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APPLICATION OF THE CHARACTERISTIC POLYNOMIAL
OF THE TRANSITION MATRIX TO THE INVESTIGATION
OF THE PROPERTIES OF A FINITE GRAPH

Definition 1. We call g finite multigraph
the triplet G = (X,U,R), where:
{X] < 4003 X 18 the set of vertices of the multigraph,
IUI < +o03 U 1s the set of branches of the multigraph,
R c(x, U, X),
the following conditions being satisfied:

1) to any u € U there exist x, y ¢ X such that (x,u.y)e R,
2) to any u € U if there exist x, y, 2, k € X, such that
(x,u,2) € R and (y,u,k) € R, then x =3y and z = k

or x=k and y = 2.
Definition 2. In the finite multigraph
G = (X,U,R} the branch u ¢ U 1is said to be
a) a loop, if there exists an x € X such that (x,u,x) ¢ R,
b) an arc, if there exist x,y ¢ X such that (x,u,y) € R,
(3,u,x) ¢ P,
c) an edge, if there exist x,y € X such that (x,u,y) € R
and (y,u,x) € R,
In what follows we shall consider finite multigraphs without
loopse
To any finite multigraph we can give & geometrical inter-
pretation in the following way:
1) to each vertex x € X we assign a point x of the plane,
so that to distinct vertices are assignet distinct points,
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2 - B.Ggslorowski, M.Rozmus

2) to each arc u ¢ U such that (x,u,y) € R we assign in
the plane a segment directed from the point x +to the
point y. '

3} to each edge u € U such that (x,u,y) € R we assign in
the plane an undirected segment joining the points x
and 3.

4 multigraph containing no edges (arcs).is said to be di=-
rected (undirectud). '

If in a multigraph any pair sf vertices are joined by no
more than one branch, the multigraph is called a graph. In
particular, a graph cannot contain arcs joining the same ver-
tices and reversely directed.

We call route of length 1 with origin xio and end X, _

an alternate sequence of vertices and branches of the multi~

raph of the form ({x u; s ceoeplls ' h that

arap. { io’ l1yx119uio ? ll’xil}’ suc a

for any k = 1,ess,1 the branch uy joins the vertices
k

and x; (if u;  is an arc, then it may be directed
x ‘

X,
1x-q k

from x4 to or reversely). A route of length 1
k=1

X
i
k
such that all the branches are distinet is said to be a chain
of length 1. '

4 chain whose esach arc u is directed from =x, to
- N Tk-1

.xik is said to be a path. A chain (route, path) whose all
vertices are distinct is sgid to be simple. A chain (rdute,
path) which begins and ends at the same vertex is called a
cycle (cyclic route, cyclic path). A cycle (cyclic path) of
length 1, having 1 distinct vertices is called a simple
cycle (simple cyclic path) of lenght 1. A multigraph is
said to be connected if to any pair of its vertices x,y ¢ X
there exists a chain with origin x and end Jy.
Definition3 Lot X={x;yX,ees,x,} Do the
set of vertices of a finite multigraph G = (X,U,R). We call

a transition matrix P = [pi j] the matrix such that
?
pi,j = I{u eVl /, (xi,u,xj) € R}l for 1,J=1,..0,40
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Definitilon 4. a) The metric of the multi-
graph G = (X,U,R) 1is defined as the function

o, if x=13,

‘olx,y) =4 ¥ if x # 7 and if there exists no chain with
Pix,y) = origin x and end 1y,

1, otherwise,

where 1 denotes the length of the shortest chain with ori-
gin x and end Y.
b) The vertex x, € X 1is sald to be: central, if for any
¥ € X max p(x,,y) < ma; ¢(x,y) or peripheral, if for any
€X €
x € X max (x,,3) 2 m:§ o(x,3).

yeX Y
o) The radius of the multigraph is defined as the number

r(G) = min max p(x,y).
xeX yeX

The diameter of the multigraph is defined as the number

d(6¢) = max ¢(x,y).
X,yeX

d) Let A, B CX, A # ¢, B#@. The distance between
the sets 4, B 1s defined as the number

Q(A,B) = min p(x,y).
XE€A
yeB
The distance of the vertex x, to the set A 1is defined as
the number

p(xy,4) = ?ﬁf o(xgs3)e

In what follows we shall assume that

G = (X,U,R) 1is a finite multigraph without loops,
X= {x.ln'.x'z’o‘o’xn ¢
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Let us now denote by:

a) D;,k t k= 2,000y 1 = 15000, [%], the set whose ele~
ments are 1 sets of cyclic simple paths without common ver-
tices, such that the sum of their lengths equals k. In spe-
¢ial cases, for some 1, k the set D;,k may be empty.

