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ONE-SIDED APPROXIMATION BY ENTIRE FUNCTIONS

1. Preliminavies

Let LP(a,b), 1< p < oo, be the space of all measura-
bls complex-valued functions Lebesgue-integrable with p-th
power on the intesval (a,b). Denote by L°°(a,b) the space
of all complex-valued functions essentially bounded in (a,b).
As usually, the norm of f € LP(e,b) is given by the formu-
le

= 1
{j [£(x)| P dx}p if p <oe,
a

"f"LP(a’b) = " £l )" Lp(a,h) =9

ess sup |f(x)] 4if p = oo,
x€(a, b?

-

We shall write LP instead of LP(-o00,o00),
For functions f belonging to all spaces LP(e,b) with
finite a, b (a <b), the limit

f =
I 2ls -]
is finite or infinite, If f € LP, then

Il

Jum e o

b+ oo

“f"Lp°
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2 R,Taberski

Suppose that £ € Lp(a,b) for each finite (a,b). In~
troduce the differences

X
af g(t) = 3 (-1)1""(3,‘) £(t+vh) (k= 1,2,40.),
¥=0

with real increments h, and the moduli of smoothness

Olbif)y = | sue ok 2tea], (0 <8<,

These moduli are finite or infinite, w(0;f) p =0, and

mk(éif)p\<wk(l;f)p if 0g86<A<o0s

Let EG be the class of all entire functions

Flz) = :2 akzk (z = x + 1iy)
k=0

of exponential type, of the order 6 at most., Consider a

complex~valued function f belonging to LP(a,b) for each

finite interval (a,b). Denots by Hg p.(f) the set of all
’

functions G € By such that f - Ge LP,
The quantity

. inf =G if H (f) is not empty
s GGHG p(f) ” nP evp ’

Aglf)y =

H]
co otherwise

is celled the best approximation of f by entire functions
of class HG p(f). It is well-~known that
14 .
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Approximation by entire functions 3

(1.1) ag(f) ) < Clk) w (ls;f)p (0<B<oe, 1€ p&, k=1,2,...),

where the positive number C(k) depends only on k (see
{11, Sect. 99-105, also [7], p.272~274).
Suppose that f 1is a real-valued function essentially
bounded in each finite interval. Denote by- K+ (f) [resp.
Kg,p(f)] the set of all entire functions Pe Es [Q € By ] real-
~valued in (~oe,o0), such that

(1.2) -~ P(x) 2 £(x) [Q(x) € £(x)]

almost everywhere in (-oo,00) and P - £ € LP [f-Qe LR].
In the case of f bounded in each finite interval, we also
introduce the sets HG p(f), HG (£) of these P € K+ (£),
Q€ K, p(f), respectively, for which the inequalities %1 2)
hold everywhere in (=oce,00),

The useful characteristics of the best one-gsided appro-=
ximation of real-valued functions f belonging to ILP(a,b),
bounded or essentially bounded in (a,b), for all finite
a,b are given by the formulae

r inf ” P—Q" if 8% (£) are not empty,
+ - P » P
N PeH‘,pkf),QGHS’p(f)
Ae(f)p =
oo otherwise,
r inf IIP-Q"p if K (f) are not empty,
+ -
. Png,p(f),QEKs’p(f
AG(f)p = '
1\ oo otherwise.

In these cases,
A ~
Rgl£) ) S hglf) ), ag(2), SAgle) ) (0€ 6 <oo, 1< Do),
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4 R,Taberski

respectively, and

Bgle) < aayle),, (0 € 6 <o)

For continuous functions £, Xs(f)p = ﬁs(f)p.

Using some analogues of the moduli of smoothness defined
in Sections 2 and 3, we shall give the estimates for Xé(f)
and ﬁs(f)p (1 € p <o) similar to that of (1.1). More-
over, the converse approximation theorems will be presented,
They correspond to the recent results concerning one-gided
trigonometric approximation announced in {2], [3], [4] end
[s].

The symbols Cj’ Cl(k), with integer indices, will
mean positive constants absolute or depending on the parame-
ter k, only.

