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ONE-SIDED APPROXIMATION BY ENTIRE FUNCTIONS 

1. Prel iminar ies 
Let L p ( a ,b ) , 1 ^ p < oo, be the space of a l l measura-

ble complex-valued funct ions Lebesgue-integrable with p-th 
power on the i n t e rva l ( a , b ) . Denote by L (a ,b) the space 
of a l l complex-valued funct ions e s sen t i a l l y bounded in ( a , b ) . 
As usual ly , the norm of f € L p (a ,b) i s given by the formu-
l a 

i 

I M U . , w i f , i L p(a ,b) 

{ / | f ( * ) | P dx}' 

ess sup | f ( x ) | 
x€(a f b) 

i f 

i f 

p < o o , 

p = <*>. 

We sha l l wri te Lp instead of L p ( -oo,oo) . 
For funct ions f belonging to a l l spaces L p (a ,b) with 

f i n i t e a, b (a < b ) , the l imi t 

b -*• oo 

i s f i n i t e or i n f i n i t e . I f f e Lp , then 

b) 

f«P - ilfilLp-
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R.Taberski 

Suppose tha t f e L p (a ,b) f o r each, f i n i t e ( a , b ) . I n -
troduce the d i f f e r e n c e s 

k r \ 
A h f ( t ) = 2 *(*+«*) (k = 1 . 2 . . . . ) , 

V=0 

with r e a l increments h, and the moduli of smoothness 

co ( 6 ; f ) = suPf IIAu f (* )|| _ (0 « 6 < **>). 

* p he<0,6> " a l l p 

These moduli are f i n i t e or i n f i n i t e , 00^(0;f)p = 0, and 

u k ( i j f ) p < w k U ; f ) i f o < 6 ^ X < oo • 

Let be the c l a s s of a l l e n t i r e func t ions 

F(z) = a k z k (z = x + iy) 
k=0 

of exponential type, of the order £ at most. Consider a 
complex-valued func t ion f belonging to L p (a ,b) f o r each 
f i n i t e i n t e r v a l ( a , b ) . Denote by H.t . ( f ) the set of a l l 

b, p 
func t ions G e Bg such tha t f - G e Lp . 

The quant i ty 

A é ( f ) p - <! 

inf f-Gfl„ i f H,. ( f ) i s not empty, 
GeH* J f ) « l l p 6» p 

to, p 

otherwise 

i s ca l led the best approximation of f by e n t i r e func t ions 
of c l a s s H-. „ ( f ) . I t i s well-known tha t b,p 
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Approximation, by e n t i r e func t ions 3 

(1.1) A 6 ( f ) p « C(k) w k f ) ( 0 < 6 < « f 1 < p < - , b l , 2 „ 1 4 , 

where the pos i t ive number C(k) depends only on k (see 
[ 1 ] , Sect . 99-105, a lso [ 7 ] , p.272-274). 

Suppose tha t f i s a r ea l -va lued func t ion e s s e n t i a l l y 
bounded in each f i n i t e i n t e r v a l . Denote by- Ifg p ( f ) [ r e s p . 
Kg p ( f ) ] the se t of a l l e n t i r e func t ions P6 Eg [Q 6 E g ] r e a l -
-valued i n ( -«*>,») , such t h a t 

(1 .2) P(x) > f ( x ) [Q(x) < f ( x ) ] 

almost everywhere in (-oo, oo) and P - f € Lp [ f - Q e LPJ. 
In the case of f bounded i n each f i n i t e i n t e r v a l , we also 
introduce the s e t s Ht „ ( f ) , HZ „ ( f ) of these P € Kt- „ ( f ) , _ b, p o, p o, p 
Q'€ K_, „ ( f ) , r e s p e c t i v e l y , f o r which the i n e q u a l i t i e s (1.2) b, p 
hold everywhere i n ( -00 ,00 ) . 

The usefu l c h a r a c t e r i s t i c s of the best one-sided appro-
ximation of rea l -va lued func t ions f belonging to L p ( a , b ) , 
bounded or e s s e n t i a l l y bounded i n ( a , b ) , f o r a l l f i n i t e 
a ,b are given by the formulae 

in f 

A6< f>p -
otherwise', 

P e K ^ p ( f ) , Q e K ^ p ( f ) 
inf | |p-Q||p i f Kj, ( f ) are not empty, 

otherwise. 

In these cases , 

V f ) p < V f ) p ' A^(f ) p < Ag( f ) p ( 0 < 6 < o o , 1 < p < ~ ) , 
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R.Taberski 

respectively, and 

< 4 V f , ~ (0 < £ < po). 

