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TOPOLOGICAL PROPERTIES OF C-NETS

1. Introduction

The purpose of this paper is to study the topological and
algebraic properties of c-nets, more general systems than
nets (A.Blikle [3]). A c-net is a poset with zero, in which
every directed subset has a least upper bound, In a c-net
a monoid operation is defined. It is distributive with res-
pect to the least upper bounds of directed sets.

4 Toﬁtopology (called hereafter a topology induced by
a partial order) is introduced in the c¢c-net. (compare with
D.Scott [4]). According to D.Scott a complete lattice L is
c'ohtinuous, if for each y é L : 3y =V{x eL : x —<;y}, whe =
re x3yé&>yeint{zel:xg 4};- the interior is in the
sense of the topology induced by a partial order in L.D.Scott
proved that the injective To-topological spaces ‘are exactly
continuous lattices., The following problem arises: does there
exist a theory of continuous posets, that generélizes the theo-
ry of continuous lattices? In this paper D.Scott s conception
of continuous lattice is generalized in a naturasl waey and fun-
damental theoréms are proved.

2. Symbols and definitions

Let 01, 02 be posets and ¢ be a mapping from C1 into
C,e We say that- ¢ is monotonic if it preserves order i.e.:
a,b € C, and a<b imply v ¢(a) € ¢(b). The mapping ¢
is continuous (in the algebraic sensé) if: for every non-empty '
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2 J.Skucha

directed set D € C1, if there exists the join VD in C1
then there also exists the join \/{@(d) : d e D} in G, and
the following equation is satisfied: @(\/D) =\/{(p(d)':d € D}.

In this paper we shall consider only non-empty directed
sets. Let C,* ... *C, (n >1) denote the direct product of
a family posets CT""'Cn'

Remark 2.1, The mapping ¢: C.]x..A.an—’C is
monotonic if and only if it is monotoniec with respect to each
variable separately.

Theorem 2.,2. Let 01,...,Cn, 'C be posets such
that every directed subset of C (1 =1,000,0),C has a
least upper bound. Then any mapping ¢: 01* ces an—’(} is
continuous if and only if it is continuous with respect to
each variable separately.

The proof is analogous to the one given in [4] th.2.6 by
DeScott. So we omit here the details.

Definition 2.3 By a c-net we shall mean the
relation system {C;<, © , 0, ) such that: _

1. {C;&, 0) 1is a poset with least element O, in which _
every directed subset has a least upper bound.

2. {C6;°, 0, e> is a semigroup with zero 0 and unit e.
(the binary operation "o% is called a composition),

3. the composition "o" is continuous.

Remark 2.4. The composition "o" is monotonic,

Example 2¢5. C-net of continuous operations.
Let P be a poset with least element 0, in which every di-
rected subset has a least upper bound. Furthermore, let F
denote the set of all continuous mappings of the set P to
itself such that £(0) = 0 for each f € F. We introduce
the partiel order in F -in natural way: if f1 ,fz e P then
£, € £y (=‘->f1(x) £ f2(x) for every x € Po Let us introduce
a partial operation of the leagt upper bound in F: if

£ is a directed set then (\/ f )(x) =\ f£.(x)
{ t}teT . cep cop b

for every x € P, The relation system {(F;<,°, 0, Ep is
a c~-net provided that (i’1 o f2)(x) = f1(f2(x)) for svery
x € P and O(x) = 0, E(x) = x for every x € P,
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Topological properties of C-nets 3

Definition 2,6, A mapping h:C1—>C2
where <C1; <41 %45 Oy, e1> , <02; €01 ©9s Opy €, are
c-nets, 1s said to be a homomorphism if and only if the fol-
lowing conditions ars satisfied:

(h1) h "is continuous,

(hg) h preserves the composition, that means: h(:do1y) =
= h(x)ozh(y) for each x,y € Cy,

(h3) h(01) = 02; h(e1) = 32_0

A homomol_"phism h : C1—>02 is called a full one if
the following condition is also satisfied:

(h,) if {hlay)p,.p 1s a directed set and t\e/T h(ay) =
= h(a) then there exist: a directed set {bt}teT and becC,

such that h(by) = h(a,) for each t € T, h(b) = h(a) and
Any full homomorphism h : C ——>C2 which is "one-one"

and "onto" is called an isomorph;.sm.