2. Modified moduli of smoothness

Congider here a complex~valued function f defined and
bounded in each finite interval of (-oo,00), Introduce the
intervals

Ig(x)=<x-k-g—,x+k-g-> (0 6 <oo, k=1’2’..")

and the quantity
mk.(é;x,f) = sup . lAlk: f(t)l (=00 < x < 00},
t.t+kheld(x)

It can easily be observed that, for every finite ) 20
and all real x,

(2.1) wk(6;x,f) < 2 Uk_.] ‘Elf_fa;x,f) if k = 2,3,.-0,

m1(6;x,f) <2 sup |f(s)].
seI}(x)
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Approximation by entire functions 5

In partiocular, the functions

(2.2) @ lx) =w(;x,£) (6= const 20, k = 1,2,...)

are bounded in finite intervals.
Evidently, for every poslitive integer k and all real x,

¢ (x) =0 when d=0.

Considering positive §, we have the following

Lemma 2.1, (1) Let £ be continuous almost eve-
rywhere in (~oo,00), Then ¢1 is continuous almost every-
where, too. (ii) If f is a real-valued function in
(-co,e0), then ¢, is measurable in this interval,

Proof of (i}). Let € be a positive number. Denote
by X the set of all real x such that x#f/2 are the
points of continuvity of f£. Choose an arbitrary X, € X and
ne(-0/2, 6/2); write

8y = P1(Zo) — pqlxpry) =

= sup [£(s)-£(t)] - sup [ £lu)-£({v)].
s,teI}(xo) u,veI;(xo+p)

190 1P Q’? > 0, then

ev <E+ lf(se) - f(ta)l - If(u) - f(V)IS

S e+ |flsg) - £(te) - £(u) + £(v)]

for some Bgy T € I;(xo) and each u,v € I}(xo+7). Hence
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6 R.Taberski

97 <e+ |flsg) = £lu)] +] £(v) - £(te)| < 3¢,
provided |7W| is small enough (u, v are taken corresponding-
1ly).

2° In the case e, < 0, under the restriction sg,te

] .
€ Id(xo)’

-0 < sup [£(u)~£(v)] - |£(8)-£(t)].
7 u,veIg(x°+V)

Therefore

—e'? <g+ If(“e,q) - f(ve’v) - £(s)+£(t)|

for soms y Vep € Ig(xofp) and all s,t € Ig(xo). Con-

sequently,

lle?

- e]?< e+ |flug o) - £(s)] + [ £(t) - f("e,q)l < 3¢,

7

whenever |7| is small and s, t are near to ug 0 Ve \0?
respectively.
In view of 1° and 29, Q? —~0 as 7 —=0, i.e.

';Ego Py (x5+7) = @y(x,),

and the proof is completed.
Proof of (ii). For every real x,

sup | £(s) = £(t)| =
s{teI}(x)

(p1(x)

sup f(s) - 4inf f(t) = fﬂ(x) - f2(x).
seI}(x) teI}(x)
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Approximation by entire functions i

To prove that 2 is measurable in (=co,0e), we intro-
duce the collections

Xc ={x :. sup f(s) c} = {x : f(s) € ¢ Ve € I}(x)} ,
seI}(x)

Yc={s:fw)<c,ﬂ»<s<w}
with real ¢,

1% 1r Yc contains no open interval of length 26, the
set XC is emptye.

20 1f YC contains some separated intervals of length
25, X, can be represented as z finite or enumerable sum
of the open or closed intervals degenerated eventually to in-
dividual points.

In both these cases, the sets Xc are Lebesgue~measurab-
le., Theorefqre, the functions f, and -f, are measursble
in (-oo,00), Hence the result follows.