For continuous functions f, f)p = Ag(f)p. 
Using some analogues of the moduli of smoothness defined 

in Sections 2 and 3, we shall give the estimates for A^(f)p 
and Ag(f)p "(1 < p < o©) similar to that of (1.1). More-
over, the converse approximation theorems will be presented. 
They correspond to the recent results concerning one-sided 
trigonometric approximation announced in [ 2 ] , [3], [4] and 
[5]. 

The symbols C., C-,(k), with integer indices, will 
mean positive constants absolute or depending on toe parame-
ter k, only. 

2. Modified moduli of smoothness 
Consider here a complex-valued function f defined and 

bounded in each finite interval of (-00,00). Introduce the 
intervals 

l|(x) = < x - k , x + k | > ( 0 < 5 < o o , k = 1,2,...) 

and the quantity 

uk(6fX,f) - sup f(t)| (-00 < x < 00). 
t.t+khel£(x) 

It can easily be observed that, for every finite 6 >p 
and all real x, 

(2.1) Wk(i;x,f) < ( ¿ J ¿;x,f) if k = 2,3,..., 

0)t(6}X,f) < .2 sup |f(s)|. 
sel^x) 
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Approximation by entire functions 5 

In particular, the functions 

(2.2) (pk.(x) =a)k (4 ;x ,f ) ( 6 = const ^ 0, k = 1 , 2 , . . . ) 

are bounded in f in i t e intervals . 
Evidently, for every positive integer k and a l l real x, 

cpk(x) = 0 when 6 = 0 . 

Considering positive 5, we have the following 
L e m m a 2.1. ( i ) Let f be continuous almost eve-

rywhere in (-00,00). Then (p̂  i s continuous almost every-
where, too. ( i i ) If f i s a real-valued function in 
{—00,00)f then (f̂  i s measurable in this interval . 

P r o o f of ( i ) . Let g be a positive number. Denote 
by X the set of a l l real x such that x±JS/2 are the 
points of continid.ty of f . Choose an arbitrary xQ e X and 
T) 6 (-d/2, 6/2)} write 

-

sup [ f (s)-f ( t ) | - sup | f ( u) —f (v)| 
s . t e l J ( x o ) u,v€l1(x0+7) 

1° If 3 > 0, then 

§ < £ + |f(se) - f(t£)| - | f(u) - f(v)|^ 

^ e+ |f(s£) - f ( t E ) - f(u) + f (v ) j 

1 1 for some s£ , t£ e and each u,v e Henoe 
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6 H . T a b e r s k i 

Ç < £ + I f ( s E ) - f ( u ) I + | f ( v ) - f ( t £ ) I < 3 £ , 

provided | ip | i s s m a l l enough ( u , v are t a k e n c o r r e s p o n d i n g -

iy). 
2 ° I n t h e c a s e o < 0 , under the r e s t r i c t i o n s , t e 

e i 1 f x ) ' 
c (5l o ' » 

- ç ^ sup | f ( u ) - f ( v ) | - | f ( s ) - f ( t ) | . 
7 u , v e l J ( x 0 + ? ) 

T h e r e f o r e 

e + | f ( u £ ) ? ) - f ( v £ > 7 ) - f ( s ) + f ( t ) | 

f o r some u g v £ ^ e I j ( x 0 + y ) and a l l s , t e l j . ( x Q ) . Con-
seq u e n t l y , 

- (> < z+ | f U 8 f ? i - f ( s ) | + | f ( t ) - < 3 £ , 

whenever 117 | i s s m a l l and s , t a r e n e a r t o u £ ^ , v e 
r e s p e c t i v e l y . 

I n view o f 1 ° and 2 ° , q 0 a s rj 0 , i . e . 

and t h e p r o o f i s c o m p l e t e d . 
P r o o f o f ( i i ) . F o r e v e r y r e a l x , 

^ ( x ) = sup | f ( s ) - f ( t ) | = 
s , t c l j ( x ) 

= sup f ( s ) - i n f f ( t ) s f ^ ( x ) - f 2 ( x ) . 
s e l j ( x ) t c l j ( x ) 

- 482 



Approximation by entire functions 

To prove that (p̂  i s measurable in ( -00 ,00) , we intro-
duce the col lect ions 

x : sup f ( s ) ^ c ^ = <x : f ( s ) < c V s e l l ( x ) I , 
8€I}(X) J I * J 

Yq = | s : f ( s ) < c, -00 < s < o o | 

with rea l c. 
1° I f Y contains no open interval of length the c 

set Xc i s empty. 

2° I f Yq contains some separated interva l s of length 
Xc can be represented as a f i n i t e or enumerable sum 

of the open or closed interva l s degenerated eventually to in-
dividual points. 

