

Wojciech Żakowski

ON SOME CLASS OF SYSTEMS
OF NONLINEAR PROCESSES WITH A MEMORY

Introduction

In [1] we have introduced the notion of a CGF_k-process as a continuous function $x: (0; +\infty) \rightarrow \mathbb{R}$ satisfying for all $t \geq k$ the condition

$$x(t) = G\left(t, \int_0^k F(s, t, x(t-k+s)) ds\right), \quad k > 0$$

where $G: (k; +\infty) \times \mathbb{R} \rightarrow \mathbb{R}$ and $F: (0; k) \times (k; +\infty) \times \mathbb{R} \rightarrow \mathbb{R}$ are given and continuous functions, satisfying some conditions of Lipschitz type. CGF_k-processes seem to be useful in describing some real, generally nonlinear processes investigated in continuous time and which are characterized by a "memory" whose length is k time units. If $G(t, v) = v$ and $F(s, t, u) = \alpha(s) \cdot u$, where $\alpha: \mathbb{R} \rightarrow \mathbb{R}$ is a non-zero polynomial, then CGF_k-process is a (α, k) -computation introduced in [2]. Such processes occur in many technical, economical and biological problems, e.g. in control theory, renewal theory, in the description of cells reproduction [3], [4] etc. Basic properties of (α, k) -computations and CGF_k-processes were investigated by Żakowski in [5], [6] and [7].

In this paper we introduce the notion of a CGF_k-system of processes (continuous GFK-system of processes) as some sys-

tems of n continuous functions satisfying integral conditions (4), generally nonlinear. The functions of a CGFk-systems seem to be useful in the description of some continuous processes, generally nonlinear and interrelated. These processes have a "memory" with the length k_1, \dots, k_n . We also consider some qualitative properties of CGFk-systems.

1. Basic notations and definitions

Let \mathbb{R} denote the set of all real numbers and n - an arbitrary but fixed natural integer ($n \geq 1$). By $k = [k_1, k_2, \dots, k_n]$ we denote the system of real numbers such that

$$(1) \quad 0 < k_1 \leq k_2 \leq \dots \leq k_n < +\infty.$$

Let $\tau_i = k_n - k_i$, $i = 1, 2, \dots, n$. We define the sets Δ_j , $j = 1, 2, \dots, n$ and Ω as follows

$$\Delta_j = \{(s, t, u) \in \mathbb{R}^3 : 0 \leq s \leq k_j \wedge t \geq k_n \wedge u \in \mathbb{R}\}$$

and

$$\Omega = \{(t, v_1, \dots, v_n) \in \mathbb{R}^{n+1} : t \geq k_n \wedge v_i \in \mathbb{R}, i=1, 2, \dots, n\}.$$

Let $r_{ij} : \Delta_j \rightarrow \mathbb{R}$ and $G_i : \Omega \rightarrow \mathbb{R}$, $i = 1, 2, \dots, n$ be continuous functions. We assume that for every $\delta > k_n$ there exist positive numbers

$$L_{ij}^{(F, \delta)} \text{ and } L_i^{(G, \delta)}, \quad i, j = 1, 2, \dots, n,$$

such that for every $s \in (0; k_i)$, $t \geq k_n$ and $\tilde{u}, \tilde{\tilde{u}} \in \mathbb{R}$ the inequalities

$$(2) |F_{ij}(s, t, \tilde{u}) - F_{ij}(s, t, \tilde{\tilde{u}})| \leq L_{ij}^{(F, \delta)} \cdot |\tilde{u} - \tilde{\tilde{u}}|, \quad i, j = 1, 2, \dots, n,$$

hold, and for every $t \geq k_n$ and $\tilde{v}_1, \tilde{\tilde{v}}_1, \dots, \tilde{v}_n, \tilde{\tilde{v}}_n \in \mathbb{R}$ the inequalities

$$(3) |G_i(t, \tilde{v}_1, \dots, \tilde{v}_n) - G_i(t, \tilde{\tilde{v}}_1, \dots, \tilde{\tilde{v}}_n)| \leq L_i^{(G, \delta)} \cdot \sum_{j=1}^n |\tilde{v}_j - \tilde{\tilde{v}}_j|$$

$i=1, 2, \dots, n$, hold.

