

Roman Taberski

ONE-SIDED APPROXIMATION BY ENTIRE FUNCTIONS

1. Preliminaries

Let $L^p(a, b)$, $1 \leq p < \infty$, be the space of all measurable complex-valued functions Lebesgue-integrable with p -th power on the interval (a, b) . Denote by $L^\infty(a, b)$ the space of all complex-valued functions essentially bounded in (a, b) . As usually, the norm of $f \in L^p(a, b)$ is given by the formula

$$\|f\|_{L^p(a, b)} = \|f(\cdot)\|_{L^p(a, b)} = \begin{cases} \left\{ \int_a^b |f(x)|^p dx \right\}^{\frac{1}{p}} & \text{if } p < \infty, \\ \text{ess sup}_{x \in (a, b)} |f(x)| & \text{if } p = \infty. \end{cases}$$

We shall write L^p instead of $L^p(-\infty, \infty)$.

For functions f belonging to all spaces $L^p(a, b)$ with finite a, b ($a < b$), the limit

$$\|f\|_p = \|f(\cdot)\|_p = \lim_{\substack{a \rightarrow -\infty \\ b \rightarrow \infty}} \|f\|_{L^p(a, b)}$$

is finite or infinite. If $f \in L^p$, then

$$\|f\|_p = \|f\|_{L^p}.$$

Suppose that $f \in L^p(a, b)$ for each finite (a, b) . Introduce the differences

$$\Delta_h^k f(t) = \sum_{v=0}^k (-1)^{k-v} \binom{k}{v} f(t+vh) \quad (k = 1, 2, \dots),$$

with real increments h , and the moduli of smoothness

$$\omega_k(\delta; f)_p = \sup_{h \in (0, \delta)} \|\Delta_h^k f(\cdot)\|_p \quad (0 < \delta < \infty).$$

These moduli are finite or infinite, $\omega_k(0; f)_p = 0$, and

$$\omega_k(\delta; f)_p \leq \omega_k(\lambda; f)_p \quad \text{if} \quad 0 < \delta \leq \lambda < \infty.$$

Let E_ζ be the class of all entire functions

$$F(z) = \sum_{k=0}^{\infty} a_k z^k \quad (z = x + iy)$$

of exponential type, of the order ζ at most. Consider a complex-valued function f belonging to $L^p(a, b)$ for each finite interval (a, b) . Denote by $H_{\zeta, p}(f)$ the set of all functions $G \in E_\zeta$ such that $f - G \in L^p$.

The quantity

$$A_\zeta(f)_p = \begin{cases} \inf_{G \in H_{\zeta, p}(f)} \|f - G\|_p & \text{if } H_{\zeta, p}(f) \text{ is not empty,} \\ \infty & \text{otherwise} \end{cases}$$

is called the best approximation of f by entire functions of class $H_{\zeta, p}(f)$. It is well-known that

$$(1.1) \quad A_6(f)_p \leq C(k) \omega_k \left(\frac{1}{6}; f \right)_p \quad (0 < 6 < \infty, 1 \leq p \leq \infty, k=1,2,\dots),$$

where the positive number $C(k)$ depends only on k (see [1], Sect. 99-105, also [7], p.272-274).

Suppose that f is a real-valued function essentially bounded in each finite interval. Denote by $K_{6,p}^+(f)$ [resp. $K_{6,p}^-(f)$] the set of all entire functions $P \in E_6$ [$Q \in E_6$] real-valued in $(-\infty, \infty)$, such that

$$(1.2) \quad P(x) \geq f(x) \quad [Q(x) \leq f(x)]$$

almost everywhere in $(-\infty, \infty)$ and $P - f \in L^p$ [$f - Q \in L^p$]. In the case of f bounded in each finite interval, we also introduce the sets $H_{6,p}^+(f)$, $H_{6,p}^-(f)$ of these $P \in K_{6,p}^+(f)$, $Q \in K_{6,p}^-(f)$, respectively, for which the inequalities (1.2) hold everywhere in $(-\infty, \infty)$.

The useful characteristics of the best one-sided approximation of real-valued functions f belonging to $L^p(a,b)$, bounded or essentially bounded in (a,b) , for all finite a,b are given by the formulae

$$\begin{aligned} \tilde{A}_6(f)_p &= \begin{cases} \inf_{P \in H_{6,p}^+(f), Q \in H_{6,p}^-(f)} \|P - Q\|_p & \text{if } H_{6,p}^+(f) \text{ are not empty,} \\ \infty & \text{otherwise,} \end{cases} \\ \hat{A}_6(f)_p &= \begin{cases} \inf_{P \in K_{6,p}^+(f), Q \in K_{6,p}^-(f)} \|P - Q\|_p & \text{if } K_{6,p}^+(f) \text{ are not empty,} \\ \infty & \text{otherwise.} \end{cases} \end{aligned}$$

In these cases,

$$\hat{A}_6(f)_p \leq \tilde{A}_6(f)_p, \quad A_6(f)_p \leq \hat{A}_6(f)_p \quad (0 \leq 6 < \infty, 1 \leq p \leq \infty),$$

respectively, and

$$\hat{A}_\delta(f)_\infty \leq 4A_\delta(f)_\infty \quad (0 < \delta < \infty).$$

For continuous functions f , $\tilde{A}_\delta(f)_p = \hat{A}_\delta(f)_p$.

Using some analogues of the moduli of smoothness defined in Sections 2 and 3, we shall give the estimates for $\tilde{A}_\delta(f)_p$ and $\hat{A}_\delta(f)_p$ ($1 \leq p < \infty$) similar to that of (1.1). Moreover, the converse approximation theorems will be presented. They correspond to the recent results concerning one-sided trigonometric approximation announced in [2], [3], [4] and [5].

The symbols C_j , $C_1(k)$, with integer indices, will mean positive constants absolute or depending on the parameter k , only.

2. Modified moduli of smoothness

Consider here a complex-valued function f defined and bounded in each finite interval of $(-\infty, \infty)$. Introduce the intervals

$$I_\delta^k(x) = \left\langle x - k \frac{\delta}{2}, x + k \frac{\delta}{2} \right\rangle \quad (0 < \delta < \infty, \quad k = 1, 2, \dots)$$

and the quantity

$$\omega_k(\delta; x, f) = \sup_{t, t+k\delta \in I_\delta^k(x)} |\Delta_h^k f(t)| \quad (-\infty < x < \infty).$$

It can easily be observed that, for every finite $\delta > 0$ and all real x ,

$$(2.1) \quad \omega_k(\delta; x, f) \leq 2 \omega_{k-1} \left(\frac{k}{k-1} \delta; x, f \right) \quad \text{if } k = 2, 3, \dots,$$

$$\omega_1(\delta; x, f) \leq 2 \sup_{s \in I_\delta^1(x)} |f(s)|.$$

In particular, the functions

$$(2.2) \quad \varphi_k(x) = \omega_k(\delta; x, f) \quad (\delta = \text{const} \geq 0, k = 1, 2, \dots)$$

are bounded in finite intervals.