In both these cases , the s e t s Xc are Lebesgue-measurab-
l e . Theorefo|re, the functions f^ and - f 2 are measurable 
in ( -00 ,00) . Hence the re su l t fol lows. 

Also, a simple calculat ion leads to 
L e m m a 2 .2 . ( i ) I f f i s continuous in ( -00 ,00) , 

then <pk (k = 1 , 2 , . . . ) are continuous everywhere. ( i i ) Sup-
pose that every open interval (a ,b) of length not greater than 
k6 contains no more than one discontinuity point of f . Then 
the set of discontinuity points of cp̂  i s enumerable at most. 

Assuming that (/>̂  i s measurable in ( -00 ,00) , for every 
fixed 6 > 0 , we can define the k-th modified modulus of 
smoothness of f ( in Lp-metric) by the formula 

* k i t f » f > P =fl^kllP (0 ^ d < ~ > ) . 

For example, under the assumption on f given in Lemma 2.1 
[Lemma 2 . 2 ] , the modified moduli X^ ( 6 j f ) j f ) D ] ex i s t 
for each p £ 1 and 6 ^ 0 . 
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8 R.Taberski 

It is clear that if 0 < 6 4 A < «*», then ir̂ i rfjf) K P 
<trlc(A;f)p and T^iO;?)p = 0 always. There are functions f, 
bounded or unbounded in (-eo,oo) such that f,,(<$}f ) „ < oo 

r " for some p ^ 1 and all non-negative 0. But, sometimes, 

trk(6}f)p = oo for all positive 6. 

This case has no praotical interest. 
It may be shown (see [3], p.793-794)., that, for measurab-

le f and finite or infinite p.^ 1, 

(2.3) T k(i|f) p> wk(6;f)p (6>0, k = 1,2,...). 

P r o p o s i t i o n 2.3* Under the assumptions 
p > 1 and 6 ,X > 0, 

(i) tk(<f;f+g)p < rk(5;f)p + Tk(6;g)p (k > T), 

(ii) ^(i+AjfJp < ^(tfifjp + ^ U i f l p , 

provided that these moduli ex^st. In particular, 

f^ndjfjp < n ^ (<$»f )p for n=2,3,... 

The inequality (i) follows at' once from the identity 

(f+g)(t) - A j f(t) + g(t). 

The proof of (ii) is similar to that of Proposition 3.3 
(ii). 

P r o p o s i t i o n 2.4. (i) Let f be as in Lem-
ma 2.2 (ii). Then, for every p ^ 1 
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Approximation by e n t i r e func t ions 9 

( i i ) Suppose tha t f possesses the de r iva t ive f ' continuous 
i n ( -e>ot oo). Then 

whenever p ^ 1, S > 0 and k = 2 , 3 , . . . 
The a s s e r t i o n of ( i ) i s an immediate consequence of the 

inequa l i ty ( 2 . 1 ) . 
To prove ( i i ) , we observe tha t 

I ? (x ) = I k-1 
k f / ( k - U (X) {-oo < X < oo) 

and t h a t , by Lemma 2 . 2 ( i ) , the func t ion 

$ ( x , u ) = sup f ' ( s ) | 
s ,s+(k-1JheJ*(x+u) 

i s continuous on the plane. Fur ther , 

h 
6> k ( i ;x , f ) = sup f ' ( u + t ) d u 

t,t+kh€l^"(x) ' o 

< J sup f ' ( u + t ) | d u = J $ ( x , u ) du. 
0 t , t + ( k - 1 ) h e l | ( x ) 

Thus 

and the r e s u l t fo l lows . 
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10 R.Taberski 

P r o p o s i t i o n 2.5. Suppose that, for a certain 
function f continuous almost everywhere and for some finite 
numbers p > 1, > 0 and positive integer k, 

oo 
(2.4) J | C0k(tf $x,f )| p dx <©o when 

— oo 

Then 

(2.5) lim tk(i;f)p = 0. 

P r o o f . The sequence of non-negative measurable 
functions 

(2.6) y n U ) = w k ; x,f) (n^-J-) 

+"nds monotonely to zero for almost every x. Moreover, for 
¡very real x, 

Vn(x) ̂  T|Jn (x) when n > nQ > 1/d . o 

In view of (2.4), 

oo 
/|v n(x)|Pdx<oo. 