Definition. The system $[x_1, x_2, \dots, x_n]$ of continuous functions $x_i : (\tau_i; +\infty) \rightarrow \mathbb{R}$, $i=1, 2, \dots, n$, fulfilling for all $t \geq k_n$ the conditions

$$(4) x_i(t) = G_i \left(t, \int_0^{k_1} F_{i1}(s, t, x_1(t-k_1+s)) ds, \dots, \right. \\ \left. \dots, \int_0^{k_n} F_{in}(s, t, x_n(t-k_n+s)) ds \right)$$

is said to be CGFk-system of processes (shortly: CGFk-system).

In the case of $n=1$, the CGFk-system is a $CG_1 F_{11} k_1$ -process introduced in [1]. Any CGFk-system describes some system of real and interrelated processes in continuous time. These processes are generally nonlinear with a "memory" of the finite length k_1, k_2, \dots, k_n .

We observe that for every system $[f_1, f_2, \dots, f_n]$ of continuous functions $f_i : (\tau_i; +\infty) \rightarrow \mathbb{R}$, $i = 1, 2, \dots, n$, and for every system $k = [k_1, k_2, \dots, k_n]$ of real numbers such that $k_i = k_n - \tau_i$, $i = 1, 2, \dots, n$ satisfying inequalities (1), the system $[f_1, f_2, \dots, f_n]$ is a CGFk-system if, for example, $F_{ij} \equiv 0$ for $i, j = 1, 2, \dots, n$ and $G_i(t, v_1, \dots, v_n) = f_i(t)$ for all $t \geq k_n$ and $v_i \in \mathbb{R}$, $i = 1, 2, \dots, n$.

The dependence of the functions G_i , $i = 1, 2, \dots, n$, on the first variable and the dependence of the functions F_{ij} ,

$i, j = 1, 2, \dots, n$, on the second variable describes the fact that CGFk-system is generally time-varying (in particular, controlled). If these functions are fixed and constant in the variable t (i.e. if G_i are constant with respect to the first variable and F_{ij} are constant with respect to the second variable, $i, j = 1, 2, \dots, n$), then the values of $x_i(t)$, $i = 1, 2, \dots, n$, $t \geq k_n$, depend only on the values of the functions x_1, x_2, \dots, x_n on the intervals $\langle t-k_1; t \rangle, \langle t-k_2; t \rangle, \dots, \langle t-k_n; t \rangle$ respectively. This is expressed by saying that the CGFk-system "remembers" k_n time units backwards. We observe, that in this case the values of $x_i(t)$, $i=1, 2, \dots, n$, $t \geq k_n$, depend on the values of this function only on the interval $\langle t-k_i; t \rangle$. This is expressed by saying that the process x_i "remembers" k_i time units backwards, i.e., that this process have a "memory" with the length k_i .

If $x : \langle a; +\infty \rangle \rightarrow \mathbb{R}$, then the restriction of x to the set $U \subset \langle a; +\infty \rangle$ is denoted by $x|_U$. In particular, if $[x_1, x_2, \dots, x_n]$ is a CGFk-system, then

$$[x_1|_{\langle \tau_1; k_n \rangle}, x_2|_{\langle \tau_2; k_n \rangle}, \dots, x_n|_{\langle 0; k_n \rangle}]$$

is called the initial state of this CGFk-system.

The set of all real and continuous functions on the intervall $\langle a; b \rangle$ we denote by $C_{\langle a; b \rangle}$.

