

R. P. Agarwal, Rajiv K. Srivastava

A REMARK ON A CERTAIN SPACE OF SEQUENCES

1. Introduction and motivation

Agarwal and Bose [1] have recently studied a class S_1 of integral functions defined as

$$S_1 = \left\{ f: f(z) = \sum_{n=0}^{\infty} a_n \cdot z^n; \sum_{n=0}^{\infty} |a_n|^{1/2n+1} < \infty \right\}.$$

They have provided S_1 with a Banach algebraic structure by defining binary operations and norm suitably.

There are several misprints and mistakes in their paper. In section 2 of this paper, we have pointed them out and have corrected the mistakes in section 3 and 4 of [1].

In section 3, we have defined a class $\#$ of sequences closely related with the class S_1 of [1]. Suitably defining binary operations and norm on $\#$, we have provided it with a separable, commutative Banach algebraic structure. Section 4 is devoted to characterizing continuous linear functionals on $\#$ and studying weak and weak $-*$ convergences in $\#$. Topological zero divisors have been characterized in the same section. In section 5, an inner product has been defined on $\#$ which equips it with an inner product space structure. A superset $\#_1$ of $\#$ is shown to be a Hilbert space with the same structure as $\#$.

2. The arguments in Section 3 of [1] do not hold, in general. The fact that only real arithmetic roots of the quantities like $a_n^{1/2n+1}$ are considered, in order to make the ordering well defined, should have been specifically mentioned.

In section 4 of [1], there are several mistakes in the proof of Proposition 5. In the first part, (p.68, third line from below), c_n 's should be defined as

$$|c_n|^{1/2n+3} = \max \left\{ |a_n|^{1/2n+3}, |b_n|^{1/2n+3} \right\}.$$

In the second part, the closure of S_3 (considered as a subset of S_1) with respect to multiplication and not scalar multiplication should be asserted, the proof being obvious. Moreover, the last sentence of the same proposition should read:

Thus $h(z) \times f(z) \in S_3$, which shows that S_3 is an ideal in S_1 .

3. Let us consider a class $\#$ of sequences, defined by

$$\# = \left[f = \{a_n\}: a_n \in \mathbb{C}, \sum_{n=1}^{\infty} |a_n|^{1/2n+1} < \infty \right].$$

It may be noted that every member of $\#$ forms the sequence of coefficients of an entire Taylor series.

We now define binary algebraic operations on $\#$ as follows:

$$f + g = \{a_n\} + \{b_n\} = \left\{ (a_n^{1/2n+1} + b_n^{1/2n+1})^{2n+1} \right\};$$

$$\alpha \cdot f = \alpha \cdot \{a_n\} = \left\{ (\alpha \cdot a_n^{1/2n+1})^{2n+1} \right\}, \quad \alpha \in \mathbb{C};$$

and

$$f \times g = \{a_n\} \times \{b_n\} = \{a_n \cdot b_n\},$$

where $f = \{a_n\}$, $g = \{b_n\}$ are arbitrary members of $\mathbb{#}$.

The norm on $\mathbb{#}$ is defined as

$$\|f\| = \sum_{n=1}^{\infty} |a_n|^{1/2n+1}, \quad f = \{a_n\} \in \mathbb{#}.$$

It is easy to verify that $\mathbb{#}$, equipped with these operations and norm, becomes a commutative Banach algebra. The only possible identity element is $\{1, 1, \dots\}$ which does not belong to $\mathbb{#}$.

In $\mathbb{#}$, consider elements

$$f_n = \{a_i^{(n)}\}$$

with

$$(3.1) \quad a_i^{(n)} = \begin{cases} 1 & \text{if } i=n \\ 0 & \text{if } i \neq n. \end{cases}$$

If $f = \{a_i\}$ is any arbitrary element of $\mathbb{#}$, then we put

$$g_n = f - \sum_{k=1}^n a_n^{1/2k+1} \cdot f_k.$$

Obviously, g_n can be rewritten as $\{0, 0, \dots, 0, a_{n+1}, a_{n+2}, \dots\}$.

Hence, $\|g_n\| = \sum_{k=1}^{\infty} |a_k|^{1/2k+1} \rightarrow 0$ as $n \rightarrow \infty$, because

the series $\sum_{k=1}^{\infty} |a_k|^{1/2k+1}$ converges. Consequently, f can be uniquely represented as

$$(3.2) \quad f = \sum_{k=1}^{\infty} a_k^{1/2k+1} \cdot f_k.$$

Consider the set of all polynomials of the type

$$p = \sum_{k=1}^n b_k^{2k+1} \cdot f_k,$$

where b_k is a rational complex number. This is a countable set and can be shown to be dense in \mathbb{F} , considered as the set of elements of the type (3.2). Hence, we have

Theorem 1. \mathbb{F} is a separable, commutative Banach algebra without identity.

