it is sufficient and necessary to list 
all the maximal antichains in jf°(P) increased by the single-
ton { p]. Here is the list of all maximal antichains of 
y°(P) of the formula P of Example 2.1 (see also Example 2.2 
and Diagram 2.1): {2,3}, {4,3}, {4,5,6}, {2,5,6}, {2,5/,9,10}, 
{4,5,9,10}, {7,8,3,} {7,8,5,6}, {7,8,5,9,10}, {7,11,12,3}, 
{7,11,12,5,6}, {7,11,12,5,9,10}. 
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