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APPLICATION OF THE CHARACTERISTIC POLYNOMIAL 
OF THE TRANSITION MATRIX TO THE INVESTIGATION 

OF THE PROPERTIES OF A FINITE GRAPH 

D e f i n i t i o n 1. We cal l a f ini te multigraph 
the t r i p l e t G = (X,U,R), where: 

| X| < +oo; X i s the set of vertioes of the multigraph, 
| U | < +<»oj U i s the set of branches of the multigraph, 
a C (X, u, x ) , 

the following conditions being sat isf ied: 
1) to any a € U there exist x, y c X suoh that (x ,u .y )e R, 
2) to any a € U i f there exist x, y, z, k e X, such that 

(x,upz) e R and (y,u,k) e R, then x = y and z = k 
<jr x « k and y = z. 

D e f i n i t i o n 2. In the f ini te multigraph 
G = (X,U,R) the branoh u c U is said to be 
a) a loop, i f there exists an x € X such that (x ,u ,x) e R, 
b) an arc , i f there exist x ,y e X such that (x ,u,y) e R, 

(y ,u,x) t P., 
c) an edge, i f there exist x,y € X such that (x ,u ,y) e R 

and (y ,u ,xj e R. 
In what follows we shall consider f ini te multigraphs without 
loops. 

To any f ini te multigraph we can give a geometrical inter -
pretation in the following*way: 
1) to each vertex x e X we assign a point x of the plane, 

so that to distinct vert ices are asslgnet distinct points, 
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2 B.Gqsiorowski, M.Rozmus 

2) to each arc u t U such that (x,u,y) e R we assign in 
the plane a segment directed from the point x to the 
point y. 

3) to each edge u e U such that (x,u,y) e R we assign in 
the plane an undirected segment joining the points x 
and y. 
A multigraph containing no edges (arcs).is aaid to be di-

rected (undirected). 
If in a multigraph any pair of vertices are joined by no 

more than one branch, the multigraph is called a graph. In 
particular, a graph cannot contain arcs joining the same ver-
tices and reversely directed. 

We call route of length 1 with origin x* and end x-
o 

an alternate sequenoe of vertices and branohes of the multi-
graph of the form (x., , u.. ,x. ,u. "l , such that 

I 1
0 ^ 1 xiJ 

for any k = 1,...,1 the branoh u, joins the vertices 
k 

x> and x. (if u. is an arc, then it may be directed 
k-1 k k 

from Xj to x. or reversely). A route of length 1 
k-1 k 

such that all the branches are distinot is said to be a chain 
of length 1. 

A chain whose eaoh arc u^ is directed from x. to 
k k-1 

x. is said to be a path. A chain (route, path) whose all 
k 

vertices are distinct is said to be simple. A ohain (route, 
path) which begins and ends at the same vertex is called a 
cycle (cyclic route, cyclic path). A cycle (cyclic path) of 
length 1, having 1 distinct vertices is called a simple 
cycle (simple cyclic path) of lenght 1. A multigraph is 
said to be connected if to any pair of its vertioes x,y e X 
there exists a chain with origin x and end y. 

D e f i n i t i o n 3. Let X = |x 1>x 2,...,x n| be the 
set of vertioes of a finite multigpapli G = (X,U,R). We call 
a transition matrix P = [p.̂  the matrix such that 

pi,j = l(u € U € R } | f o r i,j=1,...,n. 
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Characteristic) polynomial 3 

D e f i n i t i o n 4. a) The metric of the mul t i -
graph G = (X,U,R) i s defined as the func t ion 

where 1 denotes the length of the s h o r t e s t chain with o r i -
gin x and end 7 . 

b) The ver tex xQ e X i s said to be: c e n t r a l , i f f o r any 
ir € X max p (x . , y ) < max p(x,y) or pe r iphera l , i f f o r any 

yeX 0 yeX 
x e X max (x n ,y) £ max p (x ,y ) . 

