

Jerzy Skucha

TOPOLOGICAL PROPERTIES OF C-NETS

1. Introduction

The purpose of this paper is to study the topological and algebraic properties of c-nets, more general systems than nets (A.Blikle [3]). A c-net is a poset with zero, in which every directed subset has a least upper bound. In a c-net a monoid operation is defined. It is distributive with respect to the least upper bounds of directed sets.

A T_0 -topology (called hereafter a topology induced by a partial order) is introduced in the c-net. (compare with D.Scott [4]). According to D.Scott a complete lattice L is continuous, if for each $y \in L : y = \bigvee \{x \in L : x \prec y\}$, where $x \prec y \iff y \in \text{Int} \{z \in L : x \leq z\}$; the interior is in the sense of the topology induced by a partial order in L . D.Scott proved that the injective T_0 -topological spaces are exactly continuous lattices. The following problem arises: does there exist a theory of continuous posets, that generalizes the theory of continuous lattices? In this paper D.Scott's conception of continuous lattice is generalized in a natural way and fundamental theorems are proved.

2. Symbols and definitions

Let C_1, C_2 be posets and φ be a mapping from C_1 into C_2 . We say that φ is monotonic if it preserves order i.e.: $a, b \in C_1$ and $a \leq b$ imply $\varphi(a) \leq \varphi(b)$. The mapping φ is continuous (in the algebraic sense) if: for every non-empty

directed set $D \subseteq C_1$, if there exists the join $\bigvee D$ in C_1 , then there also exists the join $\bigvee \{\varphi(d) : d \in D\}$ in C_2 and the following equation is satisfied: $\varphi(\bigvee D) = \bigvee \{\varphi(d) : d \in D\}$.

In this paper we shall consider only non-empty directed sets. Let $C_1 \times \dots \times C_n$ ($n \geq 1$) denote the direct product of a family posets C_1, \dots, C_n .

Remark 2.1. The mapping $\varphi: C_1 \times \dots \times C_n \rightarrow C$ is monotonic if and only if it is monotonic with respect to each variable separately.

Theorem 2.2. Let C_1, \dots, C_n, C be posets such that every directed subset of C_i ($i = 1, \dots, n$), C has a least upper bound. Then any mapping $\varphi: C_1 \times \dots \times C_n \rightarrow C$ is continuous if and only if it is continuous with respect to each variable separately.

The proof is analogous to the one given in [4] th.2.6 by D.Scott. So we omit here the details.

Definition 2.3. By a c-net we shall mean the relation system $\langle C; \leq, \circ, 0, e \rangle$ such that:

1. $\langle C; \leq, 0 \rangle$ is a poset with least element 0, in which every directed subset has a least upper bound.
2. $\langle C; \circ, 0, e \rangle$ is a semigroup with zero 0 and unit e . (the binary operation " \circ " is called a composition).
3. the composition " \circ " is continuous.

Remark 2.4. The composition " \circ " is monotonic.

Example 2.5. C-net of continuous operations. Let P be a poset with least element 0, in which every directed subset has a least upper bound. Furthermore, let F denote the set of all continuous mappings of the set P to itself such that $f(0) = 0$ for each $f \in F$. We introduce the partial order in F in natural way: if $f_1, f_2 \in F$ then $f_1 \leq f_2 \Leftrightarrow f_1(x) \leq f_2(x)$ for every $x \in P$. Let us introduce a partial operation of the least upper bound in F : if $\{f_t\}_{t \in T}$ is a directed set then $(\bigvee_{t \in T} f_t)(x) = \bigvee_{t \in T} f_t(x)$ for every $x \in P$. The relation system $\langle F; \leq, \circ, 0, E \rangle$ is a c-net provided that $(f_1 \circ f_2)(x) = f_1(f_2(x))$ for every $x \in P$ and $0(x) = 0$, $E(x) = x$ for every $x \in P$.

Definition 2.6. A mapping $h : C_1 \rightarrow C_2$ where $\langle C_1; \leq_1, \circ_1, 0_1, e_1 \rangle, \langle C_2; \leq_2, \circ_2, 0_2, e_2 \rangle$ are c-nets, is said to be a homomorphism if and only if the following conditions are satisfied:

(h_1) h is continuous,

(h_2) h preserves the composition, that means: $h(x \circ_1 y) = h(x) \circ_2 h(y)$ for each $x, y \in C_1$,

(h_3) $h(0_1) = 0_2; h(e_1) = e_2$.