Also, a simple calculation leads to

Lemma 2,2. (i) If f is coentinuous in (~-oo,oc0),
then @ (k = 1,2,.4s) are continuous everyvhere. {ii) Sup~-
pose that every open interval (a,b) of length not greater thean
k8 contains no more than one discontinuity point of f. Then
the sat of discontinuity points of ®y is enumerable at most,

Assuming that %), 1s measurable in (-o0,00), for every
fixed 6 » 0, we can define the k-th modified modulus of
smoothness of f (in LP-metric) by the forauls

T (838) =l olly =l w(&,0)| ) (0 < 6 <oo).
For example, under the assumption on f given in Lemma 2.1

(Lemma 2.2], the modified moduii T, (6:8) [’t’k(tf;f)p] exist
for each p>1 and ¢ 2 0,
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8 " R.Taberski

It is clear that if 0  § A <°°, then rk(é;f)ps
élvk(l,f)p and fk(o,r)p = 0 always, There are functions f,
bounded or unbounded in (-o0,50), such that T, (d; £, <o
for some p 2 1 and all non-negative d. But, sometimes,

tk(é;f)p = oo for all positive §.
This case has no practical interest.

It may be shown (see [3], p.793-794), that, for measurab-
le £ and finite or infinite p > 1,

(2.3 Ty(638) > w0 (838), (620, k=1,2,.00),

Proposition 2.3 Under the assumptions
p>1 and 6,120,

(1) T (8ifee) ) € Ty (652) ) + Ty(bse), (k2 1),

(1i) ¢1(6+1;f)p < t1(6;f{p + t1(14f)p,
provided that these moduli exist. In particular,
T, (nd; f) <n7, (6;f) for n = 2,3,...

The inequality (1) follows at once from the identity

AE (£+)(t) =Af £(t) +8F a(t).
The proof of {il) is similar to that of Proposition 3.3
(ii).

Proposition 2.,4. (i) Let £ bYe as in Lem~
ma 2.2 {ii). Then, for every p 21

T (832), <2 k1( 0y 6; f)p (k > 2).
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Approximation by entire functions , 9

(i1) Suppose that f possesses the derivative f' continuous
in (=co,00), Then

T (8:2) ) < 6ty (E]f‘f G;f'bp

whenever p > 1, 6 20 and k = 2,34000

.Phe assertion of (i) is an immediate consequence of the
inequality (2.1).

To prove (ii), we observe that

I5(x) = Ig)pq)(x) (~eo<x <o)

and that, by Lemma 2.2(i), the function

$(x,u) = sup IAE” 'f'(s)l
5,6+( %=1 )helg(x+u)

is continuous on the plane. Further,

W, (6;5x,f) = sup A§'1 £/ (u+t)du| <
t,t+kheI§(x) 0
') §
< f sup |A§'1 f’(u+t)'|du = f@(x,u) du.
O t,t+(k-1)heI}(x) 0
Thus

)
"mk(d;-,f)”p £ f"@(.’u)”p du,
0
and the result follows,
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10 R,Tabarski

Proposition 2.5 Suppose that, for a certain
function f continuous almost everywhere and for some finite
numbers p > 1, § >0 and positive integer k,

)
(2.4) 7' mk(é;x,i’) P dx{oo when 0< 6460.
Then
(2.5) lim fck(d;-f)'p = 0,

§ -0+

Proof . The sequence of non-negative measurable
functions

(2.6) Yulx) =wy (‘113 i x’f) (nz%;)

tands monotonely to zero for almost every x. Moreover, for
#very real x,

Y (x) <y, (x} when n3yn

> 1/6,.
o o

o]

In view of (2.4},

—ilwno(x), P dx <oo.

Hence, by the Lebesgue dominated convergence theorem,

O
lim fllpn(x)lp dx = Oy
n-»co

- OO



Apprioximation by entire functions 11

Now, the assertion (2.5) is quite evident,

Remark. In the case k=1 or k=2, the condi-
tions (2.4) and (2.5) imply that f is continuous almost eve-
rywhere in (-~oo,00),

Indeed, let £ be a function discontinuous in a set E
of positive measure, for which the relations {2.4), (2.5)
are fulfilled., If 1y, is defined by (2.6), with k = 1 or 2,
then

1

vzk (Jﬁ, f)p> {! Iwn(x)l p dx}E >0.