yeX 0 yeX 
0) The rad ius of the multigraph i s defined as the number 

r(G) = min max p(x,y)i . 
xcX yeX 

The diameter of the multigraph i s defined as the number 

d) Let A, B c X, A i 0 , B + 0. The dis tance between 
the s e t s A, B i s defined as the number 

The distanoe of the ver tex xQ to the se t A i s defined aa 
the number 

pU .y ) 

0, i f x = y , 
+00, i f x j* y and i f there e x i s t s no chain with 

or ig in x and end y , 
1, otherwise, 

d(G) s max p(x ,y) 
x,ycX 

p(A,B) « min i ( x , y ) . 5 xeA 
yeB 

j(x0 ,A} = min ? ( x 0 , y ) . 

In what fol lows we s h a l l assume tha t 
6 « (X,U,R) i s a f i n i t e multigraph without loops 
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4 B.G^siorowski, M.Rozmus 

Let us now denote by: 
a) D* k : k = 2 , . . . , n ; i = 1 , . . . , § » 'the s e t whose e le -

ments are i s e t s of c y c l i c simple paths without common v e r -
t i c e s , such t h a t the sum of t h e i r l eng ths equals k. In spe-

£ 
c i a l c a s e s , f o r some i , k the se t D. , may be empty. 

X 9 J£ 

b) p = P(G) the t r a n s i t i o n matr ix f o r 'G, with the a s -
sumpted numbering of v e r t i c e s . 

c) D. .(A) the c o - f a c t o r of the element i n the i - t h row 1><J 
and j - t h column of the matr ix P - A.E; D. .(A) i s a poly- • 1»<J 
nomial of degree k. . i n the v a r i a b l e A , such t h a t tho 11J 
h ighes t power of A has the c o e f f i c i e n t H. . . 1 »J 

R e m a r k 1. Given a mult igraph G i t i s poss ib le 
to b u i l d : 

a.) a d i r ec t ed mult igraph Ĝ  = i n such a way 
t h a t each edge of G j o i n i n g the v e r t i q e s x and y i s r e -
placed by the pa i r of r e v e r s e l y d i r e c t e d a r c s i n Ĝ  which 
j o i n the same v e r t i c e s , 

b) a d i r ec t ed mult igraph G2 = ( X , ^ a s y m m e -

t r i c a l t r a n s i t i o n ma t r ix , i n such a way t h a t to each branch 
of G j o i n i n g the v e r t i c e s x ,y the re corresponds i n G2 

exac t ly one pa i r of r e v e r s e l y d i r e c t e d a rc s j o i n i n g these 
v e r t i c e s . I t i s easy to see t h a t to each path i n G the re 
corresponds i n Ĝ  exac t ly one path passing through the same 
v e r t i c e s . The t r a n s i t i o n mat r ices f o r G and Ĝ  are i d e n -
t i c a l and the t r a n s i t i o n matr ix of G2 i s symmetr ical . 

Let us now r e c a l l the fo l lowing theorem (see [l] ) : 
T h e o r e m 1. The c h a r a c t e r i s t i c polynomial of the 

matr ix P i s 

de t (P - AE) = ( -1 ) n (A n + a 2 A n " 2 - - a 3 A n ~ 3 + . . . + a n ) , 

where, f o r any k = 2 , . . . , n : 

[1] 
- - K , k l * l D 2,k l - • • • • - ( - 1 ) 

I t ] . * 
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C h a r a c t e r i s t i c polynomial 5 

T h e o r e m 2. Let Ĝ  be a d i r e c t e d mult igraph 
corresponding to G i n accordance wi th Remark 1. 

Let be given the s e t s of v e r t i c e s : 

a) by G^ = the mult igraph obtained from Ĝ  
i n the fo l lowing way: f o r each pa i r of v e r t i c e s (x. , x . )e 

x k 3w 
6 X0*X. we remove i n G. a l l the a rc s j o i n i n g x. with 

k 
x . , then we j o i n them by exac t ly one a r c , 

Jw 
b) by G^ = the d i r ec t ed mult igraph obtained 

from G1 by removing from Û  the a rc s j o i n i n g v e r t i c e s 
which belong to the s e t X2 wi th the v e r t i c e s of s e t Xj, 

c) by P^, P^ the t r a n s i t i o n mat r i ces f o r G^ and G^ 
r e s p e c t i v e l y , 

d) by W(A) = d e t ( P 3 - AE) - d e t ( P 4 - AE) a polynomial 
i n the v a r i a b l e A of degree k^fX^Xg) such t h a t the c o e f -
f i c i e n t of the h ighes t power of A equals H(X 1 tX 2) . 

