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ON CERTAIN NONLOCAL PROBLEM WITH MIXED BOUNDARY
CONDITION FOR A PARABOLIC SYSTEM
OF PARTIAL DIFFERENTIAL EQUATIONS

1. Introduction

In the present paper we give tha solution of a certain
nonlocal problem with mixed boundary condition for a parabo-
lic system of partial differential equations., The method pre-
sented in this paper makes poasible the reduction of nonlocal
problem to a system of Volterra integral equations. We shall
make use of the results established by the author in papers
[1] and [2].

Consider the problem (N):

Find a vector-function u(x,t%) satisfying the system of
equations

aw °T =

(1.1) 2% = 4D Pl + £(x,t)

in the domain (x,t) € Q = (0,1)x(0,T), O <T <oo , where

u1(x,t) f1(x,t)
E(X»,t) = E 'y -f(x,t) = s ’ D = [dlj] i,j=1,...,n.
un(x,t) fn(x,t)
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2 M.Majchrowski

land Re A> 0 for any eigenvalue A of the matrix D, such
that

(1.2) lim u(x,t) = ¢(x) for x e (0,1)
t=0%

(1.3) A(6)E (0,%) - B(t)W(1,%) = H(%),

where

n(0,%) = 1im ‘u’x(x,t), u(1,t) = 1im u{x,t) for t e (0,T)

p -l
(1.4) a1, - D gy(t)eTlxy,%) = h(s) for % € (0,1),
J=1

XiseseX, aTe fixed points of the interval (0y1)e
- We assume that

(1) ¥(x) is a continuous vector-function with bounded va=
riation in the interval (0,1),

(i1) H(t), R(t) are two continuous vector-functions, pie-
cewise of class C| in the interval <0,T>,

(iii) A(t), B(t), pj(t) (j=1yeee,p) are n-dimensional ma-
trices piecewise of class 01(0,T),
det A(t) # O for every t e (0,T).

We recall that if D = [dij] is an n-dimensional matrix
such that Re A>0 for any eigenvalue A of the matrix D
then by M{(x,t) for (x,t) € (~o0,+o0) x(0,+o0) we shall
understand the sum

+ 00 .
(1.5) M(x,t) = I + 2 Z exp [—kzsrzt D] cos ko x.
k=1
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" Introduce the following notations

-

(1.6) u1(x,t)

-2D } [M(g, t-s) - u(%E, t-s)] £,(s)ds
0

(1.7) 'xfz(x,t) = [M;G%l, t-s) - Mé(’—c%l, t-s)] fz(s)ds
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(1.9) 54(x,t) =

I
ENEN
Q ey i

—

M(x-s-z' t-q) - M(M' t-q)] f(s,n)ds dn,

2 2

-

whers E](s), f2(s), _cf(s), -f(s,q) are some fixed functions,

2. The auxiliary problem

Let us consider the problem (F):

Pind vector-function u(x,t) such that (1.1) holds in Q
subject to the following boundary conditions:

(2.1) %Egu_ E(x,t) = Zf.(x) for x € (0,1)

(2.2) %33+ T (x,t) = %}(t) for t e (0,T)

(2.3) lim_ &(x,t) = £,(t) for t e (0,T).
x=1"

) We shall_vconstruct solution of (F) problem explicitely,
without referi‘inglto integral equations. To this aim, let us
recall the main results of the paper [‘I] .
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Theorem 1, If for every eigenvalue A of the
matrix D +the condition Re A > 0 is satisfied then:
a) M(x,t) is of the class C®° in the domain (x,t)
(=o0,+00)x(0,+00) and the respective derivatives can be
obtained by term-by-term differentiation of the respective
series.
b) 1im PHEE) Lo por g = 0,1,2,0k., X £ 0,42,4400s
t-ot ax° -
c) Por (x,t) € (~oc0,+o0)x(0,+o0) each column of the ma-
trix M(x,t) is a solution of the homogeneous system (1.1)
i.e.

ulx,t), p M(x,t)
at ax°

Now, we can prove the following theorem,

Theorem 2, If the vector-functions E:(t),?;(t)
are continuous in the interval <0,T> and possess bounded
and piecewise continuous derivatives E;, ?; for t ¢ (0,T)
then:

a) the functions ﬁ%, Eé defined by (1.6), {(1.7) setisfy
the homogeneous system of equations (1.1) (F(x,t) = 0))
b) %E8+ E;(x,t) = 0 (i=1,2) for every fizxed x e (0,1)
¢) lim uy (x,t)

f1(t), lim_ E}(x,t) = 0 for every t e (0,T)

x+0 X1
d) lig E;x(x}t) = 0, li$ E;(x,t) = Eé(t) for every t e {0,T).
X~ x-=1"