_oo 0 

Hence, by the Lebesgue dominated convergence theorem, 
o® 

lim f (x)| p dx - 0, 
n—«» 1 — OO 

i.e. 
lim X k (1 ; f) = 0. 
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Approximation by e n t i r e funct ions 11 

Now, the a s s e r t i o n ( 2 . 5 ) i s qui te evident . 
R e m a r k . In the case k = 1 or k = 2 , the condi-

t i o n s ( 2 . 4 ) and ( 2 . 5 ) imply that f i s continuous almost eve-
rywhere in ( - 0 0 , 0 0 ) . 

Indeed, l e t f be a funct ion discontinuous in a se t E 
of posi t ive measure, f o r which the r e l a t i o n s ( 2 . 4 ) , ( 2 . 5 ) 
are f u l f i l l e d . I f i s defined by ( 2 . 6 ) , . with k = 1 or 2 , 
then 

1 

xk(b f)p>{/k{ x )lp dx}P >0-
Ccnseq uent ly , 

( 2 . 7 ) l im J I % ( x ) | p dx = 0 . 
n -»«x> g 1 1 

On the other hand, in view of monotonity of the sequence 
{ v n ( x ) } , a f i n i t e l i m i t 

lim i fMx) =l fKx) 
1; DO 

e x i s t s and > 0 f o r a l l x € E. Therefore , by Fa tou ' s 
lemma, 

l im / | v n ( x ) | P dx > / | i p ( x ) | p dx > 0 , 
n ' * 0 < > E E 

which cont radic t s to ( 2 . 7 ) . 
P r o p o s i t i o n 2 . 6 . I f a funct ion f i s abso-

l u t e l y continuous in each f i n i t e i n t e r v a l and i t s der ivat ive 
P D 

f belongs to the space L^, with a f i n i t e p > 1 , then 

T1 (6 ; f ) p < ¿|| f ' j j p ( ¿ > 0 ) . 
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12 R.Taberski 

The proof runs as i n [ 3 ] , p.795-796* 
Let us de f ine the p- th v a r i a t i o n of f i n f i n i t e i n t e r -

v a l s as 

V = sup | 2 | f < x j + i i - P f ( P > 0 ) , 
n ld=o J 

where TT denotes p a r t i t i o n s {a = xQ < x 1 < . . . < x n = b } . 
Write 

7At) = sup V ( f j a . b ) . 
^ a , b y 

A simple c a l c u l a t i o n , which w i l l not be presented h e r e , 
y i e l d s 

P r o p o s i t i o n 2 . 7 . Suppose t h a t f i s of 
bounded p- th v a r i a t i o n V p ( f ) , 1 ^ p < oo# Then 

1 
^ ( ¿ I f j p < (56 ) p V p {f) ( 0 < 6 <«*>). 

F i n a l l y , we s h a l l give the es t ima te needed i n Sea t ion 4* 

L e m m a 2 . 8 . For f u n c t i o n s <pk de f ined by (2 .2) 
and p > 1, 

^ t t ' W ^ J p * * k (tf+Tf I i ' ) (0 < M '< 

provided that the r ight -hand s i d e e x i s t s . 
P r o o f . Sinoe <pk(x) \ > 0 always, we have 

u 1 U f x , t p k ) ^ sup <pk(u) = 

' u e I l ( x ) 

eap su'p | A J f ( t ) j < sup f ( t ) | 
uel^fx) t , t+kh6- l | (u) t , t + k h € l j + ; i / k ( x ) 
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Approximation by entire functions 13 

Therefore, under the assumption x € (-oo foo) and A^O, 

1 
c ^ U j x , ^ ) ^ cok( 6 + £ ; x , f ) . 

Thus, by 2 . l ( i i ) , our result follows. 

3. Further basic quantities 
Now le t f be an arbitrary complex-valued function of 

a real variable, essential ly bounded in each f i n i t e interval . 
Retain the symbols I ^ ( x ) , co^fi jx . f ) and t k ( 6 ; f ) p used in 
Section 2. 

Write, for every real x, w^(0;x , f ) = 0 and 

(0^(6 ;x t f ) = inf sup f ( t ) | ( 0 < 6 < o o ) , 
B t , t *hel J (x)\E 

where the infimum i s taken over a l l sets E, E c l j ( x ) , of 
the Lebesgue measure zero (mes E = 0 ) . In the case of f ' s 
bounded in f i n i t e intervals , 

(3 .1) u^if i jx . f ) 4 - ^ ( f i j x . f ) < oo ( ¿ > 0 , - o o < x < o o ) ; 

the sign 4 can be replaced by = i f f i s continuous in 
( -00 , 00). 

L e m m a 3 .1 . For every real x , 

W , ( 6 ; x , f ) < 2 | f | i O W ( i j ( x ) ) ( 6 > 0 ) . 