A homomorphism $h : C_1 \rightarrow C_2$ is called a full one if the following condition is also satisfied:

(h_0) if $\{h(a_t)\}_{t \in T}$ is a directed set and $\bigvee_{t \in T} h(a_t) = h(a)$ then there exist: a directed set $\{b_t\}_{t \in T}$ and $b \in C_1$ such that $h(b_t) = h(a_t)$ for each $t \in T$, $h(b) = h(a)$ and $\bigvee_{t \in T} b_t = b$.

Any full homomorphism $h : C_1 \rightarrow C_2$ which is "one-one" and "onto" is called an isomorphism.

Theorem 2.7. Every c-net C can be embedded in the c-net F of continuous operations.

Outline of a proof: Since C is a c-net, it is a poset with the least element 0 , in which each directed subset has a least upper bound. Let F be the set of all continuous mappings $f : C \rightarrow C$. For each $a \in C$ we define a continuous mapping $f_a : C \rightarrow C$ as follows

$$f_a(x) = a \circ x \quad \text{for each } x \in C.$$

Let now $m : C \rightarrow F$ be a mapping such that $m(a) = f_a$ for $a \in C$. It is easy to verify that " m " is an isomorphism (compare def.2.6).

3. Topology in a c-net

We define the open sets in a c-net as follows:

Definition 3.1. Let $U \subseteq C$; U is an open set if and only if it satisfies the following conditions:

(O_1) If $x \in U$ and $x \leq y$ then $y \in U$.

(O_2) Whenever $D \subseteq C$ is a directed set and $\bigvee D \in U$ then $D \cap U \neq \emptyset$.

The sets satisfying (O_1) and (O_2) form the topology induced by the partial order in a c-net C . Therefore C becomes a topological T_0 -space.

Now we can generalize the theorem which was proved for the complete lattices by D.Scott ([4], th.2.5).

Theorem 3.2. If C, C' are posets with their topologies induced by the partial order and in which each directed subset has a least upper bound then a mapping $f: C \rightarrow C'$ is continuous in the topological sense if and only if for each directed subset $D \subseteq C$ there exists $\bigvee \{f(d) : d \in D\}$ in C' and the following equation is satisfied:

$$(a) \quad f(\bigvee D) = \bigvee \{f(d) : d \in D\}.$$

Proof. Let us assume that for each directed set $D \subseteq C$ there exists $\bigvee \{f(d) : d \in D\}$ and the condition (a) is satisfied. Then let U' be an open set in C' and $U = \{x \in C : f(x) \in U'\}$. We shall prove that U is open in C . Since f is monotonic and U' is an open set in C' , if $x \in U$ and $x \leq y$, we have: $f(x) \leq f(y) \in U'$. Therefore $y \in U$, so the set U satisfies the condition (O_1) from the definition 3.1. Let now $\bigvee D \in U$ for a directed set $D \subseteq C$, so $f(\bigvee D) \in U'$. Hence $\bigvee \{f(d) : d \in D\} \in U'$ and U' is open then there exists $d \in D$ such that $f(d) \in U'$ i.e. $d \in U$ thus $D \cap U \neq \emptyset$.

Conversely: First we shall show that a mapping $f : C \rightarrow C'$ continuous in the topological sense is monotonic. Let us suppose that $x, y \in C$ and $x \leq y$. If $f(x) \not\leq f(y)$ then $f(x) \in U' = \{z : z \not\leq f(y)\}$ and U' is an open set in C' . Consequently $x \in f^{-1}(U') \subseteq C$. But $x \leq y$, therefore $y \in f^{-1}(U')$ so $f(y) \in U'$, which is a contradiction to the definition of U' .

Let now D be a directed subset in C , then $\{f(d) : d \in D\}$ is a directed set in C' , so there exists the least upper

bound $\bigvee\{f(d) : d \in D\}$. Let us consider any open set U' in C' . If $f(\bigvee D) \in U'$ then $\bigvee D \in U = f^{-1}(U')$ and according to the definition of an open set there exists an element $d \in D$ such that $d \in U = f^{-1}(U')$. Hence $f(d) \in U'$ and $\bigvee\{f(d) : d \in D\} \in U'$. On the other hand, if $\bigvee\{f(d) : d \in D\} \in U'$ there exists an element $d \in D$ such that $f(d) \in U'$ i.e. $d \in U = f^{-1}(U')$. But $d \in \bigvee D$, consequently: $\bigvee D \in U = f^{-1}(U')$, thus $f(\bigvee D) \in U'$. We conclude that $\bigvee\{f(d) : d \in D\} \in U' \iff f(\bigvee D) \in U'$. C is known to be a topological T_0 -space which means the open sets distinguish points. This implies that the condition (a) is fulfilled.