Theorem 2.,7. Every c-net C can be embedded in
the c~-net F of continuous operations.

OQutline of a proof: Since C is a c-net, it is a poset
with the least element O, in which each directed subset has
a least upper bound. Let F be the set of all continuous
mappings £ : C —=C, PFor each a € C we define a continuous

mapping fa : C—=C as follows

fa(x) = gox for each x €C,

Let now m : C —PF be a mapping such that m(a) = f, for
a € C. It is easy to verify thet "m" 1is an isomorphism

{compare def.2.6).

3. Topology in a ec~net

We define the open sets in a c-net as follows:

Definition 3.1. Let U € C; U is an open
set if and only if it satisfies the following conditions:

(01)If xeU and x €y then 3y € U,
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4 Je.Skucha

(02) Whenever D € C is a directed set and /D € U then
DnU#£¢g.

The sets satisfying (01) and (02) form the topology in~
duced by the partial order in a c-net C. Therefore C becomes
a topological To-space.

Now we can generalize the theorem which wes proved for
the complete lattices by D.Scott ([4], th.2.5).

Theorem 3.2, If C, C' are posets with their to-
pologies induced by the partial order and in which each di-
rected subset has a least upper bound then a mapping f:C —e('
is continuous in the topological sense if and only if for each
directed subset D & C there exists \/{f(d) : d e D} in ¢
and the following equation is satisfied:

(a) £(VD) =V {£(d) : d e D}.

Proof. ULet us essume that for each directed set
D € C there exists \/{f(d) : d € D} and the condition (a)
is satisfied. Then let U' be an open set in C' and U =
é-{x € C: f(x) e U} We shall prove that U’ is open in C.
Since f is monotonic and U’ is an open set in C’ if
x €U and x <y, we have: f(x) € f(y) € U', Therefore
y € U, so the set U satisfies the condition (0 ) from the
definition 3.1. Let now VD € U for a directed set De¢cC,
so f£(\/D) € U'. Hence \/{f(d) : d € D} € U’ and U is
open then there exists d € D such that f£(d) € U' 1i,e.
deU thus DnU #£¢.

Conversely: First we shall show that a mapping f : C —=C'
continuous in the topological sense is monotonic. Le? us sup=
pose that x,y € C and x €y. If £(x)£ f(y) then
f(x) eV ={z : 2« £(y)} and U’ is an open set in €’
Consequently x e.£~(u’) € c. But x < y, therefore
y € £7HU') so 2(y) € U', which is a contradiction to the
definition of U'.

Let now .D be & directed subset in C, then {f(d) +d eIﬁ
is a directed set in (', so there exists the least upper
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Topologlical properties of C-nets | 5

bound \/{f(d) 1 d e D}. Let us considar any open set U' in
¢'. If £(\V/D)e U then VDeU-=£"1U') and according
to the definition of an open set there exists an element d € T
such that d € U = £71(U'), Hence Ff(d) e U' and v{z(4) :
: d e Dy e U'. On the other hand, if V{£(d) : d € D} € U’
there exists an element d € D such that f£{d) e U' i.e.

d €U=r"1U')e But dg VD, consequently: VDe U =
£~1(u'), thus £(V D) € U'. We conclude that V{r(d) :
de }eU‘¢=>f( VD) € U', C is known to be a topological
T o~Bpace which means the open sets distinguish points. This
1mplies that the condition ({a) is fulfilled.