A s s e r t i o n . 1) A necessary and s u f f i c i e n t con-
d i t i o n i n order t h a t the re e x i s t i n G a path whose o r i g i n 
belongs to X1 and end belongs to X2 i s t h a t W(A) i 0. 

2) I f W(A) i 0 , then the s h o r t e s t of these paths has 
the l eng th n-1-k(X^,X 2 ) . The number of these s h o r t e s t paths i s | H ( X 1 , X 2 ) | . 

P r o o f . By Theorem 1 we have 

c X; r * 1 

X1 n X2 = 0 

Denote : 

det(P^-AE) = ( - D n ( A n + ( a 2 ) 3 A n " 2 + ( a 3 ) 3 A n ~ 3 + . . . + ( a n ) 3 ) 2 ' 3 '3 3 •n'3 

(A) 
det(P4-AE) = ( - D n ( A n

+ ( a 2 ) 4 A n - 2
+ ( a 3 ) 4 A n - 3 + . . . + ( a n ) 4 ) •2'4' '3 '4' n ' 4 ' 
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6 B.G^slorowski, M.Rozmus 

where for eaoh r = 2,...,n 

(B) 
(ftp)- 1 »* 2»r - D* 3» I 3»r 

(aj.)4 = -ID! «I ,+ |D? 1,r| 4 I 2,r|4 D* 3,r ,+...+(-1)
L2j D* 

^ .r 

1 >r 

We shall restrict ourselves to simple paths, sinoe the shor-
test paths are always simple ones. G^ Is a partial multi-
graph of G y obtained by removing from the set U^ the sub-
set 

All the simple oyolio paths belonging to G^ and not belong-
ing to G^ are obtained by oomposing the simple paths joining 
the vertioes of Z^ with the vertioes of Xg with the cor-
responding aros of the set U. The multigraph G does 
not contain paths joining the vertioes of and X2 if 
and only if all the sets of simple oyolio paths in G^ and 
G^ are ijdlentioal, Henoe 

V 3 for r = 2,...,n; i = 1,.,., . 

By (A) and fa) this is equivalent to the equality W(A) = 0. 
Suppose that W(A) t 0 and that k denotes the least 

length of a cyotLio path belonginjg to G^ and not belonging 
to G. we have 4 

for 2<r<k, 

(ar)3 = ( a ^ for 2<r<k. 
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Characteristic polynomial 7 

Moreover, 

<ak>3 'l.k 1 

since 

for i £ 2. 

The length of the shortest path whose origin belongs to X^ 
and end belongs to X 2 is k-1 and the number of such paths 
eq uals 

'l.k (ak)4 - (ak)3 h ( x v x 2 ) 

k - 1 = n-1 - k(XvX2), 

T h e o r e m . If G is an undirected graph, then for 
all x,y e X there exists in G exactly one shortest path 
joining these vertices if and only if 

Di ^ lHi,jl = 1 f o r i.d=1.....n} i > j. 

P r o o f . When building the directed multigraph G^ 
corresponding to G by Remark 1, it should be noted that 
the matrix P^ for G^ is identical with the matrix P for 
G. Since the matrix P is symmetrical, we have merely to 
consider the case i > j. The above theorem follows directly 
from Theorem 2 for r = 1 and s = 1, if me make use of the 
true equality 

WU) = D, (A.) = D, , (A). 
3 1 »X1 

The theorem yields in algebraic form the solution of a problem 
stated by Ore (see [ 3 ] , p.119): "Describe the class of undi-
rected graphs such that for any pair of vertices x,y there 
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8 B.Gq.siorowski, M.Rozmus 

e x i s t s exactly one shortest path joining them". This problem 
has been t i l l now solved only for planar graphs (see [2 ] ) . 