Evidently, for every positive integer k and all real x ,

$$\varphi_k(x) = 0 \quad \text{when} \quad \delta = 0.$$

Considering positive δ , we have the following

L e m m a 2.1. (i) Let f be continuous almost everywhere in $(-\infty, \infty)$. Then φ_1 is continuous almost everywhere, too. (ii) If f is a real-valued function in $(-\infty, \infty)$, then φ_1 is measurable in this interval.

P r o o f of (i). Let ε be a positive number. Denote by X the set of all real x such that $x+\delta/2$ are the points of continuity of f . Choose an arbitrary $x_0 \in X$ and $\eta \in (-\delta/2, \delta/2)$; write

$$\begin{aligned} \varrho_\eta &= \varphi_1(x_0) - \varphi_1(x_0 + \eta) = \\ &= \sup_{s, t \in I_\delta^1(x_0)} |f(s) - f(t)| - \sup_{u, v \in I_\delta^1(x_0 + \eta)} |f(u) - f(v)|. \end{aligned}$$

1° If $\varrho_\eta \geq 0$, then

$$\begin{aligned} \varrho_\eta &< \varepsilon + |f(s_\varepsilon) - f(t_\varepsilon)| - |f(u) - f(v)| \leq \\ &\leq \varepsilon + |f(s_\varepsilon) - f(t_\varepsilon) - f(u) + f(v)| \end{aligned}$$

for some $s_\varepsilon, t_\varepsilon \in I_\delta^1(x_0)$ and each $u, v \in I_\delta^1(x_0 + \eta)$. Hence

$$\varrho_\eta < \varepsilon + |f(s_\varepsilon) - f(u)| + |f(v) - f(t_\varepsilon)| < 3\varepsilon,$$

provided $|\eta|$ is small enough (u, v are taken correspondingly).

2^0 In the case $\varrho_\eta \leq 0$, under the restriction $s, t \in I_\delta^1(x_0)$,

$$-\varrho_\eta \leq \sup_{u, v \in I_\delta^1(x_0 + \eta)} |f(u) - f(v)| - |f(s) - f(t)|.$$

Therefore

$$-\varrho_\eta < \varepsilon + |f(u_{\varepsilon, \eta}) - f(v_{\varepsilon, \eta}) - f(s) + f(t)|$$

for some $u_{\varepsilon, \eta}, v_{\varepsilon, \eta} \in I_\delta^1(x_0 + \eta)$ and all $s, t \in I_\delta^1(x_0)$. Consequently,

$$-\varrho_\eta < \varepsilon + |f(u_{\varepsilon, \eta}) - f(s)| + |f(t) - f(v_{\varepsilon, \eta})| < 3\varepsilon,$$

whenever $|\eta|$ is small and s, t are near to $u_{\varepsilon, \eta}, v_{\varepsilon, \eta}$, respectively.

In view of 1^0 and 2^0 , $\varrho_\eta \rightarrow 0$ as $\eta \rightarrow 0$, i.e.

$$\lim_{\eta \rightarrow 0} \varphi_1(x_0 + \eta) = \varphi_1(x_0),$$

and the proof is completed.

Proof of (ii). For every real x ,

$$\begin{aligned} \varphi_1(x) &= \sup_{s, t \in I_\delta^1(x)} |f(s) - f(t)| = \\ &= \sup_{s \in I_\delta^1(x)} f(s) - \inf_{t \in I_\delta^1(x)} f(t) \equiv f_1(x) - f_2(x). \end{aligned}$$

To prove that φ_1 is measurable in $(-\infty, \infty)$, we introduce the collections

$$X_c = \left\{ x : \sup_{s \in I_\delta^1(x)} f(s) \leq c \right\} = \left\{ x : f(s) \leq c \ \forall s \in I_\delta^1(x) \right\},$$

$$Y_c = \left\{ s : f(s) \leq c, -\infty < s < \infty \right\}$$

with real c .

1° If Y_c contains no open interval of length $\geq \delta$, the set X_c is empty.

2° If Y_c contains some separated intervals of length $\geq \delta$, X_c can be represented as a finite or enumerable sum of the open or closed intervals degenerated eventually to individual points.

In both these cases, the sets X_c are Lebesgue-measurable. Therefore, the functions f_1 and $-f_2$ are measurable in $(-\infty, \infty)$. Hence the result follows.

Also, a simple calculation leads to

Lemma 2.2. (i) If f is continuous in $(-\infty, \infty)$, then φ_k ($k = 1, 2, \dots$) are continuous everywhere. (ii) Suppose that every open interval (a, b) of length not greater than $k\delta$ contains no more than one discontinuity point of f . Then the set of discontinuity points of φ_k is enumerable at most.

Assuming that φ_k is measurable in $(-\infty, \infty)$, for every fixed $\delta \geq 0$, we can define the k -th modified modulus of smoothness of f (in L^p -metric) by the formula

$$\tau_k(\delta; f)_p = \|\varphi_k\|_p = \|\omega_k(\delta; \cdot, f)\|_p \quad (0 \leq \delta < \infty).$$

For example, under the assumption on f given in Lemma 2.1 [Lemma 2.2], the modified moduli $\tau_1(\delta; f)_p$ [$\tau_k(\delta; f)_p$] exist for each $p \geq 1$ and $\delta \geq 0$.

It is clear that if $0 \leq \delta \leq \lambda < \infty$, then $\tau_k(\delta; f)_p \leq \tau_k(\lambda; f)_p$ and $\tau_k(0; f)_p = 0$ always. There are functions f , bounded or unbounded in $(-\infty, \infty)$, such that $\tau_k(\delta; f)_p < \infty$ for some $p \geq 1$ and all non-negative δ . But, sometimes,

$$\tau_k(\delta; f)_p = \infty \quad \text{for all positive } \delta.$$

This case has no practical interest.