4, Theorem conoerning'topology in a direct product of
c-neta.
The direct product of a family {Cu o €Z of c-nets is

the c-net H= (H; ,°, 0y E_), where: H = “I?z': Co 18

the cartesian product of a family {Cu}ecez° We introduce

the partial order "by the ccmponents" i,e.: if h‘],h2 € H

then” h, € h, € h,(a) < hy(=) for each o € Z . We define

the operatlons as follows. if {ht}t T is a directed set '

then [ \/ h )(o&) = \/ hilat) for each o« € Z ;{(hohy)(oy =
teT teT

= h,(«) oh,(a) for each o € 2. The functions 0, B are
the distinguished elements of H, where O{(«) = OC," Bla) =

= e for each oo € 2 ; O, , € are zero and unit in the
Cu Co! ®Cu

c-net Cq, correspondingly. If Cy= C for every o €2 then

we write C instead of [_l Cy and ¢®  is called the
. o€

direct power of a c-net (i

Let C Dbe a c-net with the topology induced by the par-
tial order. We define a binary relation "X in € as fol-
lows:

Definition 4.2. (Du«Scott [4]). For x,y € C:
X <y&Ey e Int{z; i x g z}.

- 409 -



6 J.Skucha

Definition 4.3 4 c-net C 1is continwous if
and only if for every y € C: the set {x : x < y} is di-
rected and y =V {x:x <y}.

Lemma 4.4. Let C be a c-net. For every y € C
the following conditions are equivalent:

1. & set {x : x < y} is directed and Yy =\/{x : x < y}.

2. For each open set U 1in ¢ the following condition
holds: if y € U then there exists x € U such that x -4 y.

Proof. Suppose, condition 1 is satisfied, If
3 =\/{x : x < y} and y € U then by the definition of an
open set there exists x € U such that x < y. If condfi-
tion 2 is satisfied, we shall prove first that Y = {x T X y}
is a directed set, Let x,,x, € Y. Theny € Int{z : x5 £ z}
and y € Int{z; x _sz-}. Consequently y € Int{z T X, < z} n
n Int{z 2 X, < zi = Int{z P Xy € 2z and x2< z}. By virtue
of cond_htion 2, there exists x € Int{z 2 X, £ z and X, < z}
such that x < y. Thus x.lgx, x2<x, x<y and Y 1is
a directed set., Obviously \/{x : x4y} gy, If e=
=\/{x : x < y}gy then y € U ={z : z g a} and there
exists x € U such that x < y. But then x <3y implies
x<€a, a contradiotion.

Example 4.5 The ¢-net, which is not conti-
nLous. 1

~ The c¢-net C consists of the closed inter-
C: e “%1/2  val of the real numbers {1/2,1)> , the
elements 0 and e, as on a diagram.

We define 2he composition as follows:

0ox =x00 = 0y '

eox =xo0e =x fcr sach x € C,

xo0y = min(x,y) for x,y <{1/2,1).
Let us take an open sei: U = <1/2,1>u{e} € C. We shall
show that there does not exist x € U such that x <4 e, 1IT7
x 4 e them x €e, consequently X = e. But e < e &
<o € Int{z : e £ z} &B=4z:eg z} is the open set.
The set B is not open, because the least upper bound of the

- 410 -



Topologioal properties of C-nets 7

set <{1/2,1) belongs to B, 'but the elements of the set
{1/2,1) don’t belong to B,

‘Theorem 4.6, The direct product ¥=<H;<,°,0,E>
2f a family {Cu}oge'z of the continuous c-nets is a conti-

nuoug c-net. Moreover the topology induced by the partial or-
der in H coincides with the product topology.

Before we prove Theorem 4.,6. We shall prove the following
lenmas,

Lemma 4.7 For every finite sequence of indices
Xiyeeesty €L, @ set of the form X={heH:h(o(i)eUui,i=1,...,n},

where Uo( are the open sets in Co( for i = 1,44.,n, 1is
i

i
open in the topology induced by the partial order in H.