Conseguently,

n-’Do

(2.7) lim j|zyn(x)lp dx = 0,
E

On the other hand, in view of monotonity of the sequence
{w (x)}, = finite limit

ll-im Y, (x) =p(x)

exists and Y(x) > 0 for all =x € E., Therefore, by Fatou’s
lemma,

n-—eo<o

lim flzpn(x)l Pax > f[w(x)l Pax > o0,
E E

which contradicts to (2.7).

Proposition 2.6, If a function f is abso=-
lutely continuous in each finite interval and its derivative
£’ belongs tc the space Lp, with a finite p 21, then

60 <8 0 (820,
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12 R,Taberski

The proof runs as in [3], p.795-796.
Let us define the p~th variation of ¢ in finite inter-

vals {a,b) as

n-1 -
. P
vp(f;a.b) = s#p{z lf(";m) - f(xj)l p} (p >0),

where T[ denotes partitions {a = X < Xy < eee <X, = b}.
Write

V (f) = sup V_(f;3a,b).
P a,b p

A simple calculation, which will not be presented hefe,
yields

Proposition 2.7 Suppose that £ is of
bounded p-th variation V (f), 1< p < oo, 'Then

o

L JE

Ty (8:8), < (58)P V (£) (0 < 6 <eo),

Pinally, we shall give the estimate needed in Section 4.

Lemma 2.8, For functiops @, defined by (2.2)
and p > 1,

11(.1»;<pk)p < Ty (6+%— ; f) (0 6,1 < o),
P

provided that the right<hand side exists.
Proof ., Since ¢,(x) >0 always, we have

w Az, ) < sup  gpfu) =
‘ ‘uell(x)
sup sup IA]; f(t)] < sup IAE f(t)l .
ueI‘l(x) t_,t+khﬂ-}((u) ' - t,t+kh6116(+l/k(x)



Approximation by entire functions 13

Therefore, under the assumption x € (-o0,00) and A2 0,

Wy (A5xy0, ) € w) (6 + %(- ; X,f)e

Thus, by 2.1(1i), our result follows,

3. Further basic quantitlies

Now let f be an arbitrary complex~valued function of
a real variable, essentielly bounded in each finite interval,
Retain the symbols Ig(x), wk(d;x,f) and 'tfk(ﬁ;f)p used in
Section 2.

Write, for every real x, w*(O;x,f) = 0 and

u*(é;x,f) = inf sup lAk11 f(t), (0 < §<e9),
BT GHENN:

where the infimum is taken over all sets E, E CI}(x), of
the Lebesgue measure zero (mes E = 0). In the cass of f's
bounded in finite intervals,

(3.1) w*(d;x,f) < wy(6;x,2) < oo (620, ~o0<x <00);

the sign < can be replaced by = if £ is continuous in
("'°°9 °°)0

Lemma 3.1. For every real x,

m*(é;x,f) (6>0).

<2 Ilf”LW(I} (x))

Proof. Clearly,
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14 R,Taberski

W (635x,1) Qi,nf{ sup (lf(t + bl +|f(t)|)}€
B t,t+heI:S|(x)\E

< inf{ sup [£(t + h)| + If(f.)l} .
E t+heIg(x)\E teI?S(x)\E

Hence our result follows.
In particular, the function ¢, defined by the formula

(3.2) ¢, (x) =0 (6;x,£) (6= const >0)

is bounded in each finite interwval.

Lemma 3e2e If a real-valued f is continuous
almost everywhere in (-oo,ce), then ¢, 1s measurable in
this interval.

Proof. In the non-trivial case 6 > 0, for all
real x,

cp*(x) = ess sup f(s) - ess inf £(t) = 51(x) - gz(x),

1 1
seIG(x) teld(_x)
where
ess inf £(t) = sup inf  f£(t) (D _C I}(x),
teI}(x) Dy teI}(x)\Dx mes D_=0 /.