It may be shown (see [3], p. 793-794), that, for measurable f and finite or infinite $p \geq 1$,

$$(2.3) \quad \tau_k(\delta; f)_p \geq \omega_k(\delta; f)_p \quad (\delta \geq 0, \quad k = 1, 2, \dots).$$

Proposition 2.3. Under the assumptions $p \geq 1$ and $\delta, \lambda \geq 0$,

$$(i) \quad \tau_k(\delta; f+g)_p \leq \tau_k(\delta; f)_p + \tau_k(\delta; g)_p \quad (k \geq 1),$$

$$(ii) \quad \tau_1(\delta+\lambda; f)_p \leq \tau_1(\delta; f)_p + \tau_1(\lambda; f)_p,$$

provided that these moduli exist. In particular,

$$\tau_1(n\delta; f)_p \leq n \tau_1(\delta; f)_p \quad \text{for } n = 2, 3, \dots$$

The inequality (i) follows at once from the identity

$$\Delta_h^k (f+g)(t) = \Delta_h^k f(t) + \Delta_h^k g(t).$$

The proof of (ii) is similar to that of Proposition 3.3 (ii).

Proposition 2.4. (i) Let f be as in Lemma 2.2 (ii). Then, for every $p \geq 1$

$$\tau_k(\delta; f)_p \leq 2\tau_{k-1}\left(\frac{k}{k-1}\delta; f\right)_p \quad (k \geq 2).$$

(ii) Suppose that f possesses the derivative f' continuous in $(-\infty, \infty)$. Then

$$\tau_k(\delta; f)_p \leq \delta \tau_{k-1}\left(\frac{k}{k-1} \delta; f'\right)_p$$

whenever $p \geq 1$, $\delta \geq 0$ and $k = 2, 3, \dots$

The assertion of (i) is an immediate consequence of the inequality (2.1).

To prove (ii), we observe that

$$I_\delta^k(x) = I_{k\delta/(k-1)}^{k-1}(x) \quad (-\infty < x < \infty)$$

and that, by Lemma 2.2(i), the function

$$\Phi(x, u) = \sup_{s, s+(k-1)h \in I_\delta^k(x+u)} |\Delta_h^{k-1} f'(s)|$$

is continuous on the plane. Further,

$$\begin{aligned} \omega_k(\delta; x, f) &= \sup_{t, t+kh \in I_\delta^k(x)} \left| \int_0^h \Delta_h^{k-1} f'(u+t) du \right| \leq \\ &\leq \int_0^\delta \sup_{t, t+(k-1)h \in I_\delta^k(x)} |\Delta_h^{k-1} f'(u+t)| du = \int_0^\delta \Phi(x, u) du. \end{aligned}$$

Thus

$$\|\omega_k(\delta; \cdot, f)\|_p \leq \int_0^\delta \|\Phi(\cdot, u)\|_p du,$$

and the result follows.

Proposition 2.5. Suppose that, for a certain function f continuous almost everywhere and for some finite numbers $p \geq 1$, $\delta_0 > 0$ and positive integer k ,

$$(2.4) \quad \int_{-\infty}^{\infty} |\omega_k(\delta; x, f)|^p dx < \infty \quad \text{when } 0 < \delta \leq \delta_0.$$

Then

$$(2.5) \quad \lim_{\delta \rightarrow 0^+} \tau_k(\delta; f)_p = 0.$$

Proof. The sequence of non-negative measurable functions

$$(2.6) \quad \psi_n(x) = \omega_k\left(\frac{1}{n}; x, f\right) \quad \left(n \geq \frac{1}{\delta_0}\right)$$

tends monotonely to zero for almost every x . Moreover, for every real x ,

$$\psi_n(x) \leq \psi_{n_0}(x) \quad \text{when } n \geq n_0 \geq 1/\delta_0.$$

In view of (2.4),

$$\int_{-\infty}^{\infty} |\psi_{n_0}(x)|^p dx < \infty.$$

Hence, by the Lebesgue dominated convergence theorem,

$$\lim_{n \rightarrow \infty} \int_{-\infty}^{\infty} |\psi_n(x)|^p dx = 0,$$

i.e.

$$\lim_{n \rightarrow \infty} \tau_k\left(\frac{1}{n}; f\right)_p = 0.$$

Now, the assertion (2.5) is quite evident.

R e m a r k . In the case $k = 1$ or $k = 2$, the conditions (2.4) and (2.5) imply that f is continuous almost everywhere in $(-\infty, \infty)$.

Indeed, let f be a function discontinuous in a set E of positive measure, for which the relations (2.4), (2.5) are fulfilled. If ψ_n is defined by (2.6), with $k = 1$ or 2 , then

$$\tau_k \left(\frac{1}{n}; f \right)_p \geq \left\{ \int_E |\psi_n(x)|^p dx \right\}^{\frac{1}{p}} \geq 0.$$

Consequently,

$$(2.7) \quad \lim_{n \rightarrow \infty} \int_E |\psi_n(x)|^p dx = 0.$$

On the other hand, in view of monotonicity of the sequence $\{\psi_n(x)\}$, a finite limit

$$\lim_{n \rightarrow \infty} \psi_n(x) = \psi(x)$$

exists and $\psi(x) > 0$ for all $x \in E$. Therefore, by Fatou's lemma,

$$\lim_{n \rightarrow \infty} \int_E |\psi_n(x)|^p dx \geq \int_E |\psi(x)|^p dx > 0,$$

which contradicts to (2.7).

P r o p o s i t i o n 2.6. If a function f is absolutely continuous in each finite interval and its derivative f' belongs to the space L^p , with a finite $p \geq 1$, then

$$\tau_1(\delta; f)_p \leq \delta \|f'\|_p \quad (\delta \geq 0).$$

The proof runs as in [3], p. 795-796.

Let us define the p -th variation of f in finite intervals $\langle a, b \rangle$ as

$$V_p(f; a, b) = \sup_{\Pi} \left\{ \sum_{j=0}^{n-1} |f(x_{j+1}) - f(x_j)|^p \right\}^{\frac{1}{p}} \quad (p > 0),$$

where Π denotes partitions $\{a = x_0 < x_1 < \dots < x_n = b\}$.
Write

$$V_p(f) = \sup_{a, b} V_p(f; a, b).$$

A simple calculation, which will not be presented here, yields

Proposition 2.7. Suppose that f is of bounded p -th variation $V_p(f)$, $1 \leq p < \infty$. Then

$$\tau_1(\delta; f)_p \leq (5\delta)^{\frac{1}{p}} V_p(f) \quad (0 < \delta < \infty).$$

Finally, we shall give the estimate needed in Section 4.

Lemma 2.8. For functions φ_k defined by (2.2) and $p \geq 1$,

$$\tau_1(\lambda; \varphi_k)_p \leq \tau_k \left(\delta + \frac{\lambda}{k}; f \right)_p \quad (0 \leq \delta, \lambda < \infty),$$

provided that the right-hand side exists.

