

Józef Dudek

ON BISEMILATTICES, II

1. Introduction

In [5] J. Płonka introduced the concept of a quasilattice, later R. Padmanabhan (see [4]) called it a bisemilattice. Recall that an algebra $(B, +, \cdot)$ of type $(2,2)$ is said to be a bisemilattice (or a quasilattice) if it satisfies the following identities:

$$(1) \quad x+x = x, \quad x \cdot x = x$$

$$(2) \quad x+y = y+x, \quad x \cdot y = y \cdot x$$

$$(3) \quad (x+y)+z = x+(y+z), \quad (x \cdot y) \cdot z = x \cdot (y \cdot z)$$

(in the sequel we shall write xy instead of $x \cdot y$).

By $V(+)$ we denote the variety of all idempotent and commutative groupoids $(G, +)$. The class of all algebras of type $(2,2)$ satisfying (1) and (2) is denoted by $V(+, \cdot)$ and by $B(+, \cdot)$ we denote the variety of all bisemilattices.

Let $f = f(x_1, \dots, x_n)$ be a function on a set A . We say that f admits a permutation $\delta \in S_n$ (where S_n denotes the symmetric group on n letters) of its variables if $f = f^\delta$, i.e., $f(x_1, \dots, x_n) = f(x_{\delta 1}, \dots, x_{\delta n})$ for all $x_1, \dots, x_n \in A$ where $f^\delta(x_1, \dots, x_n) = f(x_{\delta 1}, \dots, x_{\delta n})$. The group of all admissible permutations of f is denoted by $G(f)$ (see [3]). A function $f = f(x_1, \dots, x_n)$ is called symmetric if $G(f) = S_n$, and, f is idempotent if $f(x, \dots, x) = x$ for all $x \in A$. Recall that an algebra $\alpha = (A, F)$ is symmetric (idempotent) if every $f \in F$ (depends on all its variables) is symmetric (idempotent), respectively.

Let $f(x_1, \dots, x_n)$ be a polynomial in the variety $B(+, \cdot)$ and let $\delta \in S_n$. Then δ is said to be trivial for f (with respect to $B(+, \cdot)$) if the identity $f = r^\delta$ follows from the identities of the variety $B(+, \cdot)$ (of course, in this definition $B(+, \cdot)$ can be replaced by any variety of algebras).

An algebra (A, F) is said to be proper if all f 's from F are different and every non-nullary $f \in F$ depends on all its variables. For example, every at least two-element lattice is proper in the variety $B(+, \cdot)$.

By $p_n = p_n(\alpha)$ we denote the number of all essentially n -ary polynomials over α .

For the definitions and notations used here see [2].

In this note we prove the following

Theorem. If $(B, +, \cdot)$ is a proper bisemilattice, then $p_n(B, +, \cdot) \geq 2n!$ for all $n \geq 3$.

2. Lemmas and the proof of the theorem

In this section we present all lemmas being needed to prove the above theorem.

Let $(B, +, \cdot)$ be a bisemilattice. Consider two sequences $\{f_n\}$ and $\{g_n\}$ of polynomials over $(B, +, \cdot)$. The sequences are defined as follows

$$f_2(x_1, x_2) = x_1 x_2, f_3(x_1, x_2, x_3) = x_1 x_2 + x_3, \text{ and in general}$$

$$(*) f_n(x_1, \dots, x_{n-1}, x_n) = \begin{cases} f_{n-1}(x_1, \dots, x_{n-1})x_n & \text{if } n \text{ is even} \\ f_{n-1}(x_1, \dots, x_{n-1}) + x_n & \text{if } n \text{ is odd} \end{cases}$$

and

$$g_2(x_1, x_2) = x_1 + x_2, g_3(x_1, x_2, x_3) = (x_1 + x_2)x_3, \text{ and in general,}$$

we put

$$(**) g_n(x_1, \dots, x_{n-1}, x_n) = \begin{cases} g_{n-1}(x_1, \dots, x_{n-1}) + x_n & \text{if } n \text{ is even} \\ g_{n-1}(x_1, \dots, x_{n-1}) x_n & \text{if } n \text{ is odd.} \end{cases}$$

Further, we also consider the following polynomials:

$$s_n(+) = x_1 + \dots + x_n \text{ and } s_n(\cdot) = x_1 \dots x_n \text{ for } n \geq 1.$$

Lemma 1. Let $f(x_1, \dots, x_n)$ be essentially n -ary on a set A and let $(A, +)$ be proper in $V(+)$. Then the following polynomial $g = f(x_1, \dots, x_n) + f(y_1, \dots, y_n)$ is essentially $2n$ -ary on A .

