

G. D. Awasthi, A. K. Shukla

ON SUBSPACES OF SUBSPACES OF A FINSLER SPACE

This note is devoted to a study of the properties of a subspace F_1 of a subspace F_m of a Finsler space F_n with the help of \mathbb{D} -derivative given by Rund ([2], pp.166-169). The conditions under which F_1 is minimal in F_m or it is minimal in F_n have been investigated.

1. Introduction

Let F_m be a differential subspace of dimension of m of an n -dimensional Finsler space F_n . The coordinates x^i (referred to F_n) of a point of F_m are given by

$$(1.1) \quad x^i = x^i(u^\alpha), \quad i = 1, \dots, n; \quad \alpha = 1, \dots, m \quad (m \leq n).$$

Suppose that a vector \dot{x}^i (or \dot{u}^α) tangent to F_m is an element of support. We may then write

$$(1.2) \quad \dot{x}^i = B_\alpha^i \dot{u}^\alpha,$$

where

$$B_\alpha^i = \partial x^i / \partial u^\alpha.$$

The $(n-m)$ vectors $N_\mu^i(x, \dot{x})$ ($\mu = m+1, \dots, n$) satisfying the conditions

$$(1.3) \quad \left\{ \begin{array}{l} \text{a) } g_{ij}(x, \dot{x}) B_{\alpha}^i N_{\mu}^j = 0; \\ \text{b) } g_{ij}(x, \dot{x}) N_{\mu}^i N_{\nu}^j = S_u \quad (\mu, \nu = m+1, \dots, n) \end{array} \right.$$

are called normal vectors, g_{ij} being the components of the metric tensor of F_n .

The $\overset{\circ}{D}$ -derivative of the projection factors B^i ([2], p.167)

$$(1.4) \quad \overset{\circ}{D} B_{\beta}^i = \overset{\circ}{H}_{\gamma\beta}^i = B_{\beta\gamma}^i + \Gamma_h^i B_h^{\gamma} - \bar{\Gamma}_{\beta\gamma}^{*\alpha} B_{\alpha}^i,$$

$i, j, h, k = 1, \dots, n; \alpha, \beta, \gamma, \delta, \epsilon = 1, \dots, m$, where

$$(1.5) \quad \left\{ \begin{array}{l} \text{a) } \Gamma_{h\gamma}^i \stackrel{\text{def}}{=} \bar{\Gamma}_{hk}^{*\gamma} B_{\gamma}^k + A_{hk}^i H_{\gamma}^k, \\ \text{b) } \bar{\Gamma}_{\beta\gamma}^{*\alpha} = \Gamma_{\beta\gamma}^{*\alpha} + B_{\beta}^{\alpha} A_{hk}^i B_{\gamma}^h B_{\gamma}^k, \\ \text{c) } \Gamma_{\beta\gamma}^{*\alpha} = B_{\beta}^{\alpha} (B_{\gamma}^i + \Gamma_{hk}^{*\gamma} B_{\gamma}^h B_{\gamma}^k), \\ \text{d) } B_{\beta}^{\alpha} = g^{\alpha\epsilon} g_{ij} B_{\epsilon}^j, \quad B_{\beta\gamma}^i = \partial^2 x^i / \partial u^{\beta} \partial u^{\gamma}, \quad F H_{\gamma}^i = \overset{\circ}{H}_{\gamma\beta}^i \dot{u}^{\beta} \end{array} \right.$$

and $g^{\alpha\epsilon}$ being the contravariant components of the metric tensor of F_m and the symbols A_{hk}^i and $\Gamma_{hk}^{*\gamma}$ have their usual meanings.