2. Basic properties of the CGFk-systems

From the conditions (4) it follows, that if $[f_1, f_2, \dots, f_n]$ is the initial state of any CGFk-system then

$$(5) \quad \begin{aligned} f_i(k_n) &= \\ &= G_i \left(k_n, \int_0^{k_1} F_{i1}(s, k_n, f_1(\tau_1+s)) ds, \dots, \int_0^{k_n} F_{in}(s, k_n, f_n(s)) ds \right) \\ &\quad i=1, 2, \dots, n. \end{aligned}$$

Theorem 1. If the functions $f_i \in C_{\langle \tau_i; k_n \rangle}$, $i = 1, 2, \dots, n$, satisfy the conditions (5) then there exists exactly one CGFk-system $[x_1, x_2, \dots, x_n]$ such that $x_i | \langle \tau_i; k_n \rangle = f_i$ for $i = 1, 2, \dots, n$. This CGFk-system is a limit of the sequence

$$(6) \quad [x_1^{(m)}, x_2^{(m)}, \dots, x_n^{(m)}], \quad m = 0, 1, 2, \dots$$

of successive approximations, defined as follows

$$(7) \quad x_i^{(0)}(t) = \begin{cases} f_i(t) & \text{for } t \in \langle \tau_i; k_n \rangle \\ f_i(k_n) & \text{for } t > k_n, \end{cases}$$

$i = 1, 2, \dots, n$, and

$$(8) \quad x_i^{(m)}(t) = \begin{cases} f_i(t) & \text{for } t \in \langle \tau_i; k_n \rangle \\ G_i \left(t, \int_0^{k_1} F_{i1}(s, t, x_1^{(m-1)}(t-k_1+s)) ds, \dots \right. \\ \left. \dots, \int_0^{k_n} F_{in}(s, t, x_n^{(m-1)}(t-k_n+s)) ds \right) & \text{for } t > k_n, \end{cases}$$

$i = 1, 2, \dots, n$ and $m = 1, 2, \dots$. For every $i = 1, 2, \dots, n$, the sequence $(x_i^{(m)})$, $m = 1, 2, \dots$, is almost uniformly convergent on the interval $\langle \tau_i; +\infty \rangle$.

Proof. Let δ denotes an arbitrary positive number greater than k_n . We define the metric space

$$(9) \quad C_f^{(k, \delta)} = \left\{ [x_1, x_2, \dots, x_n] : x_i \in C_{\langle \tau_i; \delta \rangle} \wedge x_i | \langle \tau_i; k_n \rangle = r_i, \right. \\ \left. i = 1, 2, \dots, n \right\}$$

with the metric

$$(10) \quad \varrho(\tilde{x}, \tilde{\tilde{x}}) = \max_{1 \leq i \leq n} \sup_{\langle \tau_i; \delta \rangle} \left(e^{\lambda t} \cdot \left| \tilde{x}_i(t) - \tilde{\tilde{x}}_i(t) \right| \right)$$

where λ is a negative number such that

$$(11) \quad \max_{1 \leq i \leq n} \left(L_i^{(G, \delta)} \cdot \sum_{j=1}^n k_j \cdot L_{ij}^{(F, \delta)} \right) \frac{e^{\lambda k_1} - 1}{\lambda k_1} < 1.$$

The space (9) is complete. On this space we define an operator A as follows

$$A([x_1, x_2, \dots, x_n]) = [A_1(x), A_2(x), \dots, A_n(x)],$$

where $x = [x_1, x_2, \dots, x_n]$ and

$$(12) \quad A_i[x](t) = \begin{cases} f_i(t) & \text{for } t \in \langle \tau_i; k_n \rangle \\ G_i \left(t, \int_0^{k_1} F_{i1}(s, t, x_1(t-k_1+s)) ds, \dots \right. \\ & \left. \dots, \int_0^{k_n} F_{in}(s, t, x_n(t-k_n+s)) ds \right) & \text{for } t \in (k_n; \delta) \end{cases}$$