Proof. The validity of part a) and b} of Theorsm 2
results from Theorem 1 and from elementary analytical calcu-
lations (cf. [1]). Now, we establish the validity of part c)

of the theorem. To this aim let us note that 1lim E}(x,t): 0
- X--1=

because M(%, t-s) = M(-E' t—s) and
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‘Certain nonlooal problem 5

u{x(x,t) = =2D ; [% Hi(% ,t-s) -'% M;(Egg, t-s)] ;i(s)ds =
‘ 0
t

= =D I M;(gy t-e) f1(8)d8+-D } ) (xEZ’ t= ) f1(s)ds.
0
By Theorem 5 of paper ﬂﬂ it follows that

lim Df x@ -s) -El(s)ds = -?1(‘1;) for t e (0,7)

and

t

lim D e (xgz t-5) f-..l(s)ds =0 for 4 e (0,T)
x-0t

which completes the proof of the part o). Analogously paert d)
can be proved.

Theorem 3. If the vector-function ¢(x) posses-
ses a bounded variation in the interval x e (0,1) and it is
a sun of its trigonomeftria Fourier series for every x ¢ (0,1),
then the vector-function E}(x,t) defined by (1.8) is a solu~-
tion of the homogeneous system {1.1) (f(x,t) = 0)) and sa-
tisfies the conditions

%Eg+ E}(x,t) = ;Kx) for x € (0,1),

1im E'3x(x,t) =0,

x-0t
lim EB(x,t) =0 for t ¢ (0,T).
x-1=

Proof ., Prom the definition (1.5) we obtain
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FE2 0 vu(ee, o) - uEE2, o) - u(mg2, ] -

+o0

= 2 :E: exp[—(2k+1)2m2t D] cos gggl-gx oos‘ggglsrs.
k=0

This series is uniformly convergent with respect to x and s
(t Dbeing fixed). Thus, we have

400
(2.4) E;(x,t) = EE: éxpﬁ-(2k+1)2ﬂ2t Iﬂ cos 2k;1 mx-ak,
k=1

where

1
=2 f ¢(s) cos 25%1 ms ds for k = 0,1,2,e00
0

The series (2.4) converges uniformly for t € <0,T> because:

oQ
the series .E: &, converges (cf. lemma in [2] ). Then
k=0

llm+ u \x t) 2{: cos

Txea, = p(x)
t+0 k

oy the assumption,

he formula (2.4) implies that iig E;x(x,t) =
= iim_ E}(x,t) = 0, The series {2.4) is almost uniformly
cogv;rgent in ¢, so it can be differentiated term-by-term
and it is clear tanat E'(x,t) satisfies the homogeneous sys-
vem of equations (1.1).

Low, we can prove the following theorem.

Pheoren 4, If:

a) ;?x,t) is continuous in the rectangle q,

- 640 =
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Certain nonlocal problem

b) lim §7x,t) = lim f(x,t) = 0,
x~0 x-1"

¢) f(x,t) is piecewise of the class 02 with respect to x
(t being fixed),

1 e}

d) tE?S?T) g “fxx(x,t)“dx < 400,

e) the number of points of discontinuity E;;(x,t) as s fan-
ction of x is not greater than nj (nO ig independent
on %),

then the vector-function E;(x,t) defined by (1.9) is a so-

lution of the system (1.1) and satisfies the homogeneous boun-

dary and initial conditions

ﬁg}r u,(x,t) = J]E:;8+ g (x,%) = J]EJ..’E]n_ uy(x,t) = 0,

Proof. According to the theory of Fourier series,

—-

the function f(x,t) which satisfies given assumptions can
be written in the form

+0o9Q
£{x,t) = 2{: g;(t) cos 2k£1 T X,
k=0
where
1
bk(t) = 2 f f{s,t) cos 2k;1 s ds  for k=0,1,2,ee0
0

are continuous functions for t € (0,T) satisfying the ine-
guality

H bk(t) <§'2 ? k = 0,1,2,.0- .