Proof. Assume that g is not essentially $2n$ -ary. Therefore there exists a variable, say x_k such that the polynomial g does not depend on x_k . Using the fact that $g(x_1, \dots, x_n, y_1, \dots, y_n) = g(y_1, \dots, y_n, x_1, \dots, x_n)$ we infer that g does not depend on both variables x_k and y_k . Thus the following polynomial

$$\begin{aligned} g(x_1, \dots, x_{k-1}, x_k, x_{k+1}, \dots, x_n, x_1, \dots, x_{k-1}, x_k, x_{k+1}, \dots, x_n) &= \\ &= f(x_1, \dots, x_{k-1}, x_k, x_{k+1}, \dots, x_n) \end{aligned}$$

also does not depend on x_k , which is impossible.

Lemma 2. Under the assumption of Lemma 1, the polynomial $f(x_1, \dots, x_n) + x_{n+1}$ is essentially $n+1$ -ary.

Proof. It follows from Lemma 1 if we put $f(y_1, \dots, y_n)$ for the variable x_{n+1} .

Lemma 3. If $(B, +, \cdot)$ is proper in $B(+, \cdot)$, then the polynomials $f_n, g_n, s_n(+)$ and $s_n(\cdot)$ are essentially n -ary for all $n \geq 2$.

Proof. It follows from Lemma 2 and an easy induction on n .

Lemma 4. If $(B, +, \cdot)$ is a proper algebra from $B(+, \cdot)$, then both polynomials $(x+y)z$ and $xy+z$ do not admit any nontrivial permutation.

Proof. Observe that if $(x+y)z$ admits a nontrivial permutation, then the polynomial is symmetric. Hence we have

$x+y = (x+y)(x+y) = ((x+y)+y)x = (x+y)x = (x+x)y = xy$, a contradiction. Analogously one can prove the statement for the polynomial $xy+z$.

Lemma 5. If $(B, +, \cdot)$ is a proper bisemilattice and n is the smallest number such that f_n admits a nontrivial permutation $\delta \in S_n$, then $\delta n \neq n$ (the same is true for the sequence $\{g_n\}$).

Proof. By the assumption we have

$$(\ast \ast) \quad f_n(x_1, \dots, x_n) = f_n(x_{\delta 1}, \dots, x_{\delta n})$$

for some nontrivial $\delta \in S_n$ and all $x_1, \dots, x_n \in B$. Applying Lemma 4 we infer that $n \geq 4$. Assume, contrary that $\delta n = n$. Then putting $f_{n-1}(x_1, \dots, x_{n-1})$ for the variable x_n in the latter identity and using the idempotency and the commutativity of $+$ and \cdot , and, of course using $(\ast \ast)$ we obtain

$$\begin{aligned} f_{n-1}(x_1, \dots, x_{n-1}) &= f_n(x_1, \dots, x_{n-1}, f_{n-1}(x_1, \dots, x_{n-1})) = \\ &= f_n(x_{\delta 1}, \dots, x_{\delta(n-1)}, f_{n-1}(x_1, \dots, x_{n-1})) = \\ &= f_n(x_1, \dots, x_{n-1}, f_{n-1}(x_{\delta 1}, \dots, x_{\delta(n-1)})) = \\ &= f_n(x_{\delta 1}, \dots, x_{\delta(n-1)}, f_{n-1}(x_{\delta 1}, \dots, x_{\delta(n-1)})) = \\ &= f_{n-1}(x_{\delta 1}, \dots, x_{\delta(n-1)}). \end{aligned}$$

Hence f_{n-1} (where $n-1 \geq 3$) admits a nontrivial permutation of its variables which gives a contradiction with the minimality of n . The proof of the lemma is completed.