In what follows we shal l assume that : 
a) G2 = (2 ,U 2 ,R 2) i s a directed multigraph constructed 

for G in accordance with Remark 1. 
b) P2 i s the t rans i t ion ihatrix for G2, 

0 
c) for any i , j = l , . . . , n : B. .(A) denotes-the co- factor 

of the element in the i - t h row and j - t h column of the matrix 
P2 - Xs\ p 0 

d) k. . denotes the degree of the polynomial D. •(A) 1 » J 1 » J in the variable A « 
T h e o r e m . I f G i s a connected multigraph, 

|x| 2 2, then: 
1) The radius of the multigraph i s 

3) I f x i e X, then 
3a) x i i s a central vertex i f and only i f for any 

r = 1 . . ,n 

3b) x^ i s a peripheral vertex i f and only i f the inequa-
l i t y under 3a) i s replaced e i ther by the reverse inequality 
or by the equality. 

P r o o f . 1) Since |x| ^ 2, there ex i s t s for each 
i ; j t i such that p U ^ x ^ ) > 0. We have merely to con-
sider the case i i j . 

o 
r(G) = n - 1 - max min k. . 

i ^ j n i i *1 1 » 3 

2) The diameter of the multigraph i s 

d(G) = n - 1 - min k. . 2 
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C h a r a c t e r i s t i c polynomial 9 

Since G i s connected, so i s Gg and 

D. 2 . (A) t 0 f o r = 1 , . . . , n , i t j . x»J 

P 
r(G) = min max p i x ^ . x . ) = n - 1 - max min k. ... 

2) The proof i s s i m i l a r to t h a t of case 1 ) . 
3) x^ i s a c e n t r a l v e r t e x i f and only i f f o r each x p e X 

the fo l lowing i n e q u a l i t y ho lds 

(A? max p(x . , ,x . , )$ max p ( x _ , x h ) . 
3 = 1 , . . . , n 1 J h = l , . . . , n 

S i m i l a r l y to case 1) we can r e s t r i c t ourse lves to the case 
i £ j , h ^ r we have | 

p U ^ ) = n - 1 - k ^ 

P ( x r , x h ) = n - 1 - k p
2

f h . 

Hence the i n e q u a l i t y (A) i s equ iva len t to the i n e q u a l i t y 

2 ? min k. . > min k„ . . 
r. i ' J ' f r r f j 
[ 3 = 1 , . . . , n | j = l , . . . , n 

3b) The proof i s analogous to t h a t of case 3a ) . 
T h e o r e m . l e t r £ 2 and x. ,x . , . . . , x . be 

1 1 2 r 
a sequence of v e r t i c e s of the mult igraph G such t h a t 
Xj i x., f o r 1 = 1 , . . . , r - 1 . H + l 1 1 

A s s e r t i o n . 1) A d i r e c t e d rou te from x., t o 
X1 x. passing i n t u r n through the v e r t i o e s x. , 

r 2 3 r - 1 
e x i s t s i f and only i f 
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10 B.Gqsiorowski, M.Rozmus 

n d. . 
1=2 11 , 11-1 

U ) * 0. 

2) If condition 1) is satisfied, then there exist in G 
r 

exactly I | 
1=2 

and end 

Hi i directed routes with origin x^ 

:. passing through the vertices x. ,x. , ir i2 3 
and having the least length; the length of each of them is 

r 
(r -

r-1 

D(n - 1) - £ k. . —1 -H > 1 «.1 1=2 1 X 1 

P r o o f . To obtain the shortest route wanted in the 
theorem we compose the shortest paths joining the vertices 
x. with 

2 
x. with Xj ,...,x-
i2

 13 xr-1 
with x. Apply-

ing Theorem 2 to the paths that form this route and making 
use of the equality 

W, (71) = D. , (A) for 1=1,...,r-1 
1 1 1 ' 1 1 - 1 

we get the assertion. 
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