To prove that 84 is measurable in (-~oco,oe), we intro-
duce the set

Z, ={x : gq(x) >, -oo<z<<>0}=

={x : sup f(s) > ¢ VEX < 1l(x), mes E_ = O}
1 § x
selé(;«:)\Ex

with a real parameter c.
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Approximation by entire functions 15

Take an accumulation point x’ of Zc’ such that
x' + 6/2 are the points of continuity of f., In this case,
- -]
there is a sequencs {xn}1 tending to x’ for which

sup f(s) > ¢ when E, < I}(’xn), mes E. = O.
1, n n
selé\xn)\Ex
n
Suppose that x, > x'. Then
(343) sup f(s) > ¢

se(x, - -g, X'+ -g-')\E;c
n
or

(3.4) sup f(s) > o,

d 2
se(x’+g, X, +5) \Exn

where E; ’ Ei 8ignify the sets of the suitable intervals,
n n

1 2
E. UES =E
xn xn xn

For sufficiently large n, the left-~hand side of (3.4) is
near to f(x'+48/2).
If -‘the inequality (3.3) holds, then

sup f(s) > ¢ E;,Clg(x’), mes B

1 = O’
seI1(x' )\E1 * S
x! 1 1 '
é EX’= Exn in <xn-~g-, X'-l—_ '§> ..

If, for infinitely many n, the estimate (3.4) remains va-
1lid, then f.(x'+-g-) >c - € (& > 0). Consequently,
sup f(s) > ¢ (Ei-,C‘I}(x’), mes Ei, =0).
seX (x/)\EZ,
- 491 -



16 Re.Taberski

In the case x, € x' two similar inequalities hold. Henoe
x'€ Z,.
But, the set of all remaining accumulation points x¥
of zc has the Lebesgue measure zero. Hence Zo is measurab-
le, i,e., the function 8, is measurable in (-oco,c0). Ana-
logously, 85 is measurable. Thus, the proof is completed.
Considering these f's for which the functions ¢, @are
meagurable in (-oo,0c), we introducs the modified modulus
of smoothness (of the second kind)

w852, = o flo = extdsestl] ,  tp 31, 0g8<e),
It 'may be finite or infinite.
If 0§ 6<A<°, then % (6;:) < Ty (J.;f) and T (o;r) =
= 0 always. For every f bounded in finlte intervals, the
estimate (3.1) implies
T, (632) ) < T (632),  (p 21, 6 >0
The last two modull coincide when £ is continwvaus: in
{—W’m). .
Proposition 3.3, Suppose that p > 1 and
§,2 >0, Then
(1) T (85748) ) € T (658), + % (838) s
provided these moduli exist, and

(ii) 'c*(ch.ﬂ.;f)p <t (838) ) + 7 (A:8)

.whenever f is confinuous almost everywhere.
Proof. The assertion (i) follows at once from the
inequality

Wy (6;x,f+8) € Wy (85x,8) + wy(dix,8) (-c0<x Lo0),
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Approximation by entire functions 17 .

- To prove (1), let us choose a real x such that
x = {(6=1)/2 1is a point of continuity of f. Denote by A, B

two arbitrary sets of the Lebesgue measure zero, lying in the
intervals

(x -3 643, x - F(6-0), <x -3 @-2), x+ T+,

respectively. Then, putting D = A B, we have

w*(6+,1;x,f) = inf sup IA; f(t)‘s
t,tg-heI}_M(x)\D
< inf Bup If(u)_f(v)l . sup HOEIIE
4B u,ve'I;(x-g-)\A u,veIg(x+‘%)\B
Consequently,

(3.5) w*(6+l3xsf) < Q*(lix - ‘g‘, f) + (d*(d;x + %- , T)

for almost every x € (~-oco,00),
Applying (3.5) and lLemma 3.2, we conclude that T*('?;f)p
is a subadditive function of Vi 2 0.