P r o o f . Clearly, 

- 489 -



14 R.Taberski 

<j#(6;x,f) «$ infj sup (|f(t + h)| + | f(t)|)|>4 
5 4,t+h€l](x)\E 

< infj sup |f(t + h)| + |f(t)| 
B U+helj (x)\E telJ(x)\E 

Hence our result follows. 

In particular, the function defined by the formula 

(3.2) 0 (x) =CJ(6;x,f) ( 6 = const > 0.) 
ir " 

is bounded in eaoh finite interval. 

L e m m a 3.2. If a real-valued f is continuous 

almost everywhere in (—c-otcx>), then (p^ is measurable in 

this interval. 

P r o o f . In the non-trivial case 6 > 0, for all 

real x, 

= ess sup f(s) - ess inf f(t) = g.,(x) - g2(x), 

selj(x) telj(x) 

where 

ess inf f(t) = sup inf f(t) / D x c lj(x),\ 

telj(x) D x telJ(x)\Dx \rnes D x = 0 

To prove that g^ is measurable in (-00,00), we intro-
duce the set 

Z c = | x : g.,(x) > c, - o o < x < o o | = 

= -jx: sfirp f(s) > c V E X c ijix), mes E x 

I- S6lJ(x)\Ex
 6 

with a real parameter c. 
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Approximation by ent ire functions 15 

Take an accumulation point x' of ZQ, such that 
x ' + 6/2 are the points of continuity of f . In th i s case, 
there i s a sequenoe {xn}-] tending to x' for which 

A 

sup f ( s ) ^ c when E c l ' ( x ) , mes E_ = 0. 
B6lJ(xn)\B ; 

n n 
x„ 

Suppose that x n ^ x ' . Then 

(3.3) sup f ( s ) > c 
s€<xn-|, x ' + |>\E^ 

or 

(3.4) sup f ( s ) > o, 
s6<x'+|, x n + |>VB2 

n 

1 2 where E' , E~. s i gn i fy the sets of the suitable in te rva l s , A _ n n 

EI. U Ey = B_ . 
•̂ n n An 

For su f f i c i en t l y large n, the left-hand side of (3.4) i s 
near to f(x'+<5/2). 

If the inequal i ty (3.3) holds, then 

sup f ( s ) > c M , c i j ( x ' ) , mes B ,̂ - 0, 
S€I](X')\EL 1 1 r s 

I f , for i n f i n i t e l y many n, the estimate (3.4) remains va-
l i d , then + >c - e ( e > 0 ) . Consequently, 

sup f ( s ) C (EJ,C L}(x ' ) , mes EL = 0 ) . 1 o x 0 x 
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16 R.Taberski 

In the case < x ' two similar inequal i t ies hold, Henoe 
x ' C Z c . 

But, the set of a l l remaining accumulation points x" 
of Z_ has the Lebesgue measure zero. Hence Z„ i s measurab-c c 
l e , i . e . the function g^ i s measurable in ( - o o f o o ) . Ana-
logously, ¿2 i 0 measurable. Thus, the proof is completed. 

Considering these f ' s f o r whioh the functions (p\ are 
measurable in ( - 0 0 , 0 0 ) , we introduce the modified modulus 
of smoothness (of the second kind) 

- K i p = I K ( < J i * ' f , l l p fP > 1 > 

I t may be f in i t e or i n f i n i t e . 
I f then < and -C^(0|f)p« 

= 0 always. For every f bounded in f i n i t e interva ls , the 
estimate (3.1) implies 

* * ( <5 j f ) p S T ^ t f j f J p (p > 1, 6 > 0 ) . 

The last two moduli coincide when f i s continuous- in 
( - oo ,oo ) . 

P r o p o s i t i o n 3.3. Suppose that P > 1 and 
6, X Then 

( i ) <t^ (5 ; f+g ) p < % ( d | f ) p + f * ( 6 { g ) p l 

provided these moduli exist , and 

( i i ) T * ( i + A { f ) p < * # ( 6 | f ) p + ^ U ; f ) p , 

whenever f i s continuous almost everywhere. 
P r o o f . The assertion ( i ) fol lows at once from the 

inequality 

u>#.(6;x,f+g) < w * ( 5 | x , f ) +tJ i ( (6 ix ,g ) ( - oo < x < . 
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Approximation by entire fonctions 17 

To prove ( i j i ) , l e t us choose a r ea l x such that 
x - {$-l)/2 i s a point of continuity of f . Denote by A, B 
two arbitrary s e t s of the Lebesgue measure zero, lying in the 
interval s 

< x - \ (<5+A), x - \ (<5-A)> , < x - J (¿-A), x+ l (6+J t )> , 

respect ively . Then, putting D = A U B, we have 

co^d+Ajx.f) = inf sup f ( t ) 
D t , t +he l J + A (x ) \D 

< inf < 
A,B 

sup | f ( u ) - f ( v ) | + sup | f ( u ) - f ( v ) | l . 
^u,vtI^(x-|)\A u ,ve l J (x+ | ) \B 

Consequently, 

(3.5) «S u^Xix - f ) + u^(d;x + \ , f ) 

for almost every x 6 ( - 0 0 , 0 0 ) , 

Applying (3.5) and Lemma 3.2 , we conclude that t ^ j f j p 
i s a subadditive function of rj ^ 0. 