4. Continuous linear functionals on \mathbb{F}

The dual space of \mathbb{F} will be denoted by \mathbb{F}^* and members of \mathbb{F}^* will be denoted by f^* . Our main result of this section is

Theorem 2. The general form of any continuous linear functional on \mathbb{F} is given by the formula

$$(4.1) \quad f^*(f) = \sum_{n=1}^{\infty} a_n^{1/2n+1} d_n,$$

where $f = \{a_n\} \in \mathbb{F}$ and $\{d_n\}$ is a bounded sequence uniquely defined by f^* .

Moreover, $\|f^*\| = \sup_n |d_n|$.

Proof. Let $f^* \in \mathbb{F}^*$. Consider the elements $f_n = \{a_i^{(n)}\}$ in \mathbb{F} defined by (3.1). If f is any arbitrary element of \mathbb{F} it can be expressed as (3.2), i.e.,

$$f = \sum_{n=1}^{\infty} a_n^{1/2n+1} \cdot f_n.$$

Linearity and continuity of f^* implies that

$$f^*(f) = f^* \left[\sum_{n=1}^{\infty} a_n^{1/2n+1} \cdot f_n \right] = \sum_{n=1}^{\infty} a_n^{1/2n+1} f^*(f_n) = \\ = \sum_{n=1}^{\infty} a_n^{1/2n+1} \cdot d_n,$$

where $f^*(f_n) = d_n$ are uniquely determined by f^* .

Since $\|f_n\| = 1$ and $|d_n| = |f^*(f_n)| \leq \|f^*\| \|f_n\| = \|f^*\|$ for $n = 1, 2, \dots$ it follows that the sequence $\{d_n\}$ is bounded.

Conversely, let $\{d_n\}$ be a bounded sequence. The series (4.1) converges, since $f = \{a_n\} \in \mathbb{F}$, and thus f^* defines a linear functional on \mathbb{F} . For continuity of f^* , we note that

$$|f^*(f)| = \left| \sum a_n^{1/2n+1} d_n \right|,$$

i.e.,

$$(4.2) \quad |f^*(f)| \leq \sum |a_n|^{1/2n+1} |d_n| < \infty.$$

We further note that, (4.2) gives

$$|f^*(f)| \leq (\sup_n |d_n|) \|f\|.$$

$$\text{Hence } \|f^*\| = \sup_{\|f\| \leq 1} \frac{|f^*(f)|}{\|f\|} \leq \sup_n |d_n|.$$

On the other hand, if

$$f_n = \{\text{sgn. } (\bar{d}_n)\}^{2n+1},$$

then $f_n \in \mathbb{F}$ and $\|f_n\| = 1$ for every $n \geq 1$.

Also,

$$|f^*(f_n)| = |d_n \cdot \text{sgn. } (\bar{d}_n)| = |d_n|,$$

i.e.,

$$|d_n| = |f^*(f_n)| \leq \|f^*\| \|f_n\| = \|f^*\|,$$

so that

$$\sup_n |d_n| \leq \|f^*\|.$$

Hence the theorem follows.

Theorem 3. The set of all topological zero divisors in $\#$ is $\#$ itself.

Proof. For the definition of topological zero divisors, we refer to Larsen [2].

Let $f = \{a_n\}$ be any arbitrary element of $\#$. Let $f_n = \{a_1^{(n)}\}$ be defined by (3.1). Obviously, $\|f_n\| = 1$ for every $n \geq 1$. Also,

$$f \times f_n = a_n = f_n \times f,$$

so that

$$\|f \times f_n\| = \|f_n \times f\| = |a_n|^{1/2n+1} \rightarrow 0 \text{ as } n \rightarrow \infty.$$

Hence the theorem.

It is easy to see that weak and strong convergences are equivalent in $\#$. We now prove a result on weak convergence in $\#^*$.

Theorem 4. A sequence $\{f_p^*\}$ in $\#^*$ converges weakly to $f^* \in \#^*$, if and only if the following conditions hold:

- i) $\{\|f_p^*\|\}$ is bounded; and
- ii) $d_{pn} \rightarrow d_n$ for every $n \geq 1$ as $p \rightarrow \infty$, where $f_p^* = \{d_{pn}\}$ and $f^* = \{d_n\}$.