The next lemma can be found in [1]. We quote here this lemma for convenience of the reader.

L e m m a 6. (Lemma 2 in [1]). If $(B, +, \cdot)$ is a bisemilattice and $(x+y)y$ is commutative, then $(x+y)y = x+y$ (the dual version is true for the polynomial $xy+y$).

L e m m a 7. If $(B, +, \cdot)$ is a proper bisemilattice, then the polynomials f_{2m+1} and g_{2m+1} do not admit the transposition $(1, 2m+1)$.

P r o o f. We give only the proof for the polynomial f_{2m+1} (the proof for the polynomial g_{2m+1} runs similarly). Assume that

$$(\ast\ast) \quad f_{2m+1}(x_1, x_2, \dots, x_{2m}, x_{2m+1}) = f_{2m+1}(x_{2m+1}, x_2, \dots, x_{2m}, x_1)$$

holds in $(B, +, \cdot)$.

Then we have

$$\begin{aligned} x+xy &= f_{2m+1}(x, x, \dots, x, xy) = \\ &= f_{2m+1}(xy, x, \dots, x, x) = (\dots((xy)x+x)x+\dots+x)x+x = \\ &= (\dots(xy+x)x+\dots+x)x+x = f_{2m+1}(x, y, x, x, \dots, x, x) = \\ &= f_{2m+1}(y, x, x, x, \dots, x, x) = f_{2m+1}(x, x, x, \dots, x, y) = \\ &= f_{2m}(x, x, \dots, x, x)+y = x+y. \end{aligned}$$

Using Lemma 6 we infer that $x+y = xy$ which is impossible in a proper bisemilattice.

L e m m a 8. If $(B, +, \cdot)$ is a proper bisemilattice satisfying $(x+y)y = x+y$, then the polynomial $f_4(x_1, x_2, x_3, x_4) = (x_1x_2+x_3)x_4$ does not admit the transposition $(1, 4)$ (the dual version is also true).

P r o o f. Indeed, if $(x_1x_2+x_3)x_4 = (x_4x_2+x_3)x_1$, then we have $x+y = (x+y)y = ((xx)+y)y = ((yx)+y)x = (xy+y)x = ((yy)+(xy))x = ((xy)+(xy))y = (xy)y = xy$, a contradiction.

L e m m a 9. If $(B, +, \cdot)$ is a proper bisemilattice for which $(x+y)y = x+y$, then f_{2m} does not admit the transposition $(1, 2m)$ of its variables for $m \geq 2$.

P r o o f. Assume, contrary that f_{2m} admits $(1, 2m)$ where $m \geq 2$ and let m be the smallest number such that

$$f_{2m}(x_1, x_2, \dots, x_{2m-1}, x_{2m}) = f_{2m}(x_{2m}, x_2, \dots, x_{2m-1}, x_1).$$

Using Lemma 8 we infer that $m \geq 3$. From $(x+y)y = x+y$ and the latter identity we get

$$\begin{aligned} f_{2m-2}(x_1, x_2, \dots, x_{2m-3}, x_{2m-2}) &= \\ &= f_{2m}(x_1, x_2, x_3, x_3, x_3, x_4, \dots, x_{2m-3}, x_{2m-2}) = \\ &= f_{2m}(x_{2m-2}, x_2, x_3, x_3, x_3, x_4, \dots, x_{2m-3}, x_1) = \\ &= f_{2m-2}(x_{2m-2}, x_2, x_3, x_4, \dots, x_{2m-3}, x_1). \end{aligned}$$

Hence

$$\begin{aligned} f_{2m-2}(x_1, x_2, \dots, x_{2m-3}, x_{2m-2}) &= \\ &= f_{2m-2}(x_{2m-2}, x_2, \dots, x_{2m-3}, x_1) \end{aligned}$$

which gives a contradiction with the minimality of $m (2m-2 \geq 4)$.

We should mention here that the previous lemma is also true for the polynomials g_n , of course, replacing $(x+y)y = x+y$ by $xy+y = xy$.