Proof. Since $\varphi_k(x) > 0$ always, we have

$$\begin{aligned} \omega_1(\lambda; x, \varphi_k) &\leq \sup_{u \in I_{\lambda}^1(x)} \varphi_k(u) = \\ &\sup_{u \in I_{\lambda}^1(x)} \sup_{t, t+kh \in I_{\delta}^k(u)} |\Delta_h^k f(t)| \leq \sup_{t, t+kh \in I_{\delta+\lambda/k}^k(x)} |\Delta_h^k f(t)|. \end{aligned}$$

Therefore, under the assumption $x \in (-\infty, \infty)$ and $\lambda \geq 0$,

$$\omega_1(\lambda; x, \varphi_k) \leq \omega_k(\delta + \frac{\lambda}{k}; x, f).$$

Thus, by 2.1(ii), our result follows.

3. Further basic quantities

Now let f be an arbitrary complex-valued function of a real variable, essentially bounded in each finite interval. Retain the symbols $I_\delta^k(x)$, $\omega_k(\delta; x, f)$ and $\tau_k(\delta; f)_p$ used in Section 2.

Write, for every real x , $\omega_*(0; x, f) = 0$ and

$$\omega_*(\delta; x, f) = \inf_E \sup_{t, t+h \in I_\delta^1(x) \setminus E} |\Delta_h^1 f(t)| \quad (0 < \delta < \infty),$$

where the infimum is taken over all sets E , $E \subset I_\delta^1(x)$, of the Lebesgue measure zero ($\text{mes } E = 0$). In the case of f 's bounded in finite intervals,

$$(3.1) \quad \omega_*(\delta; x, f) \leq \omega_1(\delta; x, f) < \infty \quad (\delta > 0, -\infty < x < \infty);$$

the sign \leq can be replaced by $=$ if f is continuous in $(-\infty, \infty)$.

Lemma 3.1. For every real x ,

$$\omega_*(\delta; x, f) \leq 2 \|f\|_{L^\infty(I_\delta^1(x))} \quad (\delta > 0).$$

Proof. Clearly,

$$\begin{aligned}\omega_*(\delta; x, f) &\leq \inf_E \left\{ \sup_{t, t+h \in I_\delta^1(x) \setminus E} (|f(t+h)| + |f(t)|) \right\} \leq \\ &\leq \inf_E \left\{ \sup_{t+h \in I_\delta^1(x) \setminus E} |f(t+h)| + \sup_{t \in I_\delta^1(x) \setminus E} |f(t)| \right\}.\end{aligned}$$

Hence our result follows.

In particular, the function φ_* defined by the formula

$$(3.2) \quad \varphi_*(x) = \omega_*(\delta; x, f) \quad (\delta = \text{const} \geq 0)$$

is bounded in each finite interval.

Lemma 3.2. If a real-valued f is continuous almost everywhere in $(-\infty, \infty)$, then φ_* is measurable in this interval.

Proof. In the non-trivial case $\delta > 0$, for all real x ,

$$\varphi_*(x) = \text{ess sup}_{s \in I_\delta^1(x)} f(s) - \text{ess inf}_{t \in I_\delta^1(x)} f(t) \equiv g_1(x) - g_2(x),$$

where

$$\text{ess inf}_{t \in I_\delta^1(x)} f(t) = \sup_{D_x} \inf_{t \in I_\delta^1(x) \setminus D_x} f(t) \left(\begin{array}{l} D_x \subset I_\delta^1(x), \\ \text{mes } D_x = 0 \end{array} \right).$$

To prove that g_1 is measurable in $(-\infty, \infty)$, we introduce the set

$$\begin{aligned}Z_c &= \left\{ x : g_1(x) \geq c, -\infty < x < \infty \right\} = \\ &= \left\{ x : \sup_{s \in I_\delta^1(x) \setminus E_x} f(s) \geq c \quad \forall E_x \subset I_\delta^1(x), \text{mes } E_x = 0 \right\}\end{aligned}$$

with a real parameter c .

Take an accumulation point x' of Z_c , such that $x' \pm \delta/2$ are the points of continuity of f . In this case, there is a sequence $\{x_n\}_1^\infty$ tending to x' for which

$$\sup_{s \in I_\delta^1(x_n) \setminus E_{x_n}} f(s) \geq c \quad \text{when} \quad E_{x_n} \subset I_\delta^1(x_n), \text{mes } E_{x_n} = 0.$$

Suppose that $x_n \geq x'$. Then

$$(3.3) \quad \sup_{s \in \langle x_n - \frac{\delta}{2}, x' + \frac{\delta}{2} \rangle \setminus E_{x_n}^1} f(s) \geq c$$

or

$$(3.4) \quad \sup_{s \in \langle x' + \frac{\delta}{2}, x_n + \frac{\delta}{2} \rangle \setminus E_{x_n}^2} f(s) \geq c,$$

where $E_{x_n}^1$, $E_{x_n}^2$ signify the sets of the suitable intervals,

$$E_{x_n}^1 \cup E_{x_n}^2 = E_{x_n}.$$

For sufficiently large n , the left-hand side of (3.4) is near to $f(x' + \delta/2)$.

If the inequality (3.3) holds, then

$$\sup_{s \in I_\delta^1(x') \setminus E_{x'}^1} f(s) \geq c \left(\begin{array}{l} E_{x'}^1 \subset I_\delta^1(x'), \text{mes } E_{x'}^1 = 0, \\ E_{x'}^1 = E_{x_n}^1 \text{ in } \langle x_n - \frac{\delta}{2}, x' + \frac{\delta}{2} \rangle \end{array} \right).$$

If, for infinitely many n , the estimate (3.4) remains valid, then $f(x' + \frac{\delta}{2}) > c - \varepsilon$ ($\varepsilon > 0$). Consequently,

$$\sup_{s \in I_\delta^1(x') \setminus E_{x'}^2} f(s) \geq c \quad (E_{x'}^2 \subset I_\delta^1(x'), \text{mes } E_{x'}^2 = 0).$$

In the case $x_n < x'$ two similar inequalities hold. Hence $x' \in Z_c$.

But, the set of all remaining accumulation points x'' of Z_c has the Lebesgue measure zero. Hence Z_c is measurable, i.e. the function g_1 is measurable in $(-\infty, \infty)$. Analogously, g_2 is measurable. Thus, the proof is completed.

Considering these f 's for which the functions φ_* are measurable in $(-\infty, \infty)$, we introduce the modified modulus of smoothness (of the second kind)

$$\tau_*(\delta; f)_p = \|\varphi_*\|_p = \|\omega_*(\delta; \cdot, f)\|_p \quad (p \geq 1, 0 \leq \delta < \infty).$$

It may be finite or infinite.