4. Theorem concerning topology in a direct product of c-nets.

The direct product of a family $\{C_\alpha\}_{\alpha \in \Sigma}$ of c-nets is the c-net $\mathcal{H} = \langle H; \leq, \circ, 0, E \rangle$, where: $H = \prod_{\alpha \in \Sigma} C_\alpha$ is the cartesian product of a family $\{C_\alpha\}_{\alpha \in \Sigma}$. We introduce the partial order "by the components" i.e.: if $h_1, h_2 \in H$ then $h_1 \leq h_2 \iff h_1(\alpha) \leq h_2(\alpha)$ for each $\alpha \in \Sigma$. We define the operations as follows: if $\{h_t\}_{t \in T}$ is a directed set then $(\bigvee_{t \in T} h_t)(\alpha) = \bigvee_{t \in T} h_t(\alpha)$ for each $\alpha \in \Sigma$; $(h_1 \circ h_2)(\alpha) = h_1(\alpha) \circ h_2(\alpha)$ for each $\alpha \in \Sigma$. The functions $0, E$ are the distinguished elements of H , where $0(\alpha) = 0_{C_\alpha}$, $E(\alpha) = e_{C_\alpha}$ for each $\alpha \in \Sigma$; $0_{C_\alpha}, e_{C_\alpha}$ are zero and unit in the c-net C_α correspondingly. If $C_\alpha = C$ for every $\alpha \in \Sigma$ then we write C^Σ instead of $\prod_{\alpha \in \Sigma} C_\alpha$ and C^Σ is called the direct power of a c-net C .

Let C be a c-net with the topology induced by the partial order. We define a binary relation " \prec " in C as follows:

Definition 4.2. (D. Scott [4]). For $x, y \in C$: $x \prec y \iff y \in \text{Int}\{z : x \leq z\}$.

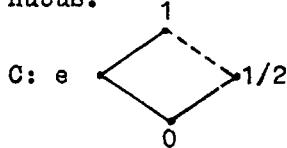
D e f i n i t i o n 4.3. A c-net C is continuous if and only if for every $y \in C$: the set $\{x : x \prec y\}$ is directed and $y = \bigvee \{x : x \prec y\}$.

L e m m a 4.4. Let C be a c-net. For every $y \in C$ the following conditions are equivalent:

1. A set $\{x : x \prec y\}$ is directed and $y = \bigvee \{x : x \prec y\}$.
2. For each open set U in C the following condition holds: if $y \in U$ then there exists $x \in U$ such that $x \prec y$.

P r o o f. Suppose, condition 1 is satisfied. If $y = \bigvee \{x : x \prec y\}$ and $y \in U$ then by the definition of an open set there exists $x \in U$ such that $x \prec y$. If condition 2 is satisfied, we shall prove first that $Y = \{x : x \prec y\}$ is a directed set. Let $x_1, x_2 \in Y$. Then $y \in \text{Int}\{z : x_1 \leq z\}$ and $y \in \text{Int}\{z : x_2 \leq z\}$. Consequently $y \in \text{Int}\{z : x_1 \leq z\} \cap \text{Int}\{z : x_2 \leq z\} = \text{Int}\{z : x_1 \leq z \text{ and } x_2 \leq z\}$. By virtue of condition 2, there exists $x \in \text{Int}\{z : x_1 \leq z \text{ and } x_2 \leq z\}$ such that $x \prec y$. Thus $x_1 \leq x$, $x_2 \leq x$, $x \prec y$ and Y is a directed set. Obviously $\bigvee \{x : x \prec y\} \leq y$. If $a = \bigvee \{x : x \prec y\} \leq y$ then $y \in U = \{z : z \leq a\}$ and there exists $x \in U$ such that $x \prec y$. But then $x \prec y$ implies $x \leq a$, a contradiction.

E x a m p l e 4.5. The c-net, which is not continuous.



The c-net C consists of the closed interval of the real numbers $\langle 1/2, 1 \rangle$, the elements 0 and e , as on a diagram.

