Czesław Bagiński

ON THE PROPERTY W IN FINITE p-GROUPS

In this paper we shall study the property W considered in [1,2,3,4] concerning sets of elements of this same order. In our considerations we restrict ourselves to the case of finite p-groups (p > 2). In [1] it was shown that for two groups G and H with the property W and of relatively prime orders, G*H has the property W. In [4] an analogous result for p-groups of exponent p² was obtained. The aim of the paper is to prove that the above results cannot be generalized to the class of p-groups of exponent grater than p². We also give the proof that the property W is not hereditary under taking subgroups and homomorphism images. These results are based on a characterization of p-groups of maximal class.

Most of the notation used is standard. The basic results concerning regular p-groups and groups of maximal class can be found in [5].

We recall the basic definition.

A p-group G has the property W if for each natural n $K_n(G) \neq \emptyset$ implies $K_n(G)K_n(G) \leqslant G$, where $K_n(G) = \{x \in G : o(x) = p^n\}$ and $AB = \{ab: a \in A, b \in B\}$.

We need the following simple but useful lemma which was proved in [1] in a weaker form.

Lemma 1. If H is a subgroup of G and $G \neq H$ then

$$(G - H)(G - H) = \begin{cases} H & \text{if } |G:H| = 2 \\ G & \text{otherwise.} \end{cases}$$

Proof. First let us assume that |G:H|=2. Then there exists an element $g \in G$ such that G-H=gH. Therefore the normality of H in G implies $(G-H)(G-H)=(gH)(gH)=g^2H=H$. Suppose now that |G:H|>2. Thus $H=g^{-1}(gH)\subset (G-H)(G-H)$. Moreover, there exists an element g_1 in $G-(H\cup gH)$. Because $g_1^{-1}gH\neq H$, we have $gH=g_1(g_1^{-1}gH)\subset (G-H)(G-H)$, which ends the proof. Theorem 2 ([2]). Each regular p-group has the property W.

This can be proved by observing that in a regular p-group G the set of elements of order less than p^n (n fixed) constitutes a subgroup of G ([5]).

Before going further in Lemma 3 we recall some results on p-groups of maximal class. By \mathbf{G}_1 we denote the subgroup of \mathbf{G}

$$C_{G}(\mathfrak{T}_{2}^{G}/\mathfrak{T}_{4}^{G}) = \left\{ g \in G: \bigwedge_{\mathbf{x} \in \mathfrak{T}_{2}^{G}} [g,\mathbf{x}] \in \mathfrak{T}_{4}^{G} \right\}$$

and we call this subgroup fundamental.

Lemma 3 ([5]). If a p-group G is of maximal class and $|G|\geqslant p^{p+2}$ then:

- a) G_1 is the unique maximal subgroup being regular;
- b) Each maximal subgroup of G not equal to G₁ is a group of maximal class;
- c) For each element $x \in G G_1$ we have $o(x) \leq p^2$, $\{x^g \colon g \in G\} = x_{\mathcal{D}}G$ and $x^p \in Z(G)$.

By III.14.6 ([5]) these are special cases of III.14.14 and III.14.22.

Lemma 4. If G is of maximal class, $|G| \ge p^{p+2}$, then for each maximal subgroup $M \ne G_1$ of G the set $M-T_2G$ is contained in $K_1(G)$ or $K_2(G)$.

Proof. Let M be a maximal subgroup of G, M \neq G₁. By III.14.2 | M: \mathfrak{F}_2 G | = p and because of that M = $\langle x, \mathfrak{F}_2$ G > for $x \notin G_1$. Thus by Lemma 3c we obtain

But by Lemma 3c the elements x, x^2 ,..., x^{p-1} are of this same order equal to p or p^2 . This yields $M - \gamma_2 G \subset K_1(G)$ or $M - \gamma_2 G \subset K_2(G)$.

The crem 5. If G is a p-group of maximal class, then G has the property W.

Proof. If $|G| \leq p^{p+1}$ the result is known ([4] Theorem 1), so we may assume that $|G| \geqslant p^{p+2}$. Since G_1 is regular, by Theorem 2 we infer that the inclusion $K_i(G) \subset G_1$ yields $K_i(G)K_i(G) \leq G$. By Lemma 3c for $x \notin G_1$ we have o(x) = p or $o(x) = p^2$, thus for i > 2 we obtain $K_i(G)K_i(G) \leq G_1$ in virtue of the above. So we shall consider the sets $K_i(G)$ for i = 1, 2 only. To prove our theorem it is sufficient to consider the case where $K_i(G)$ is not included in G_1 . If $K_i(G)$ is included in a maximal subgroup M, M $\neq G_1$, then by Lemma 4 M $= g_2G \subset K_i(G)$ and

$$\mathtt{K}_{\underline{\mathtt{i}}}(\mathtt{G})\mathtt{K}_{\underline{\mathtt{i}}}(\mathtt{G}) \supset (\mathtt{M} - \mathfrak{F}_{2}^{\mathtt{G}})(\mathtt{M} - \mathfrak{F}_{2}^{\mathtt{G}}) = \mathtt{M} \supset \mathtt{K}_{\underline{\mathtt{i}}}(\mathtt{G})\mathtt{K}_{\underline{\mathtt{i}}}(\mathtt{G}).$$

Now let $\langle K_i(G) \rangle = G$. Then there exist at least two distinct maximal subgroups M_1 , M_2 such that $M_1 - T_2G \subset K_i(G)$ and $M_2 - T_2G \subset K_i(G)$. This implies $M_j = (M_j - T_2G)(M_j - T_2G) \subset K_i(G)K_i(G)$. Hence

$$G = M_1 M_2 = \left[(M_1 - T_2^G) \cup T_2^G \right] \left[(M_2 - T_2^G) \cup T_2^G \right] =$$

$$= (M_1 - T_2^G) (M_2 - T_2^G) \cup (M_1 - T_2^G) T_2^G \cup T_2^G (M_2 - T_2^G) \cup$$

$$\cup T_2^G T_2^G \subset K_1(G) K_1(G).$$

Thus the theorem is proved.