L e m m a 10. If $(B, +, \cdot)$ is a proper bisemilattice and f_{2m} admits the transposition $(1, 2m)$ for some $m \geq 2$, then $(x+y)y = x+y$ holds in $(B, +, \cdot)$. (Analogously, for g_{2m}).

Proof. Assume that in the proper bisemilattice $(B, +, \cdot)$ the identity $f_{2m}(x_1, x_2, \dots, x_{2m-1}, x_{2m}) = f_{2m}(x_{2m}, x_2, \dots, x_{2m-1}, x_1)$ holds. Then we have

$$\begin{aligned}
 (x+y)y &= f_{2m}(x, x, \dots, x, y, y) = \\
 &= f_{2m}(y, x, x, \dots, x, y, x) = ((\dots((xy)+x)x + \dots + x)x+y)x = \\
 &= ((\dots((xy)x+x)x + \dots + x)x+y)x = f_{2m}(xy, x, x, \dots, x, y, x) = \\
 &= f_{2m}(x, x, \dots, x, y, xy) = f_{2m-1}(x, x, \dots, x, y)(xy) = (x+y)(xy).
 \end{aligned}$$

Hence $(x+y)y$ is symmetric. Using Lemma 6 we get $(x+y)y = x+y$ which finishes the proof.

Lemma 11. If $(B, +, \cdot)$ is a proper bisemilattice, then f_{2m} and g_{2m} do not admit the transposition $(1, 2m)$ for $m \geq 2$.

Proof. If so, for the polynomial f_{2m} , then applying Lemma 10 we get that $(x+y)y = x+y$ holds in $(B, +, \cdot)$. Now using Lemma 9 we obtain the required assertion.

Lemma 12. If $(B, +, \cdot)$ is a proper bisemilattice, then f_n and g_n do not admit the transposition $(1, n)$ for $n \geq 3$.

Proof. It follows from Lemmas 7 and 11.

Lemma 13. If $(B, +, \cdot)$ is proper in $B(+, \cdot)$ and n is the smallest number such that $(\underset{x}{*} \underset{x}{*})$ holds in $(B, +, \cdot)$, then $\{1, 2\} \neq \{61, 62\}$ (the same is true for g_n).

Proof. Assume that $\{1, 2\} = \{61, 62\}$ in the identity $(\underset{x}{*} \underset{x}{*})$. Using Lemma 4 we infer that $n \geq 4$. Now putting $x_1 = x_2$ in $(\underset{x}{*} \underset{x}{*})$ we get a contradiction with the minimality of n .

Lemma 14. If $(B, +, \cdot)$ is a proper bisemilattice, then f_k and g_k do not admit any nontrivial permutations of their variables for $3 \leq k \leq 4$.

Proof. For $k = 3$, the proof follows from Lemma 4. Let now

$$(+ \quad (x_1 x_2 + x_3) x_4 = (x_6 x_62 + x_63) x_64$$

for some nontrivial $\sigma \in S_4$ (Analogously, we prove the assertion for g_4).

If $\{1,2\} = \{61,62\}$, then putting $x_1 = x_2$ in (+) we get a contradiction with Lemma 4. If $64 = 4$, then using the same method as in Lemma 5 we infer that $x_1 x_2 + x_3$ admits a nontrivial permutation, a contradiction with Lemma 4. Because of the commutativity of the polynomial xy we infer from (+) that the polynomial $(x_1 x_2 + x_3) x_4$ admits a nontrivial transposition $(61,62)$ (we know that $\{1,2\} \neq \{61,62\}$). We have the following possibilities for the set $\{61,62\}$, namely, $\{1,3\}$, $\{1,4\}$, $\{2,3\}$, $\{2,4\}$ and $\{3,4\}$. Using the commutativity of \cdot and Lemma 12 we infer that the possibilities $\{1,4\}$ and $\{2,4\}$ do not occur. If $\{1,3\} = \{61,62\}$ or $\{2,3\} = \{61,62\}$, then the polynomial $f_4(x_1, x_2, x_3, x_4) = (x_1 x_2 + x_3) x_4$ admits a nontrivial permutation φ with $\varphi 4 = 4$. Now using Lemmas 4 and 5 we get a contradiction. If $\{3,4\} = \{61,62\}$, then $(x_1 x_2 + x_3) x_4$ admits the transposition $(3,4)$. Putting in the latter polynomial $x_1 = x_2$ we get a contradiction with Lemma 4.