We define the composition as follows:

$$0 \circ x = x \circ 0 = 0,$$

$$e \circ x = x \circ e = x \text{ for each } x \in C,$$

$$x \circ y = \min(x, y) \text{ for } x, y \in \langle 1/2, 1 \rangle.$$

Let us take an open set $U = \langle 1/2, 1 \rangle \cup \{e\} \subseteq C$. We shall show that there does not exist $x \in U$ such that $x \prec e$. If $x \prec e$ then $x \leq e$, consequently $x = e$. But $e \prec e \Leftrightarrow e \in \text{Int}\{z : e \leq z\} \Leftrightarrow B = \{z : e \leq z\}$ is the open set. The set B is not open, because the least upper bound of the

set $\langle 1/2, 1 \rangle$ belongs to B , but the elements of the set $\langle 1/2, 1 \rangle$ don't belong to B .

Theorem 4.6. The direct product $\mathcal{H} = \langle H; \leq, \circ, 0, E \rangle$ of a family $\{C_\alpha\}_{\alpha \in \Sigma}$ of the continuous c-nets is a continuous c-net. Moreover the topology induced by the partial order in H coincides with the product topology.

Before we prove Theorem 4.6. We shall prove the following lemmas.

Lemma 4.7. For every finite sequence of indices $\alpha_1, \dots, \alpha_n \in \Sigma$, a set of the form $X = \{h \in H : h(\alpha_i) \in U_{\alpha_i}, i = 1, \dots, n\}$, where U_{α_i} are the open sets in C_{α_i} for $i = 1, \dots, n$, is open in the topology induced by the partial order in H .

Proof. If $h \in H$ and $h \leq h_1$ then $h(\alpha_i) \leq h_1(\alpha_i)$, $i = 1, \dots, n$. Since U_{α_i} is an open set for $i = 1, \dots, n$ then $h_1(\alpha_i) \in U_{\alpha_i}$ and $h_1 \in X$. If $\bigvee_{t \in T} h_t \in X$, where $\{h_t\}_{t \in T}$ is directed in H then $\bigvee_{t \in T} h_t(\alpha_i) = \left(\bigvee_{t \in T} h_t \right)(\alpha_i) \in U_{\alpha_i}$. U_{α_i} is the open set, therefore there exists $t_i \in T$ such that $h_{t_i}(\alpha_i) \in U_{\alpha_i}$, $i = 1, \dots, n$. Consequently there is $h_{t_0} \in \{h_t\}_{t \in T}$ such that $h_{t_i} \leq h_{t_0}$ for $i = 1, \dots, n$. Since $h_{t_0}(\alpha_i) \in U_{\alpha_i}$ and U_{α_i} are the open sets, $h_{t_0}(\alpha_i) \in U_{\alpha_i}$ for $i = 1, \dots, n$. Thus $h_{t_0} \in X$ and $\{h_t\}_{t \in T} \cap X \neq \emptyset$.

Lemma 4.8. If $U \subseteq H$ is an open set in the topology induced by the partial order then for every $\alpha \in \Sigma : p_\alpha(U) = \{h(\alpha) : h \in U\}$ is an open set in the topology induced by the partial order in C_α (i.e. the projections are open mappings in the topology induced by the partial order).

Proof. If $h(\alpha) \in p_\alpha(U)$ and $h(\alpha) \leq c \in C_\alpha$ then let $h_1(\alpha) = c$ and $h_1(\alpha') = h(\alpha')$ for $\alpha' \neq \alpha$. So we have: $h_1 \in U$ and $h_1(\alpha) = c \in p_\alpha(U)$ because $h \leq h_1$ and $h \in U$. If $\{c_t\}_{t \in T}$ is directed in C_α and $\bigvee_{t \in T} c_t \in p_\alpha(U)$ then there exists $h \in U$ such that $h(\alpha) = \bigvee_{t \in T} c_t$. Let now

$h_t(\alpha) = c_t$ and $h_t(\alpha') = h(\alpha')$ for $\alpha' \neq \alpha$. The set $\{h_t\}_{t \in T}$ is directed and $h = \bigvee_{t \in T} h_t \in U$. Hence there exists $t_0 \in T$ such that $h_{t_0} \in U$ and $h_{t_0}(\alpha) = c_{t_0} \in p_\alpha(U)$. Consequently $p_\alpha(U)$ is open in the topology induced by the partial order in C .