If $0 \leq \delta \leq \lambda < \infty$, then $\tau_*(\delta; f)_p \leq \tau_*(\lambda; f)_p$ and $\tau_*(0; f)_p = 0$ always. For every f bounded in finite intervals, the estimate (3.1) implies

$$\tau_*(\delta; f)_p \leq \tau_1(\delta; f)_p \quad (p \geq 1, \delta > 0).$$

The last two moduli coincide when f is continuous in $(-\infty, \infty)$.

Proposition 3.3. Suppose that $p \geq 1$ and $\delta, \lambda \geq 0$. Then

$$(i) \quad \tau_*(\delta; f+g)_p \leq \tau_*(\delta; f)_p + \tau_*(\delta; g)_p,$$

provided these moduli exist, and

$$(ii) \quad \tau_*(\delta+\lambda; f)_p \leq \tau_*(\delta; f)_p + \tau_*(\lambda; f)_p,$$

whenever f is continuous almost everywhere.

Proof. The assertion (i) follows at once from the inequality

$$\omega_*(\delta; x, f+g) \leq \omega_*(\delta; x, f) + \omega_*(\delta; x, g) \quad (-\infty < x < \infty).$$

To prove (ii), let us choose a real x such that $x - (\delta - \lambda)/2$ is a point of continuity of f . Denote by A, B two arbitrary sets of the Lebesgue measure zero, lying in the intervals

$$\left\langle x - \frac{1}{2}(\delta + \lambda), x - \frac{1}{2}(\delta - \lambda) \right\rangle, \left\langle x - \frac{1}{2}(\delta - \lambda), x + \frac{1}{2}(\delta + \lambda) \right\rangle,$$

respectively. Then, putting $D = A \cup B$, we have

$$\begin{aligned} \omega_*(\delta + \lambda; x, f) &= \inf_D \sup_{t, t + h \in I_{\delta + \lambda}^1(x) \setminus D} |\Delta_h^1 f(t)| \leq \\ &\leq \inf_{A, B} \left\{ \sup_{u, v \in I_{\lambda}^1(x - \frac{\delta}{2}) \setminus A} |f(u) - f(v)| + \sup_{u, v \in I_{\delta}^1(x + \frac{\lambda}{2}) \setminus B} |f(u) - f(v)| \right\}. \end{aligned}$$

Consequently,

$$(3.5) \quad \omega_*(\delta + \lambda; x, f) \leq \omega_*(\lambda; x - \frac{\delta}{2}, f) + \omega_*(\delta; x + \frac{\lambda}{2}, f)$$

for almost every $x \in (-\infty, \infty)$.

Applying (3.5) and Lemma 3.2, we conclude that $\tau_*(\eta; f)_p$ is a subadditive function of $\eta \geq 0$.

Proposition 3.4. Let f be such that, for some finite numbers $p \geq 1$, $\delta_0 > 0$,

$$(3.6) \quad \int_{-\infty}^{\infty} |\omega_*(\delta; x, f)|^p dx < \infty \quad \text{when } 0 < \delta \leq \delta_0$$

and

$$\lim_{\delta \rightarrow 0^+} \omega_*(\delta; x, f) = 0 \quad \text{for almost every } x.$$

Then

$$\lim_{\delta \rightarrow 0^+} \tau_*(\delta; f)_p = 0.$$

Proof. We put

$$\psi_n(x) = \omega_*(\frac{1}{n}; x, f) \quad (n \geq \frac{1}{\delta_0})$$

and proceed as in the case of Proposition 2.5.

Remark. If f is continuous almost everywhere, the condition (3.6) implies

$$\lim_{\eta \rightarrow 0} \tau_*(\delta + \eta; f)_p = \tau_*(\delta; f)_p$$

for all positive δ . This is an immediate consequence of Propositions 3.3(iii) and 3.4.

Taking a positive integer k , positive δ and arbitrary real x , we also introduce the auxiliary quantity

$$\begin{aligned} \bar{\omega}_k(\delta; x, f) &= \text{ess sup}_{h \in I_{\delta}^1(0)} |\Delta_h^k f(x)| = \\ &= \inf_S \sup_{h \in (-\delta/2, \delta/2) \setminus S} |\Delta_h^k f(x)| \quad \left(\begin{array}{l} S \subset (-\delta/2, \delta/2), \\ \text{mes } S = 0 \end{array} \right). \end{aligned}$$

It can easily be observed that the functions

$$\bar{\varphi}_k(x) = \bar{\omega}_k(\delta; x, f) \quad (\delta = \text{const} > 0, k = 1, 2, \dots)$$

are essentially bounded in each finite interval and, for f 's bounded in finite intervals,

$$(3.7) \quad \bar{\varphi}_k(x) \leq \omega_k(\delta; x, f) \quad (-\infty < x < \infty).$$

If f is continuous in $(-\infty, \infty)$, the functions $\bar{\varphi}_k$ are continuous in this interval, too.

4. Estimates of the Jackson type

Throughout this Section the considered functions f are real-valued, defined and measurable in the interval $(-\infty, \infty)$.

First, we shall formulate the fundamental result proved in Section 3 of [6].

Theorem 4.1. Let f be a function bounded in each finite interval. Then, for every finite $p \geq 1$,

$$\tilde{A}_\delta(f)_p \leq c_1 \tau_1 \left(\frac{1}{\delta}; f \right)_p \quad (0 < \delta < \infty).$$

Analogously, the following estimate can be obtained (in definitions of S_δ , J_δ given in [6] the upper and lower bounds of f should be replaced by ess sup and ess inf , respectively).

Theorem 4.2. Suppose that f is essentially bounded in each finite interval, and that φ_* defined by (3.2) is measurable in $(-\infty, \infty)$ for all finite $\delta > 0$. Then, for every finite $p \geq 1$,

$$\hat{A}_\delta(f)_p \leq c_2 \tau_* \left(\frac{1}{\delta}; f \right)_p \quad (0 < \delta < \infty).$$

For example, in the case of f continuous almost everywhere φ_* is measurable, by Lemma 3.2. Therefore $\tau_* \left(\frac{1}{\delta}; f \right)_p$ exists. If this quantity is finite for some positive δ , Proposition 3.4 implies

$$\lim_{\delta \rightarrow \infty} \tau_* \left(\frac{1}{\delta}; f \right)_p = 0$$

(Lemma 2.1, and Proposition 2.5 explain the behaviour of $\tau_1 \left(\frac{1}{\delta}; f \right)_p$ as $\delta \rightarrow \infty$).

Given a positive integer k and positive δ , let us introduce the Steklov functions

$$f_{\delta, k}(x) = \frac{1}{\delta^k} \int_{-\delta/2}^{\delta/2} \dots \int_{-\delta/2}^{\delta/2} \sum_{v=1}^k (-1)^{k-v} \binom{k}{v} f\left(x + \frac{v}{k}(t_1 + \dots + t_k)\right) dt_1 \dots dt_k$$

generated by the function f essentially bounded in finite intervals.