Lemma 15. If $(B, +, \cdot)$ is a proper bisemilattice, then the polynomials f_n and g_n ($n \geq 3$) do not admit any nontrivial transposition (i,j) of its variables.

Proof. We again give the proof only for f_n . Let n be the smallest number such that

$$\begin{aligned} (++) \quad & f_n(x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_{j-1}, x_j, x_{j+1}, \dots, x_{n-1}, x_n) = \\ & = f_n(x_1, x_2, \dots, x_{i-1}, x_j, x_{i+1}, \dots, x_{j-1}, x_i, x_{j+1}, \dots, x_{n-1}, x_n) \end{aligned}$$

for some nontrivial transposition (i,j) where $i < j$. Using Lemma 14 we infer that $n \geq 5$. We also may assume that $\{1,2\} \neq \{i,j\}$ since the transposition (i,j) is nontrivial. Now we prove that $j = n$. Indeed, if $j < n$, then $i, j \leq n-1$

and putting $f_{n-1}(x_1, \dots, x_{n-1})$ for x_n in the identity (++) and using the same method of proving as in Lemma 5 we get a contradiction that f_{n-1} ($n-1 \geq 4$) admits a nontrivial transposition. Therefore $j = n$. If $i \geq 4$, then putting $x_1 = x_2 = x_3$ in the identity (++) we get a contradiction with the minimality of n . Let now $i = 3$. Then putting $x_1 = x_2$ in (++) we infer that $g_{n-1}(x_2, x_3, \dots, x_{n-1}, x_n) = f_n(x_2, x_2, x_3, \dots, x_{n-1}, x_n)$ admits the transposition $(2, n)$ which gives a contradiction with Lemma 12. Therefore we infer that $i \in \{1, 2\}$ and $j = n$. Applying again Lemma 12 we get a contradiction. The proof of the lemma is completed.

Lemma 16. If $(B, +, \cdot)$ is a proper bisemilattice, then f_n and g_n do not admit any nontrivial permutation of their variables for $n \geq 3$.

Proof. Let f_n satisfy the identity (**), i.e.,

$$f_n(x_1, x_2, \dots, x_{n-1}, x_n) = f_n(x_{61}, x_{62}, \dots, x_{6(n-1)}, x_{6n})$$

for some nontrivial permutation $6 \in S_n$ ($n \geq 3$). Of course, we may assume that n is the smallest number for which (**) holds. Using Lemma 13, we infer that $\{1, 2\} \neq \{61, 62\}$. Because \cdot is commutative we deduce from (**) that f_n admits a nontrivial transposition $(61, 62)$ which gives a contradiction with Lemma 15.

Lemma 17. If $(B, +, \cdot)$ is a proper bisemilattice, then $G(f_n) \cong G(g_n) \cong S_2$ for all $n \geq 2$.

Proof. If $n = 2$, then it follows from the commutativity of $+$ and \cdot . Observe, using Lemma 16 that the only admissible permutations for the polynomials f_n and g_n are: the identity permutation and the transposition $(1, 2)$. Of course, these permutations are the only trivial permutations for f_n and g_n in any proper bisemilattice. Therefore $G(f_n) \cong G(g_n) \cong S_2$.

Lemma 18. If $(B, +, \cdot)$ is proper in $B(+, \cdot)$, then $f_n \neq g_n$ for all $n \geq 2$.

Proof. Let $f_n(x_1, x_2, \dots, x_{n-1}, x_n) = g_n(x_1, x_2, \dots, x_{n-1}, x_n)$. Putting $x = x_1 = x_2 = \dots = x_{n-1}$ and $y = x_n$ in the latter identity we get $x+y = xy$, which is impossible in any proper bisemilattice.

Lemma 19. If $(B, +, \cdot)$ is proper in $B(+, \cdot)$, then $f_n \neq g_n^6$ for all $6 \in S_n$ and all $n \geq 2$.