$i = 1, \dots, n$. On the basis of (8) we observe that the operator A transforms the space (9) into itself. In view of (12), (2) and (3) we have for every $t \in (k_n; \delta)$ and for every $\tilde{x}, \tilde{\tilde{x}} \in C_f^{(k, \delta)}$:

$$\begin{aligned}
 & e^{\lambda t} \cdot |A_i[\tilde{x}](t) - A_i[\tilde{\tilde{x}}](t)| \leq \\
 & \leq e^{\lambda t} \cdot L_i^{(G, \delta)} \cdot \sum_{j=1}^n \int_0^{k_j} L_{ij}^{(F, \delta)} |\tilde{x}_j(t-k_j+s) - \tilde{\tilde{x}}_j(t-k_j+s)| ds = \\
 & = L_i^{(G, \delta)} \cdot \sum_{j=1}^n L_{ij}^{(F, \delta)} \int_0^{k_j} e^{\lambda(k_j-s)} e^{\lambda(t-k_j+s)} |\tilde{x}_j(t-k_j+s) - \tilde{\tilde{x}}_j(t-k_j+s)| ds.
 \end{aligned}$$

$i = 1, 2, \dots, n$. From the above and basing on (10) and (12) we have for every $t \in \langle \tau_i; \delta \rangle$

$$\begin{aligned}
 & e^{\lambda t} \cdot |A_i[\tilde{x}](t) - A_i[\tilde{\tilde{x}}](t)| \leq \\
 & \leq L_i^{(G, \delta)} \cdot \varrho(\tilde{x}, \tilde{\tilde{x}}) \cdot \sum_{j=1}^n L_{ij}^{(F, \delta)} \frac{e^{\lambda k_j} - 1}{\lambda k_j} \cdot k_j \leq \\
 & \leq \frac{e^{\lambda k_1} - 1}{\lambda k_1} \cdot L_i^{(G, \delta)} \cdot \varrho(\tilde{x}, \tilde{\tilde{x}}) \cdot \sum_{j=1}^n k_j \cdot L_{ij}^{(F, \delta)},
 \end{aligned}$$

$i = 1, 2, \dots, n$. This implies that for every $\tilde{x}, \tilde{\tilde{x}} \in \mathbb{C}_F^{(k, \delta)}$

$$\varrho\left(A[\tilde{x}], A[\tilde{\tilde{x}}]\right) \leq \max_{1 \leq i \leq n} \left(L_i^{(G, \delta)} \cdot \sum_{j=1}^n k_j \cdot L_{ij}^{(F, \delta)} \right) \frac{e^{\lambda k_1} - 1}{\lambda k_1} \cdot \varrho(\tilde{x}, \tilde{\tilde{x}}).$$

From this and from (11), applying the Banach fixed point theorem, it follows that there exists exactly one system of functions $[x_1^*, x_2^*, \dots, x_n^*] \in \mathbb{C}_F^{(k, \delta)}$ such that

$$A \left([x_1^*, x_2^*, \dots, x_n^*] \right) = [x_1^*, x_2^*, \dots, x_n^*].$$

Moreover, this system is a limit of the sequence (6), defined by (7) and (8). From (10) it follows that for every $i = 1, 2, \dots, n$, the sequence $(x_i^{(m)})$, $m = 1, 2, \dots$, is uniformly convergent on the interval $\langle \tau_i; \delta \rangle$. Because δ denotes an arbitrary positive number greater than k_n , the proof is complete.

We observe, that the exponential factor in definition (10) gives that the numbers

$$L_i^{(G, \delta)} \text{ and } L_{ij}^{(F, \delta)}, \quad i, j = 1, 2, \dots, n$$

in Lipschitz's conditions (2) and (3) may be arbitrarily large.

Theorem 2. If $[x_1, x_2, \dots, x_n]$ is an CGFk-system, and moreover, if

1° there exist continuous functions

$$M_{ij}^{(F)} : \left\{ (s, t) \in \mathbb{R}^2 : s \in \langle \tau_j; k_j \rangle \wedge t \geq k_n \right\} \rightarrow (0; +\infty)$$