Proposition 3.4. Let f Dbe such that, for
some finite numbers p >1, 6 > 0,

(3.6) f lw*(d;x,f) Pdx <oo when 0 < 8 60_

and

lim  wy(6;x,f) = 0 for almost every x.
6 -o*

lim v (aif) = Oo
§o0+ P
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18 R.,Taberski

Proof. We put

Yu(x) =y (s =2 (ny )

and proceed as in the cass of Proposition 2.5.
Remark, If £ 1is continuous almost evarywhers,
the condition (3.6) implies

Lim T (8+738) ) = T (6if)
17-0
for all positive 6 . This is an immediate conseqguende of
Propositions 3.3(ii) and 3.4.
Taking a positive integer k, positve § and arbitrary
real x, we also introduce the auxiliary quantity

@, (d;x,£) = ess suplAﬁ f(x)l' =
neI}(o)

= inf sup |A§ f(x)l s c=6/2, 8/2> ,),
S hel-d/2,8/2>\8 mes S = 0

It can easily be observed that the functions

?) (%) =Z)k(6;x,f) (8§=const>0, k= 1,2,...)

are essentially bounded in each finite interval and, for f’s
bounded in finite intervals,

If f is conftinuous in (-oco0,00), the functions (71{ are con-
tinuous in this interval, too.
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Approximation by entire functions 19

4, Bstimates of the Jackson typse

Throughout this Section the considered functions f - are
real-valued, defined and measurable in the interval (-oo,0e),

First, we shall formulate the fundamental result proved
in Section 3 of [6].

Theorem 4,1. Let f be a function bounded in
each finite interval. Then, for every finite p > 1,

Is(f)p < oyt (—é—; f)p (0< <o),

Analogously, the following estimate can be obtained (in
definitions of Sg, Jg @&iven in [6] the upper and lower
bounds of f should be replaced by ess sup and ess inf,
respectively).

Theorem 4.2, Suppose that f is essentially
bounded in each finite interval, and that Py defined by
(3.2) is measurable in (-oo,00) for all finite & > 0.
Then, for every finite p 2 1,

A 1,
3 (), < Cz'c*(-g,f)p (0 < & <o),

For example, in the case of f continuous almost every-
where ¢, is measurable, by Lemma 3.2. Therefore Ty {(1/6; f)
exists., If this quantity is finite for some p051t1ve 6
Proposition 3.4 implises

11m'c(g;f) =0

(Lemma 2.1, and Proposition 2.5 explain the behaviour of
'61(1/6;f)p as 6 —=o9),

Given a positive integer k sand positive 6, let us in-
troduce the Steklov functions
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20 R,Taberski

d/2 /72 «x
fd’k(x}=§—g f f 2 (-1)\’—1(5)f(x+%(t.+...+tk))dt1...dtk
~0/2 ~0/2 9=1

generated by the function f essentially bounded in finite
intervals.
Lemma 4.3 The following estimates hold:.

(1) [2(x) - 24  (x)|<B(85x,2)  (-s0cx<o0),
(11) 56, < (2o w8500, (o 3 ).

Proof of (i). Clearly,
d/2 é/2 k

ok
f(x)-fG’k(x)=%§)— / / DN O it 7110 OO ) "L L
-d/2 ~6/2 ¥=0
Hence
_ d/2 d‘/al . I
f(x)-fd.k(.x)g-lE f / % £(x)|at,...dt, <
’ I d %2 Yo —k(t1+...+tk)
d72 672
<1 sup IA‘,;:(x), f '/'dt,‘...dtk(-oo<x<oo)
§ t,e(—d’/a,tf/Z)\S ~-q4/2 =d7/2

for all sets S, S C<-d'/2, d/2)>, of the Lebesgue measure
ZOTr0.
Passing to infimum over S, we get the desired result.
The inequality (ii) follows at once from the identity,

k
£l ix) = () ;; ey P C 39,
=1 :

which is valid for almost every x.
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Approximation by entire functiona 21

Lemma 4.4 Suppose thdt the real-valued functions
f, g, Wy are measurable and bounded in sach finite interval.
Moreover, let

[£(x) - g{x)] <w(x) when x € (-o0,00),

Then, for every p »1 and all finite 6>0,
As(f)p £ As(g)p + EAG(Wp + 2||1|I||p.

Proof. It will be assumed that the right-hand side
of the last inequality is finite.