Theorem 6. If A and B are p-groups of maximal class and of exponent grater than p³, then the direct product G of these groups has not the property W.

Proof. Let A_1 , B_1 be fundamental subgroups of groups A and B respectively. If $x \in K_3(A)$ is a fixed element, then for each element $y \in B - B_1$ we have $xy \in K_3(G)$. So $B = (B - B_1)(B - B_1) = x^{-1}(B - B_1)x(B - B_1) = [x^{-1}(B - B_1)][x(B - B_1)] \subset K_3(G)K_3(G)$. Similarly $A \subset K_3(G)K_3(G)$. Therefore $G = \langle K_3(G) \rangle$. Now we show that $K_3(G)K_3(G) \neq G$. Really, each element from $K_3(G)$ is of the form xy, $x \in A$, $y \in F$, where both of multiplicators are of the order less than p^4 and at least one of them is of the order p^3 . Thus for xy, $x \in K_3(G)$ (x, $x \in A$, y, $x \in B$) the element (xy)($x \in K_3(G)$) does not belong to $x \in K_4(A) \cap K_4(B)$. Otherwise $x \in K_4(A) \cap K_4(A) \cap K_4(B)$ of the following cases:

- i) $x, u \in A_1$; $y, v \in B_1$
- ii) $x, u \in A_1$; $y, v \in B B_1$
- iii) $x, u \in A A_1; y, v \in B_1$
 - iV) $x, u \in A A_1; y, v \in B B_1.$

By regularity of A_1 and B_1 we obtain in two first cases $xu \notin K_4(A)$ and in the third $-yv \notin K_4(B)$. In the fourth case by Lemma 3c all elements x,y,u,v are of the order less than p^3 and then $xy,uv \notin K_3(G)$.

Corollary 7. If p-groups A and B have the property W and are of exponent grater than p² then their direct product need not have this property.

Proof. For p-groups of exponent grater than p^3 this is an immediate consequence of two last theorems. For groups of exponent p^3 this can be easily proved using the method from the proof of Theorem 6 and by observing that if G is a p-group of maximal class, then G/Z(G) is of maximal class too, moreover, each element from $G/Z(G) - G_1/Z(G)$ is of order p.

Now we show that there exist p-groups with the property W containing subgroups which have not this property.

First we prove the following lemma.

Lemma 8. If A is a p-group such that $K_1(A)K_1(A) = A$, then in the direct product G of A and a cyclic group B of the order p^n we have $K_n(G)K_n(G) = G$.

Proof. Let $B=\langle b:b^p^n=1\rangle$ and let G be the direct product of A and B. By assumption, for each $a\in A$ there exist elements $a_1,a_2\in A$ of order p such that $a_1a_2=a$. Let $xy\ (x\in A,\ y\in B)$ be any element of G. Then $x=x_1x_2/o(x_1)=o(x_2)=p/$ and $y=b^m$. Hence $xy=(x_1b^{m+k})(x_2b^{-k})\in K_n(G)K_n(G)$, where k is a natural number such that $k,m+k\not\equiv O(modp)$. Such a number exists by the assumption p>2.

The orem 9. The class of all finite p-groups with the property W is not closed under taking subgroups and homomorphism images.

Proof. Let A and B be p-groups of maximal class and of exponent grater than p^2 such that $(A-A_1)\subset K_1(A)$, $(B-B_1)\subset K_1(B)$, where A_1 and B_1 are fundamental subgroups of A and B respectively. By Lemma 1 $A=K_1(A)K_1(A)$, $B=K_1(B)K_1(B)$ and it is easy to see that $K_1(H)K_1(H)=H$, where H denotes the direct product of A and B. As it was shown in Theorem 6, H does not have the property W and by Lemma 8 $G=H\times C$ has the property W, where C is a cyclic p-group of an order not smaller than the exponents of A and B. It is obvious that $H\leqslant G$ and $G/C\cong H$.

REFERENCES

- [1] E. Ambrosiewicz: Okwadratach zbiorów elementów tego samego rzędu w grupach, Doctoral dissertation, Technical University of Warsaw, Warsaw 1978.
- [2] E. Ambrosiewicz: The property W for regular p-groups and for nilpotent groups of degree 2, Demonstratio Math. 13 (1980) 613-617.

- [3] J. Ambrosiewicz: Opewnych podgrupach danej grupy, Zeszyty Nauk.-Dydakt. Filii UW w Białymstoku, z.7, t.II. Nauki Mat.-Przyr. Białystok 1974.
- [4] Cz. Bagiński: Some remarks on finite p-groups, Demonstratio Math. 15 (1981) 279-285.
- [5] B. Huppert: Endliche Gruppen, Berlin 1967.

INSTITUTE OF MATHEMATICS, WARSAW UNIVERSITY, BIAŁYSTOK BRANCH, BIAŁYSTOK

Received October 20, 1980; revised version October 19, 1981.