Lemma 4.3. The following estimates hold:

$$(i) \quad |f(x) - f_{\delta, k}(x)| \leq \bar{\omega}_k(\delta; x, f) \quad (-\infty < x < \infty),$$

$$(ii) \quad \|f_{\delta, k}^{(k)}\|_p \leq (2k/\delta)^k \omega_k(\delta; f)_p \quad (p \geq 1).$$

Proof of (i). Clearly,

$$f(x) - f_{\delta, k}(x) = \frac{(-1)^k}{\delta^k} \int_{-\delta/2}^{\delta/2} \dots \int_{-\delta/2}^{\delta/2} \sum_{v=0}^k (-1)^{k-v} \binom{k}{v} f\left(x + \frac{v}{k}(t_1 + \dots + t_k)\right) dt_1 \dots dt_k.$$

Hence

$$\begin{aligned} |f(x) - f_{\delta, k}(x)| &\leq \frac{1}{\delta^k} \int_{-\delta/2}^{\delta/2} \dots \int_{-\delta/2}^{\delta/2} \left| \Delta_{\frac{1}{k}(t_1 + \dots + t_k)}^k f(x) \right| dt_1 \dots dt_k \leq \\ &\leq \frac{1}{\delta^k} \sup_{\eta \in (-\delta/2, \delta/2) \setminus S} \left| \Delta_{\eta}^k f(x) \right| \int_{-\delta/2}^{\delta/2} \dots \int_{-\delta/2}^{\delta/2} dt_1 \dots dt_k \quad (-\infty < x < \infty) \end{aligned}$$

for all sets S , $S \subset (-\delta/2, \delta/2)$, of the Lebesgue measure zero.

Passing to infimum over S , we get the desired result. The inequality (ii) follows at once from the identity,

$$f_{\delta, k}^{(k)}(x) = (-1)^{k+1} \sum_{v=1}^k (-1)^{k-v} \binom{k}{v} \frac{1}{(v\delta/k)^k} \Delta_{v\delta/k}^k f\left(x - k \frac{v\delta}{2k}\right),$$

which is valid for almost every x .

L e m m a 4.4. Suppose that the real-valued functions f, g, ψ are measurable and bounded in each finite interval. Moreover, let

$$|f(x) - g(x)| \leq \psi(x) \text{ when } x \in (-\infty, \infty).$$

Then, for every $p \geq 1$ and all finite $\delta > 0$,

$$\tilde{A}_\delta(f)_p \leq \tilde{A}_\delta(g)_p + 2\tilde{A}_\delta(\psi)_p + 2\|\psi\|_p.$$

P r o o f. It will be assumed that the right-hand side of the last inequality is finite.

Consider the functions P_j, Q_j ($j = 1, 2$) of class E_δ , such that

$$P_1(x) \geq g(x) \geq Q_1(x), \quad P_2(x) \geq \psi(x) \geq Q_2(x) \quad (-\infty < x < \infty)$$

and

$$P_1 - Q_1 \in L^p, \quad P_2 - Q_2 \in L^p.$$

Clearly,

$$-P_2(x) \leq f(x) - g(x) \leq P_2(x) \text{ always.}$$

Therefore

$$Q_1(x) - P_2(x) \leq f(x) \leq P_1(x) + P_2(x) \text{ always.}$$

Denote by $P_3(x), Q_3(x)$ the right- and the left-hand sides of this estimate. Then

$$\begin{aligned} \tilde{A}_\delta(f)_p &\leq \|P_3 - Q_3\|_p \leq \|P_1 - Q_1\|_p + \|2P_2\|_p \leq \\ &\leq \|P_1 - Q_1\|_p + 2(\|P_2 - \psi\|_p + \|\psi\|_p) \leq \\ &\leq \|P_1 - Q_1\|_p + 2\|P_2 - Q_2\|_p + 2\|\psi\|_p. \end{aligned}$$

Now, the assertion follows immediately.

Theorem 4.5. Let f be a function bounded in infinite intervals. Suppose that φ_k defined by (2.2), with some positive integer k , is measurable in $(-\infty, \infty)$ for each finite $\delta > 0$. Then, for every finite $p \geq 1$,

$$\tilde{A}_\delta(f)_p \leq C_3(k) \tau_k \left(\frac{1}{\delta}; f \right)_p \quad (0 < \delta < \infty).$$

Proof. Write

$$g(x) = f_{1/2\delta, k}(x), \quad \psi(x) = \omega_k \left(\frac{1}{2\delta}; x, f \right) \quad (-\infty < x < \infty).$$

In view of Lemma 4.3(i) and (3.7),

$$|f(x) - g(x)| \leq \psi(x) \quad \text{for all real } x.$$

Therefore, Lemma 4.4 and Theorem 4.1 lead to

$$\tilde{A}_\delta(f)_p \leq \tilde{A}_\delta(g)_p + 4 C_1 \tau_1 \left(\frac{1}{2\delta}; \psi \right)_p + 2 \|\psi\|_p$$

(see also Proposition 2.3(ii)).

Theorem 3.3 of [6] and Lemma 4.3(ii) yield

$$\tilde{A}_\delta(g)_p \leq \frac{C_4(k)}{\delta^k} \|g^{(k)}\|_p \leq C_4(k) (4k)^k \omega_k \left(\frac{1}{2\delta}; f \right)_p.$$

By Lemma 2.8,

$$\tau_1 \left(\frac{1}{2\delta}; \psi \right)_p \leq \tau_k \left(\frac{1}{\delta}; f \right)_p,$$

and

$$\|\psi\|_p = \left\| \omega_k \left(\frac{1}{26}; \cdot, f \right) \right\|_p \leq \tau_k \left(\frac{1}{6}; f \right)_p.$$

Hence

$$\tilde{A}_6(f)_p \leq (4k)^k C_4(k) \omega_k \left(\frac{1}{6}; f \right)_p + (4C_1 + 2) \tau_k \left(\frac{1}{6}; f \right)_p.$$

Applying the estimate (2.3), we get the desired result.

5. Converse approximation theorem

Considering a real-valued function f measurable and bounded in each finite interval, we shall present two analogues of the Bernstein and Popov results given in [1] and [4].