Proof. If heH and h<h, then ey ) S hylay),
1 =14se,n. Since Uo‘i is an open set for 1 = 1,...,n
then h,(oy) € U“i and h, € X. If t\e/T h, € X, where
.{ht}teT is directed in H then \/ ht(ui) = (\/ ht)(oti)e
: teT teT
€U . U, is the open =ssi, therefore there exists t, € T
Xy °‘i : . *
such that hy (x;)eUy » 1 = 1,...,n. Consequently there is

%o

hti(e(i) € U«l and JOL_L are the open sets, h, (oti) € Uy
for i = 1,eee4n0, Thus. htoe X and {ht}te‘l‘n X#¢g.
Lemma 4.8. If Uc H 1is an open set in the topo-
logy induced by the partial order then for every o € & :p&(U) =
=< h(aK) : h € U} is an open set in the topology induced by
the partial order in C (i.e. the projections are opsn map-
pings in the topology induced by the partial order).
Proof. If hi«) € pd(U) and h(x) < ¢ € Cy then
let h1(ok) = ¢ and h1(ot’) = h(at') for o'#c. So we have:
h1- € U and h1(ot) =c € pd(U) because h £h, and h €U,

If {ct}te’l‘ is directed in Cy and 1>=./T cy € p,(U) then

there exists h € U such that . hi{«) = \/ Cte Let now
teT

h, € {ht}teT such that htis h. for i = 1,.eeyne Since
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8 Jde.Skucha

h, () = cy and hg (af) = h(ax') for o'# . The set
{n,c},“T is dlrected and h = ;‘e/w h, € U, Hence thers exists
t, € T such that h, e U and h17 () = ctoe pd(U) Con-
sequently pd(U) is open in the topology induced by the par-
tial order in C.

Lemma 4,9, ILet [) w_.€sH= T1 ¢ where
ey wes &

Wy = C, for all except finite number of o € ¥ . Then

I = Il i
nt cJ:j‘: Wy = L Int Wy (in the topology induced by the

partial order in H).
Proof. 4nelement h belongs to Int ﬂz Wy if
o E

and only if there exists an open set U such that h e U &
€ r—zlz Wy. Hence for each o € Z : hiat) € p (U) S W,. By

o€
Lemma 4.8 we have that pd(U) are open for each o« € X,

80 h(«) € Int W nd h e I'l IntWw,, Conversely: if’
(o) o« & oL €EX < )
h €] l Int W then h(o) € Int W for each o € 2,
o€ o (o) %

Hence there exists an open set Uy & Cy such that h(a) €

€Uy S W, foreach « € & and Uy = Wy for all except fi-

nite number of o € Consequently h € [| U, € W,
« €. Comequently e[l Uy =]l

and l—lz U, 1is open in the topology induced by the partial
oL €

order in H. Hence h eUS [1 W, and helInt [l W,.
oLED oted

Lemma 4,10. If & is a finite subsset of the sst
Y and hge H such that:

c for o € &

oL

h ) =
Q(“ 0 for o £ 9

then: h < hg &edh(a) = h@(oc) for every & € X (the relation
" ig in the sense of the topology induced by the partial
order).

Proof, h=3hy&hgelnt{k:hgk}hge

€Int 1 {k(a) : h(o) € k() }= [ Int {k o) shixt) < ko)
. - OLEE oEE
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Topological properiies of C-nete <

(by uvemma 4.9). That way we see¢ that h < hg if and only il
hq)(ou € Int {k(u.) : h(o) € ;«:(0()} for every o €3 %i;,(c(/-mé(o()
for every o € &.

T2 00 f of theorem 4.6. An,y element h € 1 c¢an be

written in the following form: Q\/ hq,, where 7 1is a
€Z
tamily of all finite subsets of the set ¥ and for sach

¢ e 2 there is

h{et) for « e $
h@(u) =
0 for « £ ¢,

The set {hé}iez is directed. First we shall prove that the

c~net H is continuous., Let h = \/ hgei and P =
€7
= {k € H: k= h}. ile shall show that the set P 1is direct-

h
ed. If k,,k, € P, then k,< h, k, < h and -1:1-< \/A hg,
k < \/ n§ Conseguently @\/ hQ € Int {h : ky g
\/ hQ e Int {h : k,y € ‘1} Hence there exist §1, Qz €z
such that k < hz , k,< h@ « ‘lhen by Lemma 4,10

| 8,r ™2 2

k1(u) = hg (ot) for o €Q1
1
k(o) = 0 for 0\¢§1

k() 3 h%(q) for o€ 62

ky(ot) = 0 for o¢d..