Proof. Let n be the smallest number such that

$$(\dagger\dagger) \quad f_n(x_1, x_2, \dots, x_{n-1}, x_n) = g_n(x_{61}, x_{62}, \dots, x_{6(n-1)}, x_{6n}).$$

If $\{1, 2\} \neq \{61, 62\}$, then by the commutativity of $+$ we infer that f_n admits a nontrivial transposition $(61, 62)$ which is a contradiction with Lemma 16. If $\{1, 2\} = \{61, 62\}$ in $(\dagger\dagger)$, then putting $x_1 = x_2$ we get from $(\dagger\dagger)$ $f_n(x_2, x_2, x_3, \dots, x_{n-1}, x_n) = g_{n-1}(x_2, x_3, \dots, x_{n-1}, x_n) = g_n(x_2, x_2, x_{63}, \dots, x_{6(n-1)}, x_{6n}) = f_{n-1}(x_2, x_{63}, \dots, x_{6(n-1)}, x_{6n})$. Hence we have $f_{n-1}(x_2, x_{63}, \dots, x_{6(n-1)}, x_{6n}) = g_{n-1}(x_2, x_3, \dots, x_{n-1}, x_n)$. If in the latter identity $63 \neq 3$, then the polynomial $g_{n-1}(x_2, x_3, \dots, x_{n-1}, x_n)$ admits a nontrivial transposition $(2, 63)$ and therefore applying Lemma 16 we get a contradiction. So, we have $61 = 1$, $62 = 2$ and $63 = 3$ or $61 = 2$, $62 = 1$ and $63 = 3$. In both cases putting $x_1 = x_2 = x_3$ in the identity $(\dagger\dagger)$ we get $f_{n-2}(x_3, x_4, \dots, x_{n-1}, x_n) = f_n(x_3, x_3, x_3, x_{64}, \dots, x_{6(n-1)}, x_{6n}) = g_{n-2}(x_3, x_{64}, \dots, x_{6(n-1)}, x_{6n})$. Continuing this process we infer that 6 is or the identity permutation or the trivial transposition $(1, 2)$. Now an application of Lemma 18 completes the proof of the lemma.

Proof of the Theorem. Let $(B, +, \cdot)$ be a proper bisemilattice. Using Lemma 3 we infer that all polynomials $s_n(+), s_n(\cdot)$, f_n^{61} and f_n^{62} are essentially n -ary for all $6_1, 6_2 \in S_n$ and $n \geq 2$. It is clear that $G(s_n(+)) \cong G(s_n(\cdot)) \cong S_n$ for all n . It is also obvious that the identity $f_n^{61} = g_n^{62}$ is equivalent to the identity $f_n = g_n^6$ for some

$\mathbf{G} \in S_n$. Now using the above facts and Lemma 19 we get permuting the variables in the polynomials f_n and g_n the required assertion since

$$\begin{aligned} p_n(B, +, \cdot) &\geq \frac{n!}{\text{card } G(f_n)} + \frac{n!}{\text{card } G(g_n)} + \frac{n!}{\text{card } G(s_n(+))} + \frac{n!}{\text{card } G(s_n(\cdot))} = \\ &= \frac{n!}{2} + \frac{n!}{2} + \frac{n!}{n!} + \frac{n!}{n!} = 2 + n!. \end{aligned}$$

The proof of the Theorem is completed.

REFERENCES

- [1] J. Dudek : On bisemilattices I, to appear in Colloq. Math. 47.
- [2] G. Grätzer : Universal Algebra. Berlin (1979).
- [3] G. Grätzer, J. Płonka : On the number of polynomials of an idempotent algebra I, Pacific J. Math. 32 (1970) 697-709.
- [4] R. Padmanabhan : Regular identities in lattices, Trans. Amer. Math. Society, 158 (1971) 179-188.
- [5] J. Płonka : On distributive quasilattices, Fund. Math. 60 (1967) 197-200.

INSTITUTE OF MATHEMATICS, UNIVERSITY, WROCŁAW

Received November 21, 1980.