Lemma 4.9. Let $\prod_{\alpha \in \Sigma} W_\alpha \subseteq H = \prod_{\alpha \in \Sigma} C_\alpha$, where $W_\alpha = C_\alpha$ for all except finite number of $\alpha \in \Sigma$. Then $\text{Int} \prod_{\alpha \in \Sigma} W_\alpha = \prod_{\alpha \in \Sigma} \text{Int} W_\alpha$ (in the topology induced by the partial order in H).

Proof. An element h belongs to $\text{Int} \prod_{\alpha \in \Sigma} W_\alpha$ if and only if there exists an open set U such that $h \in U \subseteq \prod_{\alpha \in \Sigma} W_\alpha$. Hence for each $\alpha \in \Sigma$: $h(\alpha) \in p_\alpha(U) \subseteq W_\alpha$. By Lemma 4.8 we have that $p_\alpha(U)$ are open for each $\alpha \in \Sigma$, so $h(\alpha) \in \text{Int} W_\alpha$ and $h \in \prod_{\alpha \in \Sigma} \text{Int} W_\alpha$. Conversely: if $h \in \prod_{\alpha \in \Sigma} \text{Int} W_\alpha$ then $h(\alpha) \in \text{Int} W_\alpha$ for each $\alpha \in \Sigma$. Hence there exists an open set $U_\alpha \subseteq C_\alpha$ such that $h(\alpha) \in U_\alpha \subseteq W_\alpha$ for each $\alpha \in \Sigma$ and $U_\alpha = W_\alpha$ for all except finite number of $\alpha \in \Sigma$. Consequently $h \in \prod_{\alpha \in \Sigma} U_\alpha \subseteq \prod_{\alpha \in \Sigma} W_\alpha$ and $\prod_{\alpha \in \Sigma} U_\alpha$ is open in the topology induced by the partial order in H . Hence $h \in U \subseteq \prod_{\alpha \in \Sigma} W_\alpha$ and $h \in \text{Int} \prod_{\alpha \in \Sigma} W_\alpha$.

Lemma 4.10. If Φ is a finite subset of the set Σ and $h_\Phi \in H$ such that:

$$h_\Phi(\alpha) = \begin{cases} c_\alpha & \text{for } \alpha \in \Phi \\ 0 & \text{for } \alpha \notin \Phi \end{cases}$$

then: $h \prec h_\Phi \iff h(\alpha) \prec h_\Phi(\alpha)$ for every $\alpha \in \Sigma$ (the relation " \prec " is in the sense of the topology induced by the partial order).

Proof. $h \prec h_\Phi \iff h_\Phi \in \text{Int} \{k : h \leq k\} \iff h_\Phi \in \text{Int} \prod_{\alpha \in \Sigma} \{k(\alpha) : h(\alpha) \leq k(\alpha)\} = \prod_{\alpha \in \Sigma} \text{Int} \{k(\alpha) : h(\alpha) < k(\alpha)\}$

(by Lemma 4.9). That way we see that $h \prec h_\Phi$ if and only if $h_\Phi(\alpha) \in \text{Int}\{k(\alpha) : h(\alpha) \leq k(\alpha)\}$ for every $\alpha \in \Sigma \Leftrightarrow h(\alpha) \prec h_\Phi(\alpha)$ for every $\alpha \in \Sigma$.

Proof of theorem 4.6. Any element $h \in H$ can be written in the following form: $h = \bigvee_{\Phi \in Z} h_\Phi$, where Z is a family of all finite subsets of the set Σ and for each $\Phi \in Z$ there is

$$h_\Phi(\alpha) = \begin{cases} h(\alpha) & \text{for } \alpha \in \Phi \\ 0 & \text{for } \alpha \notin \Phi. \end{cases}$$

The set $\{h_\Phi\}_{\Phi \in Z}$ is directed. First we shall prove that the c-net H is continuous. Let $h = \bigvee_{\Phi \in Z} h_\Phi \in H$ and $P_h = \{k \in H : k \prec h\}$. We shall show that the set P_h is directed. If $k_1, k_2 \in P_h$ then $k_1 \prec h$, $k_2 \prec h$ and $k_1 \prec \bigvee_{\Phi \in Z} h_\Phi$, $k_2 \prec \bigvee_{\Phi \in Z} h_\Phi$. Consequently $\bigvee_{\Phi \in Z} h_\Phi \in \text{Int}\{h : k_1 \leq h\}$ and $\bigvee_{\Phi \in Z} h_\Phi \in \text{Int}\{h : k_2 \leq h\}$. Hence there exist $\Phi_1, \Phi_2 \in Z$ such that $k_1 \prec h_{\Phi_1}$, $k_2 \prec h_{\Phi_2}$. Then by Lemma 4.10