$i, j = 1, 2, \dots, n$, such that for every $(s, t, u) \in \Delta_{ij}$ the conditions

$$(13) \quad |F_{ij}(s, t, u)| \leq M_{ij}^{(F)}(s, t) \cdot |u|$$

$i, j = 1, 2, \dots, n$, hold

2° there exist functions $M_i^{(G)} : \langle k_n; +\infty \rangle \rightarrow (0; +\infty)$, $i = 1, 2, \dots, n$, such that for every $(t, v_1, \dots, v_n) \in \Omega$ the conditions

$$(14) \quad |G_i(t, v_1, \dots, v_n)| \leq M_i^{(G)}(t) \cdot \sum_{j=1}^n |v_j|$$

$i = 1, 2, \dots, n$, hold

3° for every $t \geq k_n$ the conditions

$$(15) \quad M_i^{(G)}(t) \cdot \sum_{j=1}^n \int_0^{k_j} M_{ij}^{(F)}(s, t) ds \leq 1$$

$i = 1, 2, \dots, n$, hold, then there exists an integer r , $1 \leq r \leq n$, and a number $c_r \in \langle \tau_r; k_n \rangle$ such that for every $i = 1, 2, \dots, n$, and $t \geq \tau_i$

$$(16) \quad |x_i(t)| \leq |x_r(c_r)|.$$

P r o o f. The CGFk-system $[x_1, x_2, \dots, x_n]$ is a limit of the sequence (6), defined by equalities (7) and (8), where $f_i = x_i | \langle \tau_i; k_n \rangle$, $i = 1, 2, \dots, n$. Let

$$M = \max_{1 \leq i \leq n} \sup_{\langle \tau_i; k_n \rangle} |x_i(t)|.$$

On the basis of (13) and (14) we have for every $t \geq k_n$, $i = 1, 2, \dots, n$, and $m = 1, 2, \dots$

$$(17) \quad |x_i^{(m)}(t)| \leq M_i^{(G)}(t) \cdot \sum_{j=1}^n \int_0^{k_j} M_{ij}^{(F)}(s, t) |x_j^{(m-1)}(t - k_j + s)| ds.$$

We observe that $|x_i^{(0)}(t)| \leq M$ for every $t \geq \tau_i$, $i = 1, 2, \dots, n$. From this, on the basis of inequalities (15) and (17), applying mathematical induction, we get

$$(18) \quad |x_i^{(m)}(t)| \leq M$$

for every $t \geq \tau_i$, $i = 1, 2, \dots, n$, and $m = 0, 1, 2, \dots$. Passing in the inequalities (18) to the limit with $m \rightarrow +\infty$ we get

$$|x_i(t)| \leq M$$

for every $t \geq \tau_i$, $i = 1, 2, \dots, n$. On the other hand, there exists an integer r , $1 \leq r \leq n$, such that $M = \sup_{\langle \tau_r; k_n \rangle} |x_r(t)|$.

Obviously, there exists a number $c_r \in \langle \tau_r; k_n \rangle$ such that $|x_r(c_r)| = \sup_{\langle \tau_r; k_n \rangle} |x_r(t)|$, so we get inequality (16).

Corollary 1. If the hypotheses of the Theorem 2 hold, then any CGFk-system $[x_1, x_2, \dots, x_n]$ is bounded, i.e. there exists the positive numbers M_1, M_2, \dots, M_n such that

$$|x_i(t)| \leq M_i$$

for every $t \geq \tau_i$, $i = 1, 2, \dots, n$.

Theorem 3. If $[x_1, x_2, \dots, x_n]$ is an CGFk-system and the hypotheses 1^o and 2^o of Theorem 2 hold, and $k_i = k_0$ for $i = 1, 2, \dots, n$, and there exists a number $t_0 \geq 0$ for which the functions $x_i|_{\langle t_0; t_0 + k_0 \rangle}$, $i = 1, 2, \dots, n$, are nonnegative (nonpositive) and nonzero and, moreover

$$(19) \quad M_i^{(G)}(t_0 + k_0) \cdot \sum_{j=1}^n \int_0^{k_0} M_{ij}^{(F)}(s, t_0 + k_0) ds < 1$$

$i = 1, 2, \dots, n$, then there exists an integer r , $1 \leq r \leq n$, such that the function $x_r|_{\langle t_0; t_0 + k_0 \rangle}$ is not nondecreasing (or not nonincreasing, respectively).