P r o p o s i t i o n 3.4. Let f be such that , for 
some f i n i t e numbers p > 1, dQ > 0, 

00 

(3.6) J |u # ( ( J ;x , f ) | p dx < 00 when 0 < S 4 óQ 

and 

Then 

lim u J & i X f f ) = 0 for almost every x. 
(5—0+ * 

lim v„(6',f) = 0. 
6-0+ v 
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18 R.Taberski 

P r o o f . We put 

o 

and prooeed as in the oase of Proposi t ion 2 .5 . 
R e m a r k . I f f i s continuous almost everywhere, 

the condit ion (3.6) implies 

lim xA6+rfit) (Sit) n 
o p p 

fo r a l l posi t ive <S . This i s an. immediate consequende of 
Proposi t ions 3 . 3 ( i i ) and 3 .4 . 

Taking a posi t ive in teger k, positve 6 and a r b i t r a r y 
r e a l x, we also introduce the auxi l ia ry quant i ty 

C0j£(i;x,f) = ess s u p | a £ f ( x ) | = 
h e l j ( 0 ) 

= inf sup f ( x ) | / S c ( - i / 2 , 6/2} ,V 
S he<-<f/2,<V2>\S \ mes S = 0 J 

I t can eas i ly be observed tha t the funct ions 

9jj.(x) = w k ( i ; x , f ) ( £ = c o n s t > 0 , k = 1 , 2 , . . . ) 

are e s s e n t i a l l y bounded in each f i n i t e i n t e rva l and, f o r f ' s 
bounded in f i n i t e i n t e r v a l s , 

(3.7) y k ( x ) $ . w k ( i ; X , f ) ( - o o < x < ° o ) . 

I f f i s continuous in ( -00 ,00) , the funct ions are con-
tinuous in t h i s i n t e r v a l , too» 
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4. Estimates of the Jackson type 
Throughout th is Section the considered functions f are 

rea l-valued, defined and measurable in the interval ( o o ) . 
F i r s t , we shal l formulate the fundamental resu l t proved 

in Section 3 of [ 6 ] , 
T h e o r e m 4.1. Let f be a function bounded in 

each f i n i t e in terva l . Then, for every f i n i t e p >1 , 

c i T i { b f ) p ( ° < 6 < o o > -

Analogously, the following estimate can be obtained ( in 
def ini t ions of Sg, Jg given in the upper and lower 
bounds of f should be replaced by ess sup and ess i n f , 
respect ive ly ) . 

T h e o r e m 4.2. Suppose that f i s essent ia l l y 
bounded in each f i n i t e interva l , and that (p defined by 
(3.2) i s measurable in (-©ofoo) for a l l f i n i t e 6 > 0. 
Then, for every f i n i t e p > 1, 

A (f )p < C2 ' f ) 

For example, in the case of f continuous almost every-
where (p i s measurable, by Lemma 3.2. Therefore T\( 1/6;f ) _ 

* p 
ex i s t s . If th is quantity i s f i n i t e for some positive 6 , 
Proposition 3.4 implies 

¿ H M M p - 0 

(Lemma 2.1, and Proposition 2.5 explain the behaviour of 
^ ( l / ë j f j p as 

Given a positive integer k and positive i , l e t us in-
troduce the Steklov functions 

- 495 -



20 R.Taberski 

6/2 6/2 k 
f i , k ^ = ik / ••• / 2 (- 1 ^ + r ( t • • • + tk) ) d ti• • -dtk 

-6/2 -6/2 <M 

generated by the function f essentially bounded in finite 
intervals. 

L e m m a 4.3« The following estimates hold:, 

(i) |f(x) - f i > k (x) |<cS k ( i }x , f ) (_00<X<00) f 

P r o o f of ( i ) . Clearly, 

. 6/2 6/2 k 
f(x).f)ik(x) = ^ J ... J 2 (-lM$)f(x+f(t1+...+tk))dtr.dtk. 