Consider the functions Pj, Qj (3 = 1,2) of class I,
such that

Po(x) > a(x) > Qy(x), Pyl(x) 2 W(x) 3 Qy{x) (-e0<X<o00)

and
- p - p
P1 Q1 € LY, P2 QzeL.

Clearly,

-P2(x) £ f(x) - g(x) £ P2(x) always.

Therefore

Q1(x) - Pz(x) £ f£f{x) £ P.'(x) + Pe(x) always.

Denote by P3(x), Q3(x) the right- 2nd the left~hand sides
of this estimate, Then

As(f)ps "P3 - Q3"p$ "P1 = Q1p + u2]'>2"pS

<ley - al, + 2007, - vl + vl )<
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22 R.Tabsrski

Now, the assertion follows immediately.

Theorem 4.5, Let f be a function bounded in
finite intervals. Suppose that ¢, define! by (2.2), with
some poslitive integer k, is measurablc in (-oco,00) for
each finite & > 0. Then, for every finite p > 1,

. 1
As(f)p < Cj(k) Ty ('gi f)p (0 < 6 <00},
Proof. Write
8(x) = £1 /56 x(x), Wix) =0y (Rime) (oo < x < oo
In view of Lemma 4.3(i) and (3.7),

|£(x) - g(x)] <ylx) for all real =x.

Thersfore, Lemma 4,4 and Theorem 4.1 lead to

~ N 1
Kgle), < Telal, + 4 oy, (Tgow), + 20w,

(see also Proposition 2.3(ii)).
Theorem 3.3 of [6] and Lemma 4,3(1i) yield

c,(k)

0 e, < oy o (),

helg), <

By Lemma 2.8,
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and
I - el A, < % (35°)
p ki\2g " » S ke’ '
P p
Hencs

Rl£), < (400" cylk) wy(F5 £) ) + (40, + 2) (5 2)

Applying the estimate (2.3), we get the desired rssult,

5. Converse approximation theorem

Considering a real=valued function f measurable and

bounded in each finite interval, we shall present two analo-

gues of the Berngtein and Popov results given in [1] and [4].
Theorem 5.1, Lot

[ <00
for some finite

p »>1 and all finite 6 »6, > 0, and let
€i2° As(f)p = 0O,

Then

(541)

£(x) = Fg (x) +@(x) (~o0 <x <o),
0

where FS € EG and ¢ € LP, lioreover, for k = 1,2,¢04,
o) )

(676
Cqlk) o

1
(5.2) %y (g3 ) ST S
(o} p=1

-1 ~
E T g (1), (6,<6<e0),

whenever the left-hand side of (5.2) exists.

- 499 -



24 R,Taberski

Proof. Denoteby Fg and Qg the entire funotions
belonging to the sets 'HE p(f) and Hg p(f-), respectively,
? 1
such that

I2 - gl , < 2Bgle), (6, < 6 <o),

By the sssumptions, both the series

S uytx,

P, (x) + Z{P J
o g=1 L 276 9=

(x) - P (x)
CELIRN }

(=

converge to f(x) in LP-metric. Therefore

pdx = 0.

oo N
lim f'f( y-14p, (x)+ ~(x)}-1 U, (x)+V,(x)
Nsse J x 2{60 6, ng“{v 9 }
Putting
1 . =
g (2) = 5{1@60(“ + “eo‘“}' olx) = 2(x) - Fg (x),
we get the decomposition (5.1).
1f 05 @(t) >0 for some real x and t,t+kh eIg(x),

then

r
k k-4 (k
8E o) = S (=15 (K) {f(twh) - ¥g (¢ +oh)}<

V=0
< S 5 pkeem) - 3 (%) Q¥ (t+9n),
0€v€k 0g9¢k
v=k(mod2) d=k-1(mod 2)
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where

2i(z) = Bgla) - By (a), Qglz) = Qgla) - Fg (2) (6 36,),

Consequently,

sEet1ga E BH(Y) +§;0 (§) {e5lesn) - gz(mh)}
and whence
|ag o(x)|<| 8y B38| + 2k{m1(k6;x,1>;-og) + lrz(x)-q’é(x)l}.
analogously, in the case AE ¢(t) < o0,
['Al; cp(t)IS IAE Qz(t)l + 2k{w1(k6;x,P:;-Q;) +| PZ(x)—Qz(x),I}.
Thus,