$$\begin{cases} k_1(\alpha) \prec h_{\Phi_1}(\alpha) & \text{for } \alpha \in \Phi_1 \\ k_1(\alpha) = 0 & \text{for } \alpha \notin \Phi_1 \end{cases}$$

$$\begin{cases} k_2(\alpha) \prec h_{\Phi_2}(\alpha) & \text{for } \alpha \in \Phi_2 \\ k_2(\alpha) = 0 & \text{for } \alpha \notin \Phi_2. \end{cases}$$

If $\alpha \in \Phi_1 \cap \Phi_2$ then $k_1(\alpha) \prec h_{\Phi_1}(\alpha) = h(\alpha)$, $k_2(\alpha) \prec h_{\Phi_2}(\alpha) = h(\alpha)$ but the c-net C_α is continuous so there exists $c_\alpha \in C_\alpha$ such that

$$k_1(\alpha) \leq c_\alpha \prec h(\alpha) = h_{\Phi_1}(\alpha)$$

$$k_2(\alpha) \leq c_\alpha \prec h(\alpha) = h_{\Phi_2}(\alpha).$$

Let now

$$k(\alpha) = \begin{cases} k_1(\alpha) & \text{for } \alpha \in \Phi_1 - \Phi_2 \\ k_2(\alpha) & \text{for } \alpha \in \Phi_2 - \Phi_1 \\ c_\alpha & \text{for } \alpha \in \Phi_1 \cap \Phi_2 \\ 0 & \text{for } \alpha \notin \Phi_1 \cup \Phi_2. \end{cases}$$

Obviously $k_1 \leq k$, $k_2 \leq k$ and $k \prec h$. Then $P_h = \{k : k \prec h\}$ is directed. Moreover $P_h = \{k : k \prec h\} = \{k \in H : k \prec h_\Phi \text{ for some } \Phi \in Z\} = \bigcup_{\Phi \in Z} \{k \in H : k \prec h_\Phi\} = \bigcup_{\Phi \in Z} P_{h_\Phi}$, where $P_{h_\Phi} = \{k \in H : k \prec h_\Phi\}$ is the directed set, for each $\Phi \in Z$; so

$$\left(\bigvee P_{h_\Phi}\right)(\alpha) = \begin{cases} \bigvee_{k(\alpha) \prec h_\Phi(\alpha)} k(\alpha) & \text{for } \alpha \in \Phi \\ 0 & \text{for } \alpha \notin \Phi. \end{cases}$$

Consequently $(\bigvee P_{h_\Phi})(\alpha) = h_\Phi(\alpha)$ because the c-net C is continuous and $\bigvee P_{h_\Phi} = h_\Phi$, for each $\Phi \in Z$. Thus

$$\bigvee P_h = \bigvee \left(\bigcup_{\Phi \in Z} P_{h_\Phi} \right) = \bigvee_{\Phi \in Z} \left(\bigvee P_{h_\Phi} \right) = \bigvee_{\Phi \in Z} h_\Phi = h.$$

In this way we have proved that the c-net H is continuous. Finally we shall prove that the product topology in the c-net H coincides with the topology induced by the partial order. Let U be an open set in the induced topology in H and let $h = \bigvee_{\Phi \in Z} h_\Phi \in U$. Thus, there exists $\Phi_0 \in Z$ such that $h_{\Phi_0} \in U$ and

$$h_{\Phi_0}(\alpha) = \begin{cases} h(\alpha) & \text{for } \alpha \in \Phi_0 \\ 0 & \text{for } \alpha \notin \Phi_0. \end{cases}$$

Since H is continuous, Lemma 4.4 implies existing $h' \in U$ such that $h' \prec h_{\Phi_0}$. Consequently $h_{\Phi_0} \in \text{Int}\{k : h' \leq k\} \subseteq U$. Moreover

$$\begin{aligned} \text{Int}\{k : h' \leq k\} &= \text{Int} \bigcap_{\alpha \in \Sigma} \{k(\alpha) : h'(\alpha) \leq k(\alpha)\} = \\ &= \bigcap_{\alpha \in \Sigma} \text{Int}\{k(\alpha) : h'(\alpha) \leq k(\alpha)\} = \bigcap_{\alpha \in \Sigma} W_\alpha, \end{aligned}$$

where

$$W_\alpha = \begin{cases} \text{Int}\{k(\alpha) : h'(\alpha) \leq k(\alpha)\} & \text{for } \alpha \in \Phi_0, \\ C_\alpha & \text{for } \alpha \notin \Phi_0. \end{cases}$$