If & €& n&, then k(«)< n§1(a) = hia), ky(a) < h§2(o() =

= h(t) but the c-net Cy 1is continuous so there exists »

¢, € Co‘ such that

3

kq(«) < ¢, < hix) = h§1(o()

ky(x) € ¢y < h{cx) h§2(o() .
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10 JeSkucha

Let now
k() for oe @1 -9,
k(o) = ky(a)  for aed, @,
¢y for wed nd,
0 for o¢d U,

Obviously k, < k, k, € k and k= h, Then B, ={kik< h}
is directed. Moreover By ={k : k< h} ={k e H : k L hg for
some «I>ez=U keH: k<hgp= P where P, , =

={keH: k< h&'} is the directed set, for each ® € Z; s0

V ki) for o €d
k(d)(h&(d)

(VPM)(Q) ) 0 for o £

Consequently (vPhi)(“) = hb(“) because the c-net C is con-
tinnous and \/Py 4 = hy, for each $e€Z. Thus

VE, =V<§Le)z Ph‘) =§\£z(vph‘ )=§\{z hg= b
In this way we have proved that the c-net H is continuous.
Pinally we shall prove that the product topology in the c-net
H coincides with the topology indiced by the partial order.
Let U be an open set in the induced topology in H and
let h =¢\e/z hy € U. Thus, there exists & € Z such that

h‘o € U and

hiot) for o € Qo
hé (d) =
) for o ¢ Qo.
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Topological propertiez of C-nets 11

Since H 1is continuous, Lemma 4.4 implies existing h'e U
such that h' <hg . Consequently hy e Int{k : h'< k} S U,
Moreover ° °

Int {k : b'<k} = Int r'lz {k(et) : b'(a) € Klat)} =
. o€

-_-J:lz Int {k(a) : h' (o) € k(at)} =dr;12 Tyr

where

Int{k(at) : h' () € k(cl)} for oed,
o« C for o¢@,.

L3

We have h eur:L W, €U, because h§°< h. Lemma 4.7 implies

that r; Wy are open in the induced topology, consequently
ol

they form a basis for the open sets in this topology. On the
other hand it is known that M W, form a basis for the
product topology. we2
Remark 4.11. If the direct product H=
= (J:lz Cus €+ %4 0y 3> of & family {Cd}aez of the c-nets
is continuous c~net then C, is continuous, for each o €¢X.
Proof. Let ¢ € Cy. We shall show that a set
Py = {cd: Cq ¥ c} is directed and ¢ = \V/P,. This results
from the fact that P ={k : k < h} is directed and \/P = h
for h € H such that h(«x) = ¢ and h(at')' = 0 for o # .,
Definition 4,12, A To-space T is injective
if and only if for any spaces X and Y such that X is a
subgpace of Y, every continuous function f ¢ X—= T can
be extended to a continuous function f : Y — T, Following
diagram illustrates the above definition

X &Y
f\‘/? ?[x=f.
7
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12 Jeskucha

xample 4.13, The two-element Boolean algsbra
a={o, e} (0 €e) 1is a c-net if we mean the operation of
tha grestest lower bound as a composition. In this c-net the
partial order induces the To-topology. ihe topological space
defined in whis way is injective., Note, that the c-net 4
which ic 2 direct power of the c-net A is an injective space
in the product topology (D.Scott [4] th.1.3). rinally, since
the c-net 4 is a continuous lattice, the product topology in
Az coincides with the topology induced by the partial order
(DeScott [4] th.2.8, th.2.9).

5. Topological retract of a e¢-net

Let C be a c-net with the topology induced by the par-
tial order. Following theorem gives a sufficient condition
for the topological retract of the c¢-net C to be a c-net too.

PTheorem 5.1, If a mapping j : C —C is a re-
trection such that (%) j(x)oy = xoj(y) for each x,y €C
then ths topological retract j(C) =% is a c-net with res-
pect to the restrictions of the partisl order, the least upper
bound of the directed sets and the restriction of the composi-
tion in C. Moreover the subspace topology coincides with the
topology induced by the partial order in the retract T.

