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ON SOME EXTREMAL PROBLEM IN CLASSES 
OF BOUNDED UNIVALENT FUNCTIONS 

1. Introduction 
Denote by S the c lass of functions F holomorphic and 

univalent in the disc E = { z : | z | < l } , with thè Taylor ex-
pansion 

F(z) = z + 2 AnP ' z D ' z 6 B # 

n=2 

Let S(M), M > 1, be the subclass of the family S, con-
s i s t