Qk(a;x,(P) < wk(63x,P:) +Qk(6;pr:) +

+ 2k{m1(k6;x,PG-QG) + !PG(X)-QG(X)I} (~c0¢x<00),
Further, by Lemma 2.2(i) and Proposition 2.3(ii),

T (630) ) T (63250 + T (65050 +
v 2 {k v (E17g0g) + A1)} (626, v<<1/6)-

In view of Proposition 2.6 and the well-known Bernstein ine-~
quality ([7]’ p0232)’
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T, (852g=ag) ) < 8[| (Bg=ag)' ||, < 8€-2 Kyl£) .

Therefore
»* oy *
(5.3) ’Uk(éi(P)p < tk(é;PG)p +’rk(8;Q6)p +

+ 2 (kb841) Ty(£) ) (6 28, 0K 8 <1/6)e

Clearly,

n
* - 1 :
szso(x) = ,szeo(x) - Feo(x) = v% Uylx) + §{P6°(x)-060(x)},

By Propositions 2.3(1), 2.4(ii)land 2.6,

m

" 1
fck_(S;széo)p sz=1 'ck(é;U‘,)p + 'c‘k!(tf; §{PG°-QGO})p<

S cgtia 65Juf , + & oqtm0 8% [ - off] <
<v=1 6 9 lip T 276 € 6o llp

m .
<oeta 443 e [l 3 ek frg, -, } <
N =

m
< Cgli)(88)" {4 S o' 7{29_16 (£), + Xg'o(f)p} (§30).
v=1 ]

Observing that

=1
2
kg k=1 Y
2 sz_1d(f)psc7(k) > ow Apgo(f)p (¥ »2),
° p=2°'2+1
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we obtain

'Uh(J;P:mé ) < CG(k)(SGO)k{(4:-2k+1 )I‘;o(f)‘p +
. o/p

2m-1
+ 4Cq(x) P“"Ipéo(f;p}.
p=2
Hence
2m-1
fck(J;P:mso\)ps ca(k)«?éo)kp;1 pk“ua'udo(f)p (6 30,m=1,2,...).

Given any 6 > 60, let us choose the positive integers n
and m such that

n60< 6<(n+1)60, 2“"‘1gn<2m.

Then, putting §= (n 60)'1; we have
2m~1
<, [6;P* Cg (k) ket )
k( 2m60)pg K Z m A,.(s'o(f)p (m=1,2,000),

»*

and the sSame estimate for Q a holds. Hence the inequali-
2

ty (5.3), in which € is replaced by 2"6,, leads to

Ty ! 5¢) L2
n e, b

c (k) 2m-1
g'e k-1 ~

& oL (F) +
nk P% o P5 p
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It is easily sesn,

~ ~ Colk) G yoq ~
fa, 2y ay g (£),< —ir 2 e g 1)
o} p:‘]
‘hus
Calk) &
1 1 . 8 k=1 %
1'lc(ﬁ’w)ps'ﬁk (nso.(P)pS?—‘;k—E%p ueo o
2“*1(21:1)33,(;1(—) S k17 (£), (8 < 8<o0)
ML :E% ¢ pe, P o !
p= ’

end the estimate (5.2) is proved,

4 similar calculation yields

Theorem 5.2 Suppose that € LP for some fi-
nite p 21 and that Zso(f)p < oo, 60 being a certain po-

gsitive number, Then if k = 1,2,400,

10
(5.4) ’tk( ’f\) '[-T/G__]E{ 2 p ‘ (£) } (éo<6<°°)9

whenever the left-hand side of (5.4) exists.

Also, it may be shown that for every real-valued func-
tion f e LP (1€ p <), essentially bounded in finite in-
tervals and continuous almost everywhers,

o (e/6,]
1, 11 ~
) <@gl e 3 Rt <o
p P-_‘]

(see Lemma 3.2 and Proposition 3.3).
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