Proof. "Necessity" part is obvious.

Next, assume that (i) and (ii) hold. By (i) and the fact that $f^* \in \mathbb{F}^*$, we can find M , such that

$$|d_{pn}| \leq M, |d_n| \leq M \text{ for every } n.$$

By the definition of \mathbb{F} , given $f = \{a_n\} \in \mathbb{F}$ and $\epsilon > 0$, we can find $n_0 = n_0(\epsilon)$ such that

$$\sum_{n_0+1}^{\infty} |a_n|^{1/2n+1} < \epsilon/4M.$$

Further, by (ii), we can choose $p_0 = p_0(\epsilon)$, such that

$$|d_{pn} - d_n| < \epsilon/2N, \text{ for } p \geq p_0,$$

$$\text{where } N = \sum_{n=1}^{n_0} |a_n|^{1/2n+1}.$$

Now, for $p \geq p_0$, we have

$$\begin{aligned} |(f_p^* - f^*)(f)| &= \left| \sum_{n=1}^{\infty} (d_{pn} - d_n) \cdot a_n^{1/2n+1} \right| \leq \\ &\leq \sum_{n=1}^{n_0} |d_{pn} - d_n| |a_n|^{1/2n+1} + \sum_{n_0+1}^{\infty} |d_{pn} - d_n| |a_n|^{1/2n+1} < \\ &< \frac{\epsilon}{2N} \cdot N + 2M \cdot \frac{\epsilon}{4M} = \epsilon. \end{aligned}$$

Hence f_p^* converges to f^* weakly in \mathbb{F}^* .

5. Inner product in \mathbb{H}

We define, in \mathbb{H} , an inner product as follows

$$(5.1) \quad \langle f, g \rangle = \sum_{n=1}^{\infty} a_n^{1/2n+1} \bar{b}_n^{1/2n+1},$$

where $f = \{a_n\}$, $g = \{b_n\} \in \mathbb{H}$ and \bar{b}_n is the complex conjugation of b_n .

This evidently satisfies all the axioms of inner product. The norm induced by this inner product is

$$(5.2) \quad \|f\| = \left\{ \sum_{n=1}^{\infty} |a_n|^{2/2n+1} \right\}^{1/2}.$$

Thus, \mathbb{H} becomes a unitary space as well as a normed algebra. It is neither a Hilbert space nor a Banach algebra. In fact, \mathbb{H} is not complete with respect to the norm (5.2). Let, for instance,

$$f_p = \left\{ 1^{-3}, 2^{-5}, 3^{-7}, \dots, p^{-(2p+1)}, 0, 0, \dots \right\}.$$

Obviously, $f_p \in \mathbb{H}$ for every $p \geq 1$. Moreover, in the norm (5.2), f_p converges to $f = \{n^{-(2n+1)}\}$. Hence $\{f_p\}$ is a Cauchy sequence. However, the limit function f does not belong to \mathbb{H} , since,

$$\sum_{n=1}^{\infty} |n^{-(2n+1)}|^{1/2n+1} = \sum_{n=1}^{\infty} 1/n \not< \infty.$$

Let us now consider the set of sequences defined as

$$\mathbb{H}_1 = \left[f = \{a_n\}; a_n \in \mathbb{C}, \left(\sum_{n=1}^{\infty} |a_n|^{2/2n+1} \right)^{1/2} < \infty \right].$$

The binary operations in $\#_1$ are the same as in $\#$. The norm and inner product in $\#_1$ are defined by (5.2) and (5.1), respectively, thus $\#$, becomes a Hilbert space.

From the preceding discussions regarding the inner product (5.1), we infer that

Theorem 6. $\#_1$ is a Hilbert space. $\#$ is not a closed linear subspace of $\#_1$.

Acknowledgements. This work has been supported by a grant from State Council of Science and Technology of U.P., Lucknow (India). Authors are thankful to the referee for his valuable suggestions in the original manuscript of the paper.

REFERENCES

- [1] S.K. Agarwal, S.K. Bose : Properties of a class of integral functions. *Demonstratio Math.* 12 (1979) 63-69.
- [2] R. Larsen : Banach Algebras - an introduction. New York 1973.

DEPARTEMENT OF MATHEMATICS AND ASTRONOMY, LUCKNOW UNIVERSITY,
LUCKNOW, INDIA

Received August 27, 1980; revised version August 27, 1981.