Proof. ‘The partial order "< " in the set % is
the restriction of the partial order “<* because the map-
ping j 1is monotonic., Since the mapping J is continuous
and j(\VD) =\V’{j(d) : d € D} =\D in % for any directed
set D &0, the set 1T 1is closed with respect to the least
upper bounda of the directed sets. If x,y € L then j(xoy)
= j{xoy)loe = (xoy)o jle) = (xoj(y))oe = xoy. Thus the
gset T 1is c¢losed with respect to the composition. The ele=-
meat O is the least element in T because j(0) = j(O)oe
= 0oj(e) = O and the mapping Jj 1is monotoniﬁ. The element
ey = jle) is unit in ¥ because 8,0X = jlelox = a0 j(x)
= eoXx = X and similarly xo0e, = X for each x € T. The
set 1T is a semigroup with zera 0 and unit e, = j{e}) and
wo" ig the composition just like in the c-net C. lMoreover,
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Topologloal properties of C-nets 13

if x eT and DS T is a directed set them xo\/D =
=\V/{xo0d : d € D} and VDox =/ {dox : d e D}. In this
way we see that the set T 1is the c-net.

Next we '11 show that the subspace topology coincides with
the topology induced by the partial order in T. Since the
partial order in T is the same as in C +then, of course,
every open set in the subspace topology is open in the topo-
logy induced by the partial order in the space T too. On
the other hand: if a set U is open in T ={x t X = j(x)}
then we ‘11 show that U= ANT, where A ={c e C:j(c)e u}
is open in C. First we 11 vérify the conditions of the de-
finition 3.1. for the set A, (01) If x e A and XK ¥
then j(x) € j{y) and j{x) e U, The set U is open in 1T

so j{y) € U and consequently y € A. (02) Ir \/ cy € y:\
teT
for a directed set {ct}teT then 3(22; ct) e U and

\/ 3j(c,) € U, Hence there exists t_€ T such that j{c, )eU
teT t ° to
and c; € A. The set U 1is contained in the set A Dbecanse

ue T, oIt is evident that ‘U & A nT, Conversely, if x € 4
and x € T then Jj(x) € U and j(x) = x. Hence x € U then
U=4nT,

The cdntrary theorem (i.8. if a topoiogical retract of
a ¢c-nst is a c~-net and the subspace topology coincides with
the induced topology then the rettraction - a mapping j sa-
tisfies the condition (%)} is not true. The following exam-
ple shows it:

Example S5e26 Let C be an arbitrary c-net
(Icl >2) and & =-{0, e} be the c-~net of the example 3.3.
A 1is & topological subspace of the space C. The subspace
topology coincides with the topology induced by the partial
order in A. We define the mapping Jj : C—=4A as follows:

jl0) = 03 3(x) =8 for x #£ 0.
Obviously A = {x €C 3 x = j(x)}. The mapping j is conti~-

nuous because for a directed set {at}tew in C we have:
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14 : JeSkucha

e if there exists teT such that 8¢ £ 0
j(\/ 8¢ | =

teT

e

if 8y = O for each t T

e if there exists teT sach that ay £0
\/ j(at) =
teT if ay = 0 for each teT,

Of course A 1is the c-net with the same opsrations as in
.Example 3.3, The c¢ondition {%) of Theorsem 5.1 itc not
satisfied, because for y = e we have: j(x)oe = xoj(e)
that is j(x) = x for each xeC.

Theorem 5,3 (P.S.Aleksandrow [2]). Every T,-spa-
ce can be embedded in an injective-space, in fact, in a car-
tesian power of the 2-element Sierpinski Space.

Corollary 5.4, Every o~net can be embedded
as a topological subspace in the c-net A~ (the direct po-
wer of the 2-element c-net A).

Corollarzry 55 If a ¢c-net C is injective in
the topology induced by the partial order then it is the to-
pological retract of the c-net Az.

Proof. If ¢ is injective then it is (homeomorphism
too) a subspace of the space Az. But, since C 1is injeo-
tive, the identity mapping on the subspace to itself can be

extended to the whole space A resulting in the regquired
retraction
c ¢ &F
f\\‘/ j jlc) = ¢ for ¢ € C.
o
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