Proof. If the functions $x_i|_{\langle t_0; t_0 + k_0 \rangle}$, $i = 1, 2, \dots, n$, are nonnegative and nonzero, then in view of (4), (13) and (14) we have

$$(20) \quad x_i(t_0+k_0) \leq M_i^{(G)}(t_0+k_0) \cdot \sum_{j=1}^n \int_0^{k_0} M_{ij}^{(F)}(s, t_0+k_0) x_j(t_0+s) ds$$

$i = 1, 2, \dots, n$. Hence we get

$$(21) \quad x_i(t_0+k_0) \leq \max_{1 \leq j \leq n} \sup_{\langle t_0; t_0+k_0 \rangle} x_j M_i^{(G)}(t_0+k_0) \cdot \sum_{j=1}^n \int_0^{k_0} M_{ij}^{(F)}(s, t_0+k_0) ds$$

$i = 1, 2, \dots, n$. If there exists an integer r , $1 \leq r \leq n$, such that

$$M_r^{(G)}(t_0+k_0) \cdot \sum_{j=1}^n \int_0^{k_0} M_{rj}^{(F)}(s, t_0+k_0) ds = 0$$

then by (21) we have $x_r(t_0+k_0) = 0$. Since the function $x_r | \langle t_0; t_0+k_0 \rangle$ is nonnegative and nonzero, this implies that this function is not nondecreasing. If

$$0 < M_i^{(G)}(t_0+k_0) \cdot \sum_{j=1}^n \int_0^{k_0} M_{ij}^{(F)}(s, t_0+k_0) ds < 1$$

$i = 1, 2, \dots, n$, we have, on the basis of (19) and (21), the inequalities

$$(22) \quad x_i(t_0+k_0) < \max_{1 \leq j \leq n} \sup_{\langle t_0; t_0+k_0 \rangle} x_j$$

for $i = 1, 2, \dots, n$. On the other hand, there exist integers r , $1 \leq r \leq n$ such that

$$(23) \quad \sup_{\langle t_0; t_0+k_0 \rangle} x_r = \max_{1 \leq j \leq n} \sup_{\langle t_0; t_0+k_0 \rangle} x_j .$$

From (23) and (22), by substitution $i = r$, we get

$$x_r(t_0+k_0) < \sup_{\langle t_0; t_0+k_0 \rangle} x_r$$

which completes the proof for the case of nonnegative and nonzero functions $x_i | \langle t_0; t_0+k_0 \rangle$, $i = 1, 2, \dots, n$. In the case when these functions are nonpositive and nonzero the proof is analogous.

Theorems 1, 2 and 3 generalize some analogous theorems of the papers [1] and [7].

REFERENCES

- [1] W. Żakowski : On some nonlinear processes with a memory, Bull. Acad. Polon. Sci., Ser. Sci. Techn. 28 (1980).
- [2] W. Żakowski : On a concept of (α, k) -computation, Bull. Acad. Polon. Sci., Ser. Sci. Techn. 27 (1979) 841-844.
- [3] M. Kimmel : Mathematical model of the proliferation cycle of lymphoblastic leukemia cells, Acta Haem. Polon. 10 (1979) 91-97.
- [4] M. Kimmel : Integro-differential equations in cellular population dynamics, Proc. Internat. Conf. "Functional Differential Systems and Related Topics", Błażejewko, 19-26 May, 1979.
- [5] W. Żakowski : (α, k) -computations in continuous time, Demonstratio Math., 12 (1979) 1071-1087.

- [6] W. Żakowski : Defining polynomials for the functions $\sin t$ and $\cos t$ [in Polish], Institute of Computer Science Polish Academy of Sciences Reports, 371 (1979).
- [7] W. Żakowski : On some class of nonlinear processes with a memory in continuous time, Demonstratio Math. 14 (1981) 771-782.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW

Received July 10, 1981.