6 -6/2 -6/2 V=0 

Hence 

<f/2 6/2 
l ^ - v c x ) ^ / . . . n < £ ( x ) | d V . . « k < 

0 -{/2 -t/2 k < V - " + V 

672 6/2 
^ sup / ••• / dt1...dtk(-oo<x<oo) 

6 1)i<-6/2.6/2>\2 -f/2 -<f/2 

for all sets S, S c <f/2 )> , of the Lebesgue measure 
zero. 

Passing to infimum over S, we get the desired result. 
The inequality ( i i ) follows at once from the identity, 

f < # ( x ) - ( - i » k + 1 2 ( - 1 ) k " ' , <$> M T J F ^ i A 

whioh is valid for almost every x. 
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L e m m a 4 . 4 . Suppose t h a t the r e a l - v a l u e d f u n c t i o n s 
f , g , are measurable and bounded i n each f i n i t e i n t e r v a l . 
Moreover, l e t 

| f { x ) - g ( x j | < v ( x ) when x e ( - 0 0 , 0 0 ) . 

Then, f o r every p 1 and a l l f i n i t e 6 > 0 t 

A 6 ( g ) p + 2 A g W p + 2||^||p. 

P r 0 j ) f • I t w i l l be assumed t h a t the r i g h t - h a n d s ide 
o f the l a s t i n e q u a l i t y i s f i n i t e . 

Consider the f u n c t i o n s P^, Q^ ( j = 1 , 2 ) o f c l a s s lig, 
such t h a t 

P ^ x ) > g ( x ) > Q ^ x ) , P 2 ( x ) > l f > ( x ) > Q 2 ( x ) ( - 0 0 < x < 0 0 ) 

and 
P 1 - Q1 6 L p , P 2 - Q2 6 L p . 

C l e a r l y , 

- P 2 ( x ) < f ( x ) - g ( x ) < P 2 ( x ) always. 

T h e r e f o r e 

Q ^ x ) - P 2 ( x ) < f ( x ) < P. , (x) + P 2 ( x ) always. 

Denote by P ^ ( x ) , Q^(x) the r i g h t - and the l e f t - h a n d s i d e s 
of t h i s e s t i m a t e . Then 
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Bow, the assertion follows immediately. 
T h e o r e m 4 . 5 . Let f be a funotion bounded in 

f in i te intervals . Suppose that (pk defint;: by ( 2 . 2 ) , with 
some positive integer k, i s measurable in ( -00,00) for 
each f ini te 6 > 0 . Then, for every f inite p 1, 

A 6 ( f , p * C 3 ( k ) ^k f , p 
1 

P r o o f . Write 

In view of Lemma 4 . 3 ( i ) and ( 3 . 7 ) , 

|f(x) - g(x)|<lp(x) for a l l real x 

Therefore, Lemma 4.4 and Theorem 4.1 lead to 

(see also Proposition 2 . 3 ( ü ) ) 
Theorem 3.3 of [ 6 ] and Lemma 4 .3(11) yield 

p 

By Lemma 2 .8 
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and 

• » • » - M ì i ' - ^ M H , 
Hie nee 

A6(f)p < (4k) C4(k) cok(^; f)p + (4C, + 2) (-£ ; f)p. 

Applying the estimate (2.3)» we get the desired result. 

5 . Converse approximation theorem 
Considering a real-valued function f measurable and 

bounded in each finite interval, we shall present two analo-
gues of the Berngtein and Popov results given in [l] and [4"]. 

T h e o r e m 5.1. Let 

0 < AJt)<oo & P 

for some finite p ^ 1 and all finite 6 ^ 6 0 > 0 , and let 

„im A,.(f) = 0. g^oo 6 P 

Then 

(5.1) f(x) = Fy (x) + cp(x) (-00 < x <oo), 

where Fg 6 B^ and cp e Lp. Moreover, for k = 1,2,..., 
o o 

cR(k) (5.2) * 
- D ' f If 

whenever the left-hand side of (5.2) exists. 
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P r o o f . Denote by Pg and Qg the entire funotions 
belonging to the sets Ht (f) and EZ At), respectively, 
such that 

II - Qilp «2Atf(f)p 

By the assumptions, both the series 

V x ) + S { v * ( x ) - V - 1 * 5 2 uv ( x )> 0 9=1 L 2 6b 2 % J 4=0 

V x ) + ( x ) - V 1 *
 (4S 2 v * > . 0 0=1 l 2 60 i 6o > V=0 

7 N I 
lio^ f |f(x) -jfa •(*')}-! 2 {uv(x)+V„(x)}|pd3c = 0. 
® — oa ® 0 =1 

converge to f(x) in Lp-metric. Therefore 

H 
S 

Putting 

Pg (z) («) + <?(*) = f(x) -

we get the decomposition (5.1). 
If A^cp(t) > 0 far some real x and t,t+kh eI^(x), 

then 
k 

¿h " 2 (v } {f(t+^h> - ̂  (t + 

0=0 0 

< 2 <5> - 2 
0<-i<k 0£i><k 

0=k(mod2) $=k-1 (mod 2) 
- 5 0 0 -
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where 