4 1is a positive constant,
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From the uniform convergence of the series

3 [ (%52 6-q) + M=, t-q) - u(E2, t-p) -

O(——._l

- M(M t- r()] —f.(s,rl)ds =

+oc0
= Z exp [-(2k+1)21r2(t-q)D] cos 2k;1 wX S.k(q)
k=0

it follows that

(205) Tl.4(x,t) =
+00 t
= D cos 2l gy I exp[-(2k+1)252(t-q)D] by(q)dn.
k=0 0
Hence
u:u(x,t) = 2 b, (t) cos __2k;1 X +
k=0
400 t
-D Y cos 21_‘5_1”! (2k+1) 2n2xp [-(2k+1) 22 (=) D] B, (9)dn =
k=0 0

2“u
bd —4

The proof of the second part of the theorem follows from
(2.5)
Theorems 2, 3 and 4 imply the following corollary.
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—

Corollarzry. If the functions f1,?2,$,?
satisfy the assumptions of Theorems 2, 3 an¢ 4 respectively,
then the problem (F) possesses the solution. This solution
can be written in the form

(2.6)  alx,t) = Wlx,8) + Ny(x,8) + By{x,0) + W lx,t)
?herj E}, Eé, Eé, Eh are defined by (1.6}, (1.7), (1.8),
149).

3. Solution of the problem (W)

We can prove the following theorem.

Theorem 5, If H,:F, i, &, B, ps (3=1,000,p)
satisfy conditions (i), (ii), (iii), and T(x,t) satisfies
the assumptions of Theorem 4 then there exists a solution of
the problem (N),

Proof. Let us denote

£.(t) = 1im ul(x,t T.(t) = lim alx,t
1( ) X‘0+ X(x’ )’ 2( ) Xi1_ u(xp )

where a solution u(x,t) of the problem (K) is sought in
the form (2.6).
From the first nonlocal condition (1.3) we obtain

(3.1) £,08) = a7N0E6) + a7N0)BIDIF ().

Combining formulas (2.6) and (3.1) we can write

t
E(x,t) = f K(x,t,8) E;(s)ds -
0

%
- 2nf [M(’—z‘, t-s) - u(E52, t-s)] 2~ V(s)H(s)de +

+ Eé(x;t) + ﬁ;(x,t),
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where

K(x,t,8) = D[M;(x—gl, t-8 )]- lvl;c(l‘;—’, t-s) -

- 2D[M(2, t-s) - M(xzz, t-sﬂ A'1(S)B(s),

is continuous with respect to t € <0,T>, 8 € <0,t)> for
every fixed x € (0,1).

From the second nonlocal condition (1.4) we infer that
the function‘ ;;(t) must satisfy the following system of
Volterra integral equations of the second kind

- P - -
(3.2) £,(t) -f S pslt) Kixg,t,8)F,(s)ds = F1),
0 =1
where
(3.3) Flt) = -2 Z py(t) Df [M(x', tes ) -

3=1

- M(gi, t-a)] 2~1(s)H(s)ds +

P
+ Ett) + :E: }B(t)[ﬁé(xj,t) + Eh(xj,t)].
J=1

Hence we conclude that there exists exactly one solution of

the system (3.2). This solution is continuous and piecewise

of class €', The formulas (3.1) and (2.6) define the solu-
tion of the problem (N).

Remark, If the condition lim f(x t) =
x-0%
= lim f{x,t) = 0 is not satisfied but f(x,t) is conti~
x-=1-
nuous in <0,1> x (0,T> , theh we can use the substitution
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Certain nonlocal problem 11

t
[_1’:?(1,3) - z_f‘.(O,s)] ds - ! F(O,s)ds.
0

vix,t) = u(x,t) - x

C et

This substitution reduces the problem (N) to the problem {N¥)
et ] u -
Ve = 4D Vex t 8
where
glx,t) = £(x,t) - x[£(1,t) - £(0,t)] - F(0,t)
8(0,t) = g(1,t) = 0
V(X,O) = ?(X)
with conditions
8(£)V,(0,8) = B(£)¥(1,t) =

—

= H(t) - A(t)

(o) Su——y

[$(1,s) - Tl0,8)] ds + B(t) j?ﬁ_,s) ds,
0

p
V(1,8) - > py (6)V(xg, 1) =
i=1

p
= h(t) -I f(1,8)ds+ > P.j(t){xj ] [£(1,8)-£(0,5)] ds+?§(0,s)ds].
0 J=1 0 0
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