

Erwin Turdza

**SET STABILITY FOR A FUNCTIONAL EQUATION
OF ITERATIVE TYPE**

1. G.A.Shanholt has proved in [1] stability theorems for a difference equation. It is the aim of this paper to prove similar results for the equation of iterative type

$$(1) \quad \varphi(f(x)) = g(x, \varphi(x)).$$

Throughout the paper we will assume the hypothesis

(H₁) $\varphi : I \rightarrow H$, $f : I \rightarrow I$, $g : I \times X \rightarrow H$, $I = (0, b)$, H is an open connected subset of Banach space B and f , g are continuous functions. Moreover f is strictly increasing in $(0, b)$ and $0 < f(x) < b$ for $x \in I$.

In this paper we adopt the following notation

$$N(A, \varepsilon) = \{x : d(x, A) < \varepsilon\};$$

$K = \{\Phi : \Phi : R_+ \cup \{0\} \rightarrow R_+ \cup \{0\}$, Φ is strictly increasing, continuous function and $\Phi(0) = 0\}$; for a function $\varphi : I \rightarrow H$, a set $G \subset H$ and $\varepsilon > 0$ the relation $d(\varphi, G) < \varepsilon$ denotes that for every $x \in I$ we have $d(\varphi(x), G) < \varepsilon$;

$$I_0 = [f(x_0), x_0] \text{ for } x_0 \in I;$$

$\varphi_0 : I_0 \rightarrow H$ will denote a continuous function such that $\varphi_0(f(x_0)) = g(x_0, y_0)$, where y_0 is an arbitrary point of the set H and $\varphi_0(x_0) = y_0$;

$\varphi(x, x_0, y_0, \varphi_0)$ will denote a continuous solution of equation (1) defined on $(0, x_0]$ and such that $\varphi|_{I_0} = \varphi_0$.

Remark 1. Observe that under the hypothesis (H_1) for given $x_0 \in I$, $y_0 \in H$ a solution $\varphi(x, x_0, y_0, \varphi_0)$ exists, because H as an open and connected subset of Banach space is arc-connected, then there exists an arc from the point (x_0, y_0) to the point $(y_0, g(x_0, y_0))$ which may be extended "by equation (1)" to the interval $(0, x_0]$.

In the sequel we will assume the hypothesis:

(H_2) There exist a closed and connected set G and $\alpha > 0$ such that $N(G, \alpha) \subset H$ for which there exists a $k > 0$ such that for $\varepsilon \in (0, \alpha)$ the inequality $d(y_0, G) < \varepsilon$ implies $d(g(x, y_0), G) < k\varepsilon$.

Remark 2. If hypothesis (H_2) is satisfied and G is a connected set, then for any x_0 , taking y_0 such that $d(y_0, G) < r$, $r := \min(\frac{1}{k} \varepsilon, \varepsilon)$, we have $d(g(x_0, y_0), G) < \varepsilon$. It implies, as $N(G, \varepsilon)$ is arc-connected set, that we may take φ_0 in $N(G, \varepsilon)$ and for such a φ_0 there exists $\varphi(x, x_0, y_0, \varphi_0)$ (see Remark 1).

2. We will adopt following definitions, which are in the spirit of definitions given by G.A. Shanholt in [1], with necessary and natural modifications.

Definition 1. Let $G \subset H$ be a closed subset of H . We say

- (i) G is stable if for every $x_0 \in I$ and $\varepsilon > 0$ there exists a $\delta = \delta(x_0, \varepsilon) > 0$ such that $d(\varphi_0, G) < \delta$ implies that $\varphi(x, x_0, y_0, \varphi_0)$ exists and $d(\varphi(x, x_0, y_0, \varphi_0), G) < \varepsilon$;
- (ii) G is uniformly stable if it is stable and δ in (i) is independent of x_0 ;
- (iii) G is asymptotically stable if it is stable and if for every $x_0 \in I$ there exists $\eta = \eta(x_0) > 0$ such that $d(\varphi_0, G) < \eta$ implies $d(\varphi(x, x_0, y_0, \varphi_0), G) \rightarrow 0$ as $x \rightarrow 0$;
- (iv) G is uniformly asymptotically stable if it is uniformly stable, and η in (iii) is independent of x_0 and limit is uniform in $x_0, y_0, \varphi_0(t)$ ($t \in I_0$), for $(x_0, y_0, \varphi_0(t)) \in \epsilon I \times N(G, \eta) \times N(G, \eta)$.