Since $\overset{\circ}{H}_{\gamma\beta}^i$ is normal to F_m , we have

$$(1.6) \quad \overset{\circ}{H}_{\gamma\beta}^i = N_{\mu}^i \overset{\circ}{H}_{\gamma\beta}^{\mu} \quad (\mu = m+1, \dots, n),$$

where

$$(1.7) \quad \overset{\circ}{H}_{\gamma\beta}^{\mu} = N_{\gamma}^{\mu} H_{\gamma\beta}^i.$$

2. Mean curvature vectors and minimal subspaces

Definition 2.1. The vector field

$$(2.1) \quad \overset{\circ}{K}_{(x,\dot{x})}^i \cdot \{F_m, F_n\} \stackrel{\text{def}}{=} \frac{1}{m} g^{\nu\beta} H_{\nu\beta}^i$$

of F_n is called the mean curvature vector of F_m . This vector field is normal to F_m . If $\overset{\circ}{K}_{(x,\dot{x})}^i \cdot \{F_m, F_n\}$ vanishes, then F_m is called a minimal subspace of F_n .

Now, let us consider a differentiable subspace F_1 , of dimension 1, of F_m represented parametrically by the equations

$$(2.2) \quad u^\alpha = u^\alpha(z^\theta); \quad (1 < m \leq n) \quad (\alpha, \beta, \gamma, \delta, \varepsilon = 1, \dots, m); \\ \theta, \phi, \psi = 1, \dots, 1).$$

Assuming that the vector \dot{u}^α is tangent to F_m , the corresponding tangent vector to F_1 will be \dot{z}^θ and these two are related by

$$(2.3) \quad \dot{u}^\alpha = B_\theta^\alpha \dot{z}^\theta,$$

where

$$B_\theta^\alpha = \partial u^\alpha / \partial z^\theta.$$

There exist $(m-1)$ vectors $N_p^\alpha(z, \dot{z})$ ($p = 1+1, \dots, m$) normal to F_1 satisfying the conditions

$$(2.4) \quad \left\{ \begin{array}{l} \text{a)} \quad g_{\alpha\beta}(u, \dot{u}) B_\theta^\alpha N_p^\beta = 0 \\ \text{b)} \quad g_{\alpha\beta}(u, \dot{u}) N_p^\alpha N_q^\beta = \delta_p^q \quad (p, q = 1+1, \dots, m). \end{array} \right.$$

The $\overset{\circ}{D}$ -derivative of the projection factors B_θ^α will be given by

$$(2.5) \quad \overset{\circ}{H}_{\theta\theta}^{\alpha} = \overset{\circ}{H}_{\theta\theta}^{\alpha} = B_{\theta\theta}^{\alpha} + \Gamma_{\theta\theta}^{\alpha} B_{\theta}^{\delta} - \bar{\Gamma}_{\theta\theta}^{*\psi} B_{\psi}^{\alpha},$$

where the quantities $\Gamma_{\theta\theta}^{\alpha}$, $\bar{\Gamma}_{\theta\theta}^{*\psi}$, $\Gamma_{\theta\theta}^{*\psi}$, B_{α}^{ψ} , $B_{\theta\theta}^{\alpha}$, $H_{\theta\theta}^{\alpha}$ and $g^{\psi\theta}$ in F_1 may be defined in the same manner as the corresponding quantities are defined in F_m .

Since $\overset{\circ}{H}_{\theta\theta}^{\alpha}$ is normal to F_1 , we may write

$$(2.6) \quad \overset{\circ}{H}_{\theta\theta}^{\alpha} = N_p^{\alpha} \overset{\circ}{H}_{\theta\theta}^p, \quad p = 1+1, \dots, m,$$

where

$$(2.7) \quad \overset{\circ}{H}_{\theta\theta}^p = N_p^{\alpha} \overset{\circ}{H}_{\theta\theta}^{\alpha}.$$

Definition 2.2. The vector field

$$(2.8) \quad K_{(u, \dot{u})}^{\alpha} \cdot \{F_1, F_m\} \stackrel{\text{def}}{=} \frac{1}{I} g^{\theta\theta} \overset{\circ}{H}_{\theta\theta}^{\alpha}$$

($g^{\theta\theta}$ being the contravariant components of the metric tensor of F_1) of F_m is normal to F_1 . This is called the mean curvature vector of F_1 in F_m . If $K_{(u, \dot{u})}^{\alpha} \cdot \{F_1, F_m\} = 0$, then F_1 is called minimal subspace of F_m .