Pg{z) = Pg(a) - Fg (a ) , Qg(z) = Qg(a) - Fg (a) (6 >60 ) , 

Conseq uently, 

k 
¿ £ ? ( t ) « A k p j ( t ) + 2 ($> - Q ^ W h ) } 

=0 J 

and whence 

Pg(t)| +2k{co1(k6;x,Pg-Qg) + | p£(x)-<i£(x)|} . 

Analogously, in the case V(t) ^ 0, 

|a£ cp(t ) |«|a k Qg(t)| + 2k{«1(k<i;x,p£-Qg) +| p£(x)-q£(x)|} . 

Thus, 

uk(S;x,(p) < 0)k(i?x,P^) +&>k(i;x,Q^) + 

+ 2k|Wl(k6;x,P^-Qg) + |Pg(x)-^(x)|j ( - oo<x<oo ) . 

Further, by Lemma 2.2(1) and Proposition 2.3(11), 

r k ( 6 ; 9 ) p < f k ( i , p * ) p + r k ( i ; Q j ) p + 

+ 2k <[k z ^ S ' f P ^ ) + 2A 6 ( f ) p ] 

In view of Proposition 2.6 and the well-known Bernstein ine-
quality ([71, p.232), 
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« 1 < * W p < * || || p < 2 V f > | 

T h e r e f o r e 

( 5 . 3 ) <rk(6;(f>)p < * k ( 6 | P £ ) p + + 

+ 2 k + 1 ( k f c + U A 6 ( f ) ( 6 > ¿ Q f 0 < i < i / g 0 ) , 

C l e a r l y , 

iii 

% w - V g w - V x ) - 2 V x ) + H p 6 O ( x , ~ V x ) } 
6 o 2 Go 0 v - 1 0 0 J 

By P r o p o s i t i o n s 2 . 3 ( i ) , 2 . 4 ( i i ) and 2 . 6 , 

m 

» < 2 * k ^ V p + * * ( ' » 
2 6 0 p ^=1 O O 'P 

< i o « u > « w i , • w > > < k i t e ? - 4 : 1 1 
M=1 

< c 6 i k H « S 6 0 J k { 4 2 2 " k v - 1 ^ ( f , p + V f ) p | ( 5 > 0 ) -

L V=1 6 0 0 J 

O b s e r v i n g t h a t 

V-1 

2 p = 2 ^ 2 + 1 
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we obtain 

+ 4 C 7 ( k ) ^ 2 K k " 1 V o ( f , p } ' 

Hence 

*k(6'>V*mA < ° 8 { k K * * 0 > k 2 f i k " \ ^ ( f , P (ff >0,01=1,2 ) . 
\ 2 6 o/p fi=1 P 0 

Given any £ > {>0, l e t us choose the pos i t ive i n t ege r s n 
and m such tha t 

n 60 < 6 < (n+1) ¿ Q , 2m-1 < n < 2m . 

Then, pa t t ing 6= (n ¿ 0)~ 1» we have 

and the same est imate f o r Q* holds . Hence the i nequa l i -

ty (5 .3 ) , in which £ i s replaced by 2m60 , l eads to 

' 2 £ o 
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It i s eas i l y se6n, 

A n i 0 ( f ) P < i r 2 f K , f ) P -
0 Jl-1 

'i'hus 

+ 2k+1(2k+1) ^ ¿ ^ ^ f"" 1 ^ ¿ 0 ( f , p 

end the estimate (5.2) i s proved. 
A similar calculation y ie lds 
T h e o r e m 5.2. Suppose that f € L^ for some f i -

nite p > 1 and that Aj ( f ) < 6 being a certain po-b0 p o 
s i t i ve number. Then i f k = 1 , 2 , . . . , 

c 9 ( k ) „k-1 r 

(5.4) /1 V cio<k> f 

whenever the left-hand side of (5.4) ex i s t s . 
Also, i t may be shown that for every real-valued func-

tion f € Lp (1< p <°°), essent ia l l y bounded in f i n i t e in-
terva ls and continuous almost everywhere, 

, ( M -II ill, + 2 y c u-1 r c 
( f ) , 

( o < 6 0 < 6<oo) 

(see Lemma 3.2 and Proposition 3 .3) . 
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