We have $h \in \bigcap_{\alpha \in \Sigma} W_\alpha \subseteq U$, because $h_{\Phi_0} \leq h$. Lemma 4.7 implies that $\bigcap_{\alpha \in \Sigma} W_\alpha$ are open in the induced topology, consequently they form a basis for the open sets in this topology. On the other hand it is known that $\bigcap_{\alpha \in \Sigma} W_\alpha$ form a basis for the product topology.

Remark 4.11. If the direct product $\mathcal{H} = \langle \bigcap_{\alpha \in \Sigma} C_\alpha; \leq, \circ, 0, 1 \rangle$ of a family $\{C_\alpha\}_{\alpha \in \Sigma}$ of the c-nets is continuous c-net then C_α is continuous, for each $\alpha \in \Sigma$.

Proof. Let $c \in C_\alpha$. We shall show that a set $P_\alpha = \{c_\alpha : c_\alpha \prec c\}$ is directed and $c = \bigvee P_\alpha$. This results from the fact that $P = \{k : k \prec h\}$ is directed and $\bigvee P = h$ for $h \in H$ such that $h(\alpha) = c$ and $h(\alpha') = 0$ for $\alpha' \neq \alpha$.

Definition 4.12. A T_0 -space T is injective if and only if for any spaces X and Y such that X is a subspace of Y , every continuous function $f : X \rightarrow T$ can be extended to a continuous function $\bar{f} : Y \rightarrow T$. Following diagram illustrates the above definition

$$\begin{array}{ccc} X & \subseteq & Y \\ f \searrow & \swarrow \bar{f} & \\ & T & \end{array}$$

E x a m p l e 4.13. The two-element Boolean algebra $A = \{0, e\}$ ($0 \leq e$) is a c-net if we mean the operation of the greatest lower bound as a composition. In this c-net the partial order induces the T_0 -topology. The topological space defined in this way is injective. Note, that the c-net A^Σ which is a direct power of the c-net A is an injective space in the product topology (D.Scott [4] th.1.3). Finally, since the c-net A is a continuous lattice, the product topology in A^Σ coincides with the topology induced by the partial order (D.Scott [4] th.2.8, th.2.9).

5. Topological retract of a c-net

Let C be a c-net with the topology induced by the partial order. Following theorem gives a sufficient condition for the topological retract of the c-net C to be a c-net too.

T h e o r e m 5.1. If a mapping $j : C \rightarrow C$ is a retraction such that $(*) \quad j(x) \circ y = x \circ j(y)$ for each $x, y \in C$ then the topological retract $j(C) = T$ is a c-net with respect to the restrictions of the partial order, the least upper bound of the directed sets and the restriction of the composition in C . Moreover the subspace topology coincides with the topology induced by the partial order in the retract T .

P r o o f . The partial order " \leq " in the set T is the restriction of the partial order " \leq " because the mapping j is monotonic. Since the mapping j is continuous and $j(\bigvee D) = \bigvee \{j(d) : d \in D\} = \bigvee D$ in T for any directed set $D \subseteq T$, the set T is closed with respect to the least upper bounds of the directed sets. If $x, y \in T$ then $j(x \circ y) = j(x \circ y) \circ e = (x \circ y) \circ j(e) = (x \circ j(y)) \circ e = x \circ y$. Thus the set T is closed with respect to the composition. The element 0 is the least element in T because $j(0) = j(0) \circ e = 0 \circ j(e) = 0$ and the mapping j is monotonic. The element $e_1 = j(e)$ is unit in T because $e_1 \circ x = j(e) \circ x = e \circ j(x) = e \circ x = x$ and similarly $x \circ e_1 = x$ for each $x \in T$. The set T is a semigroup with zero 0 and unit $e_1 = j(e)$ and " \circ " is the composition just like in the c-net C . Moreover,

if $x \in T$ and $D \subseteq T$ is a directed set then $x \circ \bigvee D = \bigvee \{x \circ d : d \in D\}$ and $\bigvee D \circ x = \bigvee \{d \circ x : d \in D\}$. In this way we see that the set T is the c-net.