Theorem 5.1. Let

$$0 < \tilde{A}_6(f)_p < \infty$$

for some finite $p \geq 1$ and all finite $\delta \geq \delta_0 > 0$, and let

$$\lim_{\delta \rightarrow \infty} \tilde{A}_\delta(f)_p = 0.$$

Then

$$(5.1) \quad f(x) = F_{\delta_0}(x) + \varphi(x) \quad (-\infty < x < \infty),$$

where $F_{\delta_0} \in E_{\delta_0}$ and $\varphi \in L^p$. Moreover, for $k = 1, 2, \dots$,

$$(5.2) \quad \tau_k \left(\frac{1}{6}; \varphi \right)_p \leq \frac{C_5(k)}{\left[\frac{6}{6_0} \right]^k} \sum_{\mu=1}^{\left[\frac{6}{6_0} \right]} \mu^{k-1} \tilde{A}_{\mu \delta_0}(f)_p \quad (\delta_0 \leq \delta < \infty),$$

whenever the left-hand side of (5.2) exists.

Proof. Denote by P_δ and Q_δ the entire functions belonging to the sets $H_{6,p}^+(f)$ and $H_{6,p}^-(f)$, respectively, such that

$$\|P_\delta - Q_\delta\|_p \leq 2\tilde{A}_\delta(f)_p \quad (6_0 \leq \delta < \infty).$$

By the assumptions, both the series

$$P_{6_0}(x) + \sum_{v=1}^{\infty} \left\{ P_{2^v 6_0}(x) - P_{2^{v-1} 6_0}(x) \right\} \equiv \sum_{v=0}^{\infty} U_v(x),$$

$$Q_{6_0}(x) + \sum_{v=1}^{\infty} \left\{ Q_{2^v 6_0}(x) - Q_{2^{v-1} 6_0}(x) \right\} \equiv \sum_{v=0}^{\infty} V_v(x)$$

converge to $f(x)$ in L^p -metric. Therefore

$$\lim_{N \rightarrow \infty} \int_{-\infty}^{\infty} \left| f(x) - \frac{1}{2} \left\{ P_{6_0}(x) + Q_{6_0}(x) \right\} - \frac{1}{2} \sum_{v=1}^N \left\{ U_v(x) + V_v(x) \right\} \right|^p dx = 0.$$

Putting

$$F_{6_0}(x) = \frac{1}{2} \left\{ P_{6_0}(x) + Q_{6_0}(x) \right\}, \quad \varphi(x) = f(x) - F_{6_0}(x),$$

we get the decomposition (5.1).

If $\Delta_h^k \varphi(t) \geq 0$ for some real x and $t, t+kh \in I_\delta^k(x)$, then

$$\begin{aligned} \Delta_h^k \varphi(t) &= \sum_{v=0}^k (-1)^{k-v} \binom{k}{v} \left\{ f(t+vh) - F_{6_0}(t+vh) \right\} \leq \\ &< \sum_{\substack{0 \leq v \leq k \\ v \equiv k \pmod{2}}} \binom{k}{v} P_\delta^*(t+vh) - \sum_{\substack{0 \leq v \leq k \\ v \equiv k-1 \pmod{2}}} \binom{k}{v} Q_\delta^*(t+vh), \end{aligned}$$

where

$$P_6^*(z) = P_6(z) - F_{6_0}(z), \quad Q_6^*(z) = Q_6(z) - F_{6_0}(z) \quad (6 \geq 6_0),$$

Consequently,

$$\Delta_h^k \varphi(t) \leq \Delta_h^k P_6^*(t) + \sum_{\vartheta=0}^k \binom{k}{\vartheta} \left\{ P_6^*(t+\vartheta h) - Q_6^*(t+\vartheta h) \right\}$$

and whence

$$|\Delta_h^k \varphi(t)| \leq |\Delta_h^k P_6^*(t)| + 2^k \left\{ \omega_1(k\delta; x, P_6^* - Q_6^*) + |P_6^*(x) - Q_6^*(x)| \right\}.$$

Analogously, in the case $\Delta_h^k \varphi(t) \leq 0$,

$$|\Delta_h^k \varphi(t)| \leq |\Delta_h^k Q_6^*(t)| + 2^k \left\{ \omega_1(k\delta; x, P_6^* - Q_6^*) + |P_6^*(x) - Q_6^*(x)| \right\}.$$

Thus,

$$\begin{aligned} \omega_k(\delta; x, \varphi) &\leq \omega_k(\delta; x, P_6^*) + \omega_k(\delta; x, Q_6^*) + \\ &+ 2^k \left\{ \omega_1(k\delta; x, P_6^* - Q_6^*) + |P_6^*(x) - Q_6^*(x)| \right\} \quad (-\infty < x < \infty). \end{aligned}$$

Further, by Lemma 2.2(i) and Proposition 2.3(ii),

$$\begin{aligned} \tau_k(\delta; \varphi)_p &\leq \tau_k(\delta; P_6^*)_p + \tau_k(\delta; Q_6^*)_p + \\ &+ 2^k \left\{ k \tau_1(\delta; P_6^* - Q_6^*) + 2 \tilde{A}_6(f)_p \right\} \quad (6 \geq 6_0, 0 \leq \delta \leq 1/6_0). \end{aligned}$$

In view of Proposition 2.6 and the well-known Bernstein inequality ([7], p.232),

$$\tau_1(\delta; P_6 - Q_6)_p \leq \delta \| (P_6 - Q_6)' \|_p \leq \delta \cdot 2 \tilde{A}_6(f)_p.$$

Therefore

$$(5.3) \quad \tau_k(\delta; \varphi)_p \leq \tau_k(\delta; P_6^*)_p + \tau_k(\delta; Q_6^*)_p + \\ + 2^{k+1} (k \delta \epsilon_0 + 1) \tilde{A}_6(f)_p \quad (\delta \geq \epsilon_0, \quad 0 \leq \delta \leq 1/\epsilon_0).$$

Clearly,

$$P_{2^m \epsilon_0}^*(x) = P_{2^m \epsilon_0}(x) - F_{\epsilon_0}(x) = \sum_{v=1}^m U_v(x) + \frac{1}{2} \{ P_{\epsilon_0}(x) - Q_{\epsilon_0}(x) \},$$

By Propositions 2.3(i), 2.4(ii) and 2.6,

$$\begin{aligned} \tau_k(\delta; P_{2^m \epsilon_0}^*)_p &\leq \sum_{v=1}^m \tau_k(\delta; U_v)_p + \tau_k\left(\delta; \frac{1}{2} \{ P_{\epsilon_0} - Q_{\epsilon_0} \}\right)_p \leq \\ &\leq \sum_{v=1}^m c_6(k) \delta^k \| U_v^{(k)} \|_p + \frac{1}{2} c_6(k) \delta^k \| P_{\epsilon_0}^{(k)} - Q_{\epsilon_0}^{(k)} \|_p \leq \\ &\leq c_6(k) \delta^k \left\{ \sum_{v=1}^m (2^v \epsilon_0)^k \| U_v \|_p + \frac{1}{2} \epsilon_0^k \| P_{\epsilon_0} - Q_{\epsilon_0} \|_p \right\} \leq \\ &\leq c_6(k) (\delta \epsilon_0)^k \left\{ 4 \sum_{v=1}^m 2^{vk} \tilde{A}_{2^{v-1} \epsilon_0}(f)_p + \tilde{A}_{\epsilon_0}(f)_p \right\} \quad (\delta \geq 0). \end{aligned}$$