A subspace F_1 of the subspace F_m can be regarded as a subspace of the enveloping space F_n and it can be expressed by the equations

$$(2.9) \quad x^i = x^i(u^{\alpha}(z^{\theta})), \quad i=1, \dots, n; \theta=1, \dots, m; (1 < m \leq n)$$

and consequently

$$(2.10) \quad B_{\theta}^i = B_{\alpha}^i B_{\theta}^{\alpha}.$$

The components $g_{\theta\theta}(z, \dot{z})$, $g_{\alpha\beta}(u, \dot{u})$, $g_{ij}(x, \dot{x})$ of the metric tensors of F_1 , F_m and F_n respectively are related by

$$(2.11) \quad g_{\theta\theta}(z, \dot{z}) = g_{\alpha\beta}(u, \dot{u}) B_{\theta}^{\alpha} B_{\theta}^{\beta} = g_{ij}(x, \dot{x}) B_{\theta}^i B_{\theta}^j.$$

The orthogonal unit normal vectors of F_1 in F_n are

$N_p^i = N_p^\alpha B_\alpha^i$ and N_μ^i . N_p^i is tangent to F_m and N_μ^i is normal to F_m . The $\overset{\circ}{D}$ -derivative of B_θ^i is

$$(2.12) \quad \overset{\circ}{D}_\theta B_\theta^i = \overset{\circ}{H}_{\theta\theta}^i = B_\theta^i \phi + \Gamma_{h\theta}^i B_\theta^h - \bar{\Gamma}_{\theta\theta}^{*\psi} B_\psi^i,$$

where

$$(2.13) \quad \Gamma_{h\theta}^i \stackrel{\text{def}}{=} \Gamma_{hk}^i B_\theta^k + A_{hk}^i H_\theta^k,$$

$$(2.14) \quad F_\theta^k = \overset{\circ}{H}_{\theta\theta}^k z^\theta, \quad B_\theta^i = \partial^2 x^i / \partial z^\theta \partial z^\theta$$

and $\bar{\Gamma}_{\theta\theta}^{*\psi}$ have the same meaning as in (2.5).

Since $\overset{\circ}{H}_{\theta\theta}^i$ is normal to F_1 , we have

$$(2.15) \quad \overset{\circ}{H}_{\theta\theta}^i = N_\mu^i H_\theta^\mu.$$

$$(2.16) \quad \overset{\circ}{H}_{\theta\theta}^\mu = N_\mu^i \overset{\circ}{H}_{\theta\theta}^i.$$

3. Relation between mean curvatures vectors

The $\overset{\circ}{D}$ -derivative of the equation (2.10) gives us

$$(3.1) \quad \overset{\circ}{H}_{\theta\theta}^i = \overset{\circ}{H}_{\theta\theta}^\gamma B_\gamma^i + \overset{\circ}{H}_{\gamma\theta}^\gamma B_\theta^\beta,$$

where we have used the equations (1.4), (2.5) and (2.12). On multiplying (3.1) by $\frac{1}{I} \cdot g^{\theta\theta}$, we get

$$(3.2) \quad \frac{1}{I} g^{\theta\theta} \overset{\circ}{H}_{\theta\theta}^i = \left(\frac{1}{I} g^{\theta\theta} \overset{\circ}{H}_{\theta\theta}^\gamma \right) B_\gamma^i + \left(\frac{1}{I} g^{\theta\theta} B_\theta^\gamma B_\theta^\beta \right) \overset{\circ}{H}_{\gamma\beta}^i.$$

Definition 3.1. The vector field $\overset{\circ}{H}_{(x,\dot{x})}^i \cdot \{F_1, F_m, F_n\}$ defined by

$$(3.3) \quad \overset{\circ}{K}_{(x,\dot{x})}^i \cdot \{F_1, F_m, F_n\} \stackrel{\text{def}}{=} \left(\frac{1}{1} g^{\phi\theta} B_\theta^\nu B_\phi^\beta \right) \overset{\circ}{H}_{\nu\beta}^i$$

is said to be the relative mean curvature vector of F_1 with respect to F_m and F_n . It is obvious that the above vector field is normal to F_m .