b} P = P(G) +the transition matrix for G, with the as-
sumpted numbering of vertices,

c) Di’.(h) the co-factor of the element in the i-th row
and j-th column of the matrix P ~ A.E; Di’j(A) is a poly- -
nomisl of degree ki,' in the variable A, such that the
highest power of A has the coefficient Hi,j'

Remark 1. Given a multigraph G it is possible
to build:

a) a directed multigraph Gy = (X,U1,R1) in such a way
that each edge of G Jjoining the vertiges x and y 1is re-
placed by the pair of reversely directed arcs in G1 which
join the same vertices,

b) a directed multigraph G, = (X,U2,R2) with a symme-
trical transition matrix, in such a way that to each branch
of G joining the vertices x,y there corresponds in G2
exactly one pair of reversely directed arcs joining thess
vertices. It is easy to see that to each path in G there
corresponds in G1, exactly one path passing th:oughvthe Same
vertices, The transition matrices for G and G1 are iden-
tical and the fransiftion matrix of G2 is symmetrical.

Let us now recall the following theorem (see [1]):

Theoren Te The characteristic polynomial of the
matrix P is

A0=3

det(P - AE) = (—1)n(7ln + azﬂn_2+ 5.3 +oeee + an),

where, for any k = 2,e..,n0¢

a = =D}l + D3,k = D5, ] + ooe + (1)
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The orenm 2. Let G1 be a directed multigraph
corresponding to G in accordance with Remark 1.
Let be gliven the sets of vertices:

JI‘
X2 = {Xi1,xi2,.oo,xis} Cx; S ? 1’

X1 = {Xj1,Xj2’o.o’x- } CX; r ? 1,

N X2 = .
Denote:
a) by G3 = (X’UB’RB) the multigraph obtained from Gy

in the following way: for each palr of vertices (xi ' X5 )€
k “w
€ }[2“}(‘l we remove in G1 all the arcs joining X5 with
. K

x:j , then we join them by exactly one arc,
w

b) by Gy = (X,U4,R4) the directed multigraph obtained
from G1 by removing from U1 the arcs joining vertices
which belong to the set X2 with the vertices of set Xl’

c) by P3, Py the transition matrices for G3 and G,
respectively,

d) by WA) = det(P3 - AB) - det(P4 - AE) a polynomial
in the variable A of degree k1(X1,X2) such that the coef-
ficient of the highest power of A equals H(X1,X2).

Assertion. 1) A necessary and sufficient con-
dition in order that there exist in G a path whose origin
belongs to X, and end belongs to X, is that W(A) # O.

2) If W(A) # 0, then the shortest of these paths has
the length n—1-k(x1,X2). The number of these shortest paths
is |H(X,,X,)

Proof. By Theorem 1 we have

det(P3-ZE) (—1)n(2n+(a2)3ﬂp"2+(aB)BAn—3+...+(an)3)

(4)

det(P,=2E) = (~1)7(A%(a,) A""24(a3) A" Priiin(ay) ),
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where for each T = 2,,40e,40

T
(o) = =|0} o] 5#[25,2] 5[ 23, = ]

(B) ¢ T
(ap)y = =|D%, 2| 4|23, 2| 4] 95,2 4+...+(-1)[?]

3+o-o+("1)

"Bl.< )5
e 3
D[%]’r

We shall restriot ourselveg to simple paths, since the shor-
test paths are always simple ones, G4 is a partial multi-
graph of GB’ obtained by removing from the set U3 the sub-
set

4

U1,3 - '{u € UB/(xik,u,wa) € R3; xik € 'xzi xdwe 11}.

All the simple oyclic paths belonging to 63 and not belong-
ing to G4 are_obtained by oomposing the simple paths Joining
the ve:tioes of x1 with the vertices of x2 with the cor-
responding arcs of the set U1’3. The multigraph G does

not contain paths joining the vertices of x1 and 12 if

and only if all the sets of simple cyclio paths in G3 and
G4~ are ldentiocal, Hence

r
ID;'rIB = DI,I‘!4 for »r = 2,000,,11; 1= 1,..., [3] .
By (A) and (B) this is equivalent to the equality W(a) = O,

Suppose that W(A) # O and that Xk denotes the least
length of a c¢yollic path belonging to G3 and not belonging
to G4 we have

¥* *
Di’rl3= D} p|s for 2¢r<k,

(ar)3 = (za.],_,)"1 for 2<r<k.
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Moreover,

I‘ak’4 - (ak’3| = ||D:,k|4 - |D‘1',k|3
since
IDI,kIB = ID;,kI4 for i3> 2.