Next we'll show that the subspace topology coincides with the topology induced by the partial order in T . Since the partial order in T is the same as in C then, of course, every open set in the subspace topology is open in the topology induced by the partial order in the space T too. On the other hand: if a set U is open in $T = \{x : x = j(x)\}$ then we'll show that $U = A \cap T$, where $A = \{c \in C : j(c) \in U\}$ is open in C . First we'll verify the conditions of the definition 3.1. for the set A . (0₁) If $x \in A$ and $x \leq y$ then $j(x) \leq j(y)$ and $j(x) \in U$. The set U is open in T so $j(y) \in U$ and consequently $y \in A$. (0₂) If $\bigvee_{t \in T} c_t \in A$ for a directed set $\{c_t\}_{t \in T}$ then $j\left(\bigvee_{t \in T} c_t\right) \in U$ and $\bigvee_{t \in T} j(c_t) \in U$. Hence there exists $t_0 \in T$ such that $j(c_{t_0}) \in U$ and $c_{t_0} \in A$. The set U is contained in the set A because $U \subseteq T$. It is evident that $U \subseteq A \cap T$. Conversely, if $x \in A$ and $x \in T$ then $j(x) \in U$ and $j(x) = x$. Hence $x \in U$ then $U = A \cap T$.

The contrary theorem (i.e. if a topological retract of a c-net is a c-net and the subspace topology coincides with the induced topology then the retraction - a mapping j satisfies the condition (*)) is not true. The following example shows it:

Example 5.2. Let C be an arbitrary c-net ($|C| > 2$) and $A = \{0, e\}$ be the c-net of the example 3.3. A is a topological subspace of the space C . The subspace topology coincides with the topology induced by the partial order in A . We define the mapping $j : C \rightarrow A$ as follows:

$$j(0) = 0; \quad j(x) = e \text{ for } x \neq 0.$$

Obviously $A = \{x \in C : x = j(x)\}$. The mapping j is continuous because for a directed set $\{a_t\}_{t \in T}$ in C we have:

$$j\left(\bigvee_{t \in T} a_t\right) = \begin{cases} e & \text{if there exists } t \in T \text{ such that } a_t \neq 0 \\ 0 & \text{if } a_t = 0 \text{ for each } t \in T \end{cases}$$

$$\bigvee_{t \in T} j(a_t) = \begin{cases} e & \text{if there exists } t \in T \text{ such that } a_t \neq 0 \\ 0 & \text{if } a_t = 0 \text{ for each } t \in T. \end{cases}$$

Of course A is the c-net with the same operations as in Example 3.3. The condition $(*)$ of Theorem 5.1 is not satisfied, because for $y = e$ we have: $j(x) \circ e = x \circ j(e)$ that is $j(x) = x$ for each $x \in C$.

Theorem 5.3 (P.S. Aleksandrow [2]). Every T_0 -space can be embedded in an injective space, in fact, in a cartesian power of the 2-element Sierpinski Space.

Corollary 5.4. Every c-net can be embedded as a topological subspace in the c-net A^Σ (the direct power of the 2-element c-net A).

Corollary 5.5. If a c-net C is injective in the topology induced by the partial order then it is the topological retract of the c-net A^Σ .

Proof. If C is injective then it is (homeomorphism too) a subspace of the space A^Σ . But, since C is injective, the identity mapping on the subspace to itself can be extended to the whole space A^Σ resulting in the required retraction

$$\begin{array}{ccc} C & \subseteq & A^\Sigma \\ j \searrow & & \swarrow \bar{j} \\ & C & \end{array} \quad \bar{j}(c) = c \text{ for } c \in C.$$

REFERENCES

- [1] P.S. Aleksandrow, H. Hopf: Topologie I. Berlin 1935.
- [2] П.С. Александров: К теории топологических пространств, Dokl. Akad. Nauk SSSR, 2 (1936) 51-54.

- [3] A. B l i k l e : Nets; complete lattices with a composition, Bull. Acad. Polon. Sci., Ser. Math. Astronom. Phys. 19 (1971) 1123-1127.
- [4] D. S c o o t t : Continuous lattice, Lectures Notes in Math. 274, Toposes, Algebraic Geom. and Logic, Berlin 1972.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW

Received October 14, 1980.