Observing that

$$2^{vk} \tilde{A}_{2^{v-1} \epsilon_0}(f)_p \leq c_7(k) \sum_{\mu=2^{v-2}+1}^{2^{v-1}} \mu^{k-1} \tilde{A}_{\mu \epsilon_0}(f)_p \quad (v \geq 2),$$

we obtain

$$\begin{aligned} \tau_k \left(\delta; P^*_{2^m \delta_0} \right)_p &\leq c_6(k) (\delta \delta_0)^k \left\{ (4 \cdot 2^k + 1) \tilde{A}_{\delta_0} (f)_p + \right. \\ &\quad \left. + 4c_7(k) \sum_{\mu=2}^{2^{m-1}} \mu^{k-1} \tilde{A}_{\mu \delta_0} (f)_p \right\}. \end{aligned}$$

Hence

$$\tau_k \left(\delta; P^*_{2^m \delta_0} \right)_p \leq c_8(k) (\delta \delta_0)^k \sum_{\mu=1}^{2^{m-1}} \mu^{k-1} \tilde{A}_{\mu \delta_0} (f)_p \quad (\delta \geq 0, m=1, 2, \dots).$$

Given any $\delta \geq \delta_0$, let us choose the positive integers n and m such that

$$n \delta_0 \leq \delta < (n+1) \delta_0, \quad 2^{m-1} \leq n < 2^m.$$

Then, putting $\delta = (n \delta_0)^{-1}$, we have

$$\tau_k \left(\delta; P^*_{2^m \delta_0} \right)_p \leq \frac{c_8(k)}{n^k} \sum_{\mu=1}^{2^{m-1}} \mu^{k-1} \tilde{A}_{\mu \delta_0} (f)_p \quad (m=1, 2, \dots),$$

and the same estimate for $Q^*_{2^m \delta_0}$ holds. Hence the inequality (5.3), in which δ is replaced by $2^m \delta_0$, leads to

$$\begin{aligned} \tau_k \left(\frac{1}{n \delta_0}; \varphi \right)_p &\leq 2 \frac{c_8(k)}{n^k} \sum_{\mu=1}^{2^{m-1}} \mu^{k-1} \tilde{A}_{\mu \delta_0} (f)_p + \\ &\quad + 2^{k+1} \left(k \frac{2^m}{n} + 1 \right) \tilde{A}_{2^m \delta_0} (f)_p. \end{aligned}$$

It is easily seen,

$$\tilde{\mathcal{A}}_{2\epsilon_0}^m(f)_p \leq \tilde{\mathcal{A}}_n \epsilon_0(f)_p \leq \frac{C_9(k)}{n^k} \sum_{\mu=1}^n \mu^{k-1} \tilde{\mathcal{A}}_{\mu\epsilon_0}^m(f)_p.$$

Thus

$$\begin{aligned} \tau_k\left(\frac{1}{\epsilon}; \varphi\right)_p &\leq \tau_k\left(\frac{1}{n\epsilon_0}; \varphi\right)_p \leq 2 \frac{C_8(k)}{n^k} \sum_{\mu=1}^n \mu^{k-1} \tilde{\mathcal{A}}_{\mu\epsilon_0}^m(f)_p + \\ &+ 2^{k+1}(2k+1) \frac{C_9(k)}{n^k} \sum_{\mu=1}^n \mu^{k-1} \tilde{\mathcal{A}}_{\mu\epsilon_0}^m(f)_p \quad (\epsilon_0 \leq \epsilon < \infty), \end{aligned}$$

and the estimate (5.2) is proved.

A similar calculation yields

Theorem 5.2. Suppose that $f \in L^p$ for some finite $p \geq 1$ and that $\tilde{\mathcal{A}}_{\epsilon_0}^m(f)_p < \infty$, ϵ_0 being a certain positive number. Then if $k = 1, 2, \dots$,

$$(5.4) \quad \tau_k\left(\frac{1}{\epsilon}; f\right)_p \leq \frac{C_{10}(k)}{[\epsilon/\epsilon_0]^k} \left\{ \|f\|_p + \sum_{\mu=1}^{[\epsilon/\epsilon_0]} \mu^{k-1} \tilde{\mathcal{A}}_{\mu\epsilon_0}^m(f)_p \right\} \quad (\epsilon_0 \leq \epsilon < \infty),$$

whenever the left-hand side of (5.4) exists.

Also, it may be shown that for every real-valued function $f \in L^p$ ($1 \leq p < \infty$), essentially bounded in finite intervals and continuous almost everywhere,

$$\tau_*\left(\frac{1}{\epsilon}; f\right)_p \leq \frac{C_{11}}{[\epsilon/\epsilon_0]} \left\{ \|f\|_p + \sum_{\mu=1}^{[\epsilon/\epsilon_0]} \hat{\mathcal{A}}_{\mu\epsilon_0}^m(f)_p \right\} \quad (0 < \epsilon_0 \leq \epsilon < \infty)$$

(see Lemma 3.2 and Proposition 3.3).

REFERENCES

- [1] Н.И. Ахиезер : Лекции по теории аппроксимации. Москва 1965.
- [2] A.S. Andreev, V.A. Popov, Bl. Sendov : Jackson's type theorems for onesided polynomial and spline approximation, Comptes Rendus Acad. Bulg. Sci. 30, (11) (1977) 1533-1536.
- [3] А. Андреев, В.А. Попов, Бл. Сендов : Теоремы типа Джексона для наилучших односторонних приближений тригонометрическими многочленами и сплайнами, Mat. Zametki 26, (5) (1979) 791-803.
- [4] V.A. Popov : Converse theorem for onesided trigonometrical approximation, Comptes Rendus Acad. Bulg. Sci. 30 (11) (1977) 1529-1532.
- [5] V.A. Popov, A.S. Andreev : Stečkin's type theorems for onesided trigonometrical and spline approximation, ibid. 31, (2) (1978) 151-154.
- [6] R. Taberski : One-sided approximation in metrics of the Banach spaces $L^p(-\infty, \infty)$, Funct. Approximatio Comment. Math. 12 (1982) 113-125.
- [7] А.Ф. Тиман : Теория приближения функций действительного переменного. Москва 1960.

INSTITUTE OF MATHEMATICS, A. MICKIEWICZ UNIVERSITY, POZNAN
Received November 27, 1980.