Definition 2. Let $V : I \times N(G, \alpha) \rightarrow R_+ \cup \{0\}$. We say:

- (i) V is positive definite with respect to the set G if there exists a $\Phi \in K$ such that $\Phi(d(y, G)) \leq V(x, y)$ for $(x, y) \in I \times N(G, \alpha)$;
- (ii) V is decrescent with respect to the set G if there exists a $\psi \in K$ such that $\psi(d(y, G)) \geq V(x, y)$ for $(x, y) \in I \times N(G, \alpha)$;
- (iii) V satisfies property (B) with respect to the set G if for each $\varepsilon > 0$ and $x_0 \in I$ there exists $\delta = \delta(x_0, \varepsilon) \in (0, \alpha)$ such that $d(y, G) < \delta \Rightarrow V(x_0, y) < \varepsilon$;
- (iv) V is Lapunov function for (1) on $I \times N(G, \alpha)$ if it satisfies property (B) with respect to G and $\Delta V(x, y) \leq 0$, where $\Delta V(x, y) := V(f(x), g(x, y)) - V(x, y)$ for $(x, y) \in I \times N(G, \alpha_0)$, $\alpha_0 = \min\{\alpha, \frac{\alpha}{k}\}$.

Definition 3. A Lapunov function V for (1) on $N(G, \alpha)$ has a strongly negative difference along solutions of (1) if there exists a $\beta > 0$ such that $\Delta V(x, y) \leq -\beta|g(x, y) - y|$ for $(x, y) \in I \times N(G, \alpha_0)$, $\alpha_0 = \min\{\alpha, \frac{\alpha}{k}\}$.

Theorem 1. If hypothesis (H_1) and (H_2) are satisfied and if there exists a Lapunov function V for (1) on $N(G, \alpha)$ and it has strongly negative difference along solutions of (1), then G is stable. Moreover, for each $x_0 \in I$ there exists a $\gamma > 0$ such that for an $y_0 \in N(G, \gamma)$ the solution $\varphi(x, x_0, y_0, \varphi_0)$, where $d(\varphi_0, G) < \gamma$, is bounded.

Proof. Suppose that G is not stable. Then there exist a $\varepsilon_0 \in (0, \alpha_0)$ and $x_0 \in I$ such that for any $\gamma \in (0, \varepsilon_0)$ there exist $y_0 \in N(G, \gamma)$ and $\bar{x} < x_0$ such that $d(\varphi(\bar{x}, x_0, y_0, \varphi_0), G) \geq \varepsilon_0$ with $d(\varphi_0, G) < \gamma$ (by virtue of Remarks 1 and 2 suitable φ_0 and φ exist). As V has property (B), then for $\frac{\beta \varepsilon_0}{2}$ there exists $\delta \left(\frac{\beta \varepsilon_0}{2}, x_0 \right) \in (0, \frac{\varepsilon_0}{2})$ such that $d(y, G) < \delta$ implies $V(x_0, y) < \frac{\beta \varepsilon_0}{2}$. Let us take $\gamma < \min\left(-\frac{\varepsilon_0}{2}, \delta\right)$. Then $d(\varphi_0, G) < \gamma$ and $d(\varphi(\bar{x}), G) \geq \varepsilon_0$.

Let $\bar{x} = f^{\bar{n}}(t_0)$ for a $t_0 \in I_0$, \bar{n} a positive integer (it follows from hypothesis (H_1) that x_0 and t_0 exist) and let $d(\varphi(f^{\bar{n}}(t_0)), G) < \varepsilon_0$ for $\bar{n} > n \geq 0$. It implies that $V(\bar{x}, \varphi(\bar{x}))$ exists.