Using the equations (2.8), (3.2) and (3.3), we obtain

$$(3.4) \quad \overset{\circ}{K}_{(x,\dot{x})}^i \cdot \{F_1, F_n\} = \overset{\circ}{K}_{(u,\dot{u})}^i \cdot \{F_1, F_m\} B_\nu^\beta + \overset{\circ}{K}_{(x,\dot{x})}^i \cdot \{F_1, F_m, F_n\}$$

which yields the following theorem.

Theorem 3.1. The mean curvature vector of a Finsler subspace F_1 in F_n is the sum of the mean curvature vector of F_1 in F_m and the relative mean curvature vector of F_1 with respect to F_m and F_n .

4. Concurrent vector field

A vector field of Riemannian manifold concurrent along a submanifold has been considered by B.Y.Chen and K.Yano ([3], p.551). In analogy to this, a vector field V^i of F_n will be called concurrent along F_1 if

$$(4.1) \quad B_\theta^i + \overset{\circ}{D}_\theta V^i = 0.$$

Taking the $\overset{\circ}{D}$ -derivative of (4.1), we find

$$(4.2) \quad \overset{\circ}{D}_\phi B_\theta^i + \overset{\circ}{D}_\phi \overset{\circ}{D}_\theta V^i = 0$$

or

$$(4.3) \quad \overset{\circ}{H}_{\phi\theta}^i + \overset{\circ}{D}_\phi \overset{\circ}{D}_\theta V^i = 0,$$

where we have used equation (2.12).

On multiplying (4.3) by $\frac{1}{1} \cdot g^{\phi\theta}$ and using the equation (2.17) we obtain

$$(4.4) \quad \overset{\circ}{K}_{(x, \dot{x})}^i \cdot \{F_1, F_n\} + \frac{1}{1} g^{\theta\theta} \overset{\circ}{D}_\theta \overset{\circ}{D}_\theta V^i = 0.$$

The equations (3.4) and (4.4) yields

$$(4.5) \quad \overset{\circ}{K}_{(u, \dot{u})}^i \cdot \{F_1, F_m\} B_\nu^i + \overset{\circ}{K}_{(x, \dot{x})}^i \cdot \{F_1, F_m, F_n\} + \\ + \frac{1}{1} g^{\theta\theta} \overset{\circ}{D}_\theta \overset{\circ}{D}_\theta V^i = 0.$$

Since $\overset{\circ}{K}_{(x, \dot{x})}^i \{F_1, F_m, F_n\}$ is normal to F_m , we have

$$(4.6) \quad \overset{\circ}{K}_{(u, \dot{u})}^i \cdot \{F_1, F_m\} = 0$$

iff $\frac{1}{1} \cdot g^{\theta\theta} \overset{\circ}{D}_\theta \overset{\circ}{D}_\theta V^i$ is normal to the subspace F_m .

Hence we have

Theorem 4.1. Suppose that there exists a vector field V^i of F_n satisfying (4.1). Then in order for F_1 to be minimal in F_m it is necessary and sufficient that

$g^{\theta\theta} \overset{\circ}{D}_\theta \overset{\circ}{D}_\theta V^i$ to be normal to F_m .

Particular case: Let $F_m = F_n$. In this case the equation (4.4) gives the following theorem.

Theorem 4.2. Suppose that there exists a vector field of F_n which satisfies the equation of the type (4.1). Then in order for F_1 to be minimal in F_n it is necessary and sufficient that $g^{\theta\theta} \overset{\circ}{D}_\theta \overset{\circ}{D}_\theta V^i = 0$.

REFERENCES

- [1] C.E. Weatherburn: Riemannian geometry and the tensor calculus. Cambridge 1966.
- [2] H. Rund: The differential geometry of Finsler spaces. Berlin 1959.

[3] B.Y. Chen, K. Yano : On submanifolds of a
Riemannian manifold, J.Math.Soc.Japan 23 (1971) 548-554.

DEPARTMENT OF MATHEMATICS, LUCKNOW UNIVERSITY, LUCKNOW, INDIA
Received March 29, 1980; revised version October 29, 1981.