The length of the shortest path whose origin belongs fo X1
and end belongs to X2 is k-1 and the number of such paths
equals

l{D:,k 4" lD:,kIB} = I(ak)4 - (ak’3l = |H(x1’xz)|

k-1 = n-1 - k(X1,X2).

Theorem, If G 1is an undirected graph, then for
all x,y € X there exists in G exactly one shortest path
joining these vertices if and only if

D, .(A) £0, |H =1 for i,j=l,eeesn; i > je
i,J

"l

Proof. When building the dirscted multigraph G1
corresponding to G by Remark 1, it should be noted that
the matrix P1 for G1 is identical with the matrix ? for
G. Since the matrix P 1is symmetrical, we have msrely to
consider the case 1 > j, The above theorem follows directly
from Theorem 2 for » =1 and s =1, if me make use of ths
true equality

W) =Dy g (A) - (A

D. .
’31 31911
The theorem yields in algebraic form the solution of a problem

stated by Ore (see [3], p.11¢): "Describe the class of undi-
rected graphs such that for any pair of vertices x,y thare
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exigts exactly one shortest path joining them", This problem
has been till now solved only for planar graphs (see [2]).

In what follows we shall assume that:

a) G, = (X,U2,R2) is a directed multigraph constructed
for G in accordance with Remark 1.

b) P, is the transition hatrix for Gy

c) for any 1,j = 14eee,n3 D j(A) denotes- the co=-factor
of the element in the i-th row and j=th column of the matrix
P, - ZE

d) k denotes the degree of the polynomial Dy J(7\)
in the varlable A

Theorenmn, If G is a connected multigraph,
IX] > 2, then:
1) The radius of the multigraph is

r(G) = n -1 - max min k; 2
14§ n2iz1 Tod°

2) The diameter of the multigraph is

d(G) =n -1 - min Kk 2
npisjz1 09

3) If x; € X, then
3a) x. 1is a central vertex if and only if for any

1
T = 1,ooc,n

. 2 . 2
min k.%: min ky
43 Tyd i#3 -1,

,j=1,oo',n j=1,n-o,n

3b) X; is a peripheral vertex if and only if the inequa~=-
lity under 3a) is replaced either by the reverse inequality
or by the equality.

Proof. 1) BSince |X|>2, there exists for each
i; j # i such that g(xi,xj) > 0, We have merely to con-
sider the case i # j.
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Since G 1is connected, so is G2 and

Difj(u £0 for i,i = 1yeee,n, i # Je

n -1 - mnax min k.2 .
»d

r(G) = min max {x: ,x.)
1 E10%; nifj n2jx1

i*j i=1,ooo,n

2) The proof is similar to that of case 1).
3) x; 1s a central vertex if and only if for each x, € X
the following inequality holds

(4! (x4,7%y) € (g )
detyene,n SRS T O

Similarly to case 1) we can restrict ourselves to the case
i#j, h#r we have|

9(xi'xj) n-1- ki?

]

2
n - 1 - kr ho

o(xp,xy,)

Hence the inequality (4) is equivalent to the inequality

. 2 2
min k > min k “..
) i#ﬁ i, I‘Z‘[j Tyd
j=1""’n j=1’oc.,n
3b) The proof is analogous to that of case 3a).
Theorem, Let 22 and xi1,xiz,...,xi be
T

a sequence of vertices of the multigraph G such that

X # X for l = 1 X r-10
Lha T4 e
‘Assertion, 1) A directed route from x5 fo
1
Xy passing in turn through the vertices x. 91X seeeyXy
r 12743 =1
exists if and only if
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10 B.Ggsiorowski, M.Rozmus

r

D. . (A)| # 0.
1=2 *17%1-1 ’

2} If condition 1) is satisfied, then there exist in G

r
exactly ['1 |H; directed routes with origin x
1=2 1°71-1
and end Xy passing through the vertices xié
T
and having the least length; the length of each of them is

1

'Xi ’.»oo,xi

-1

r

(I‘ - 1)(n - 1) - Z kil,il-1.

1=2
Proof. To obtain the shortest route wanted in the

theorem we compose the shortest paths joining the vertices

xi1 with xiz, xi2 ‘with X5 ,...,xir_1 with xir. 4pply~
ing Theorem 2 to the paths that form this route and making

use of the equality

Wl(ﬂ.) = Dil’il—1(a.) fOI‘ 1=1,.oo,r-1

we get the assertion.
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