Now let us compute

$$\begin{aligned}
 V(\bar{x}, \varphi(\bar{x})) &= V(f^{\bar{n}}(t_0), \varphi(f^{\bar{n}}(t_0))) = V(f(f^{\bar{n}-1}(t_0)), \varphi(f(f^{\bar{n}-1}(t_0)))) = \\
 &= V(f(f^{\bar{n}-1}(t_0)), g(f^{\bar{n}-1}(t_0)), \varphi(f^{\bar{n}-1}(t_0))) = \\
 &= V(f^{\bar{n}-1}(t_0), \varphi(f^{\bar{n}-1}(t_0))) + \Delta V(f^{\bar{n}-1}(t_0), \varphi(f^{\bar{n}-1}(t_0))) = \dots = \\
 &= V(t_0, \varphi(t_0)) + \sum_{i=0}^{\bar{n}-1} \Delta V(f^i(t_0), \varphi(f^i(t_0))) \leq \\
 &\leq V(t_0, \varphi(t_0)) - \beta \sum_{i=0}^{\bar{n}-1} |g(f^i(t_0), \varphi(f^i(t_0))) - \varphi(f^i(t_0))| \leq \\
 &\leq V(t_0, \varphi(t_0)) - \beta \left| \sum_{i=0}^{\bar{n}-1} g(f^i(t_0), \varphi(f^i(t_0))) - \varphi(f^i(t_0)) \right| \leq \\
 &\leq V(t_0, \varphi(t_0)) - \beta \left| \sum_{i=0}^{\bar{n}-1} \varphi(f^{i+1}(t_0)) - \varphi(f^i(t_0)) \right| = \\
 &= V(t_0, \varphi(t_0)) - \beta |\varphi(f^{\bar{n}}(t_0)) - \varphi(t_0)| < \\
 &< \frac{\beta \varepsilon_0}{2} + \beta (d(\varphi(t_0), G) - d(\varphi(\bar{x}), G)) \leq \frac{\beta \varepsilon_0}{2} + \beta (\gamma - \varepsilon_0) \leq \\
 &\leq \frac{\beta \varepsilon_0}{2} - \beta \varepsilon_0 + \beta \gamma = \beta \left(-\frac{\varepsilon_0}{2} + \gamma \right) < 0,
 \end{aligned}$$

which contradicts our supposition.

Now we prove the second part of the theorem.

For an x_0 we chose $\mathcal{V}(x_0) < \min(\alpha, \delta)$ (where δ satisfies the definition of stability of G). For $y \in N(G, \mathcal{V})$ the solution $\varphi(x, x_0, y, \varphi_0)$ exists and it is in $N(G, \alpha)$, for $x \leq x_0$. Suppose that for some $y_0 \in N(G, \mathcal{V})$ the solution $\varphi(x, x_0, y_0, \varphi_0)$ is unbounded i.e. for some $x_k \rightarrow 0$ we have $|\varphi(x_k)| \rightarrow \infty$. Let us take a positive integer j such that $V(t_0, \varphi(t_0)) - \beta|\varphi(x_j) - \varphi(t_0)| < 0$, where $t_0 \in I_0$, $x_j = f^j(t_0)$ (this is possible because V is a Lapunov function). Computing as above we have

$$V(x_j, \varphi(x_j)) \leq V(t_0, \varphi(t_0)) - \beta|\varphi(x_j) - \varphi(t_0)| < 0,$$

because of this contradiction the proof is ended.

Theorem 2. Under assumptions of Theorem 1, if moreover V is decrescent with respect to the set G , then G is uniformly stable.

Proof. Suppose that G is not uniformly stable. Then there exists $\varepsilon_0 \in (0, \alpha_0)$ such that for any $\gamma \in (0, \varepsilon_0)$ there exist $x_0 \in I$, $y_0 \in N(G, \alpha)$ and $\bar{x} < x_0$ such that

$$d(\varphi(\bar{x}, x_0, y_0, \varphi_0), G) \geq \varepsilon_0 \quad \text{with} \quad d(\varphi_0, G) < \gamma.$$

As V is decrescent with respect to the set G , then for $\frac{\beta\varepsilon_0}{2}$ there exists $\delta\left(\frac{\beta\varepsilon_0}{2}\right) \in \left(0, \frac{\varepsilon_0}{2}\right)$ such that $\psi(t) \leq \frac{\beta\varepsilon_0}{2}$ (here ψ is an element of K satisfying Definition 2, part (ii)). It is easy to verify that if V is decrescent with respect to the set G , then it also fulfills property (B). Then $d(y, G) < \delta$ implies $V(x_0, y) < \frac{\beta\varepsilon_0}{2}$. Further argument does not differ from the one used to establish Theorem 1. This completes the proof.

We do not know under what assumptions the set G is asymptotically stable or uniformly asymptotically stable.

REFERENCE

[1] G.A. S h a n h o l t : Set stability for difference equations, Internat. J. Control, 19 (1974) 309-314.

INSTITUTE OF MATHEMATICS, PEDAGOGICAL UNIVERSITY, KRAKÓW
Received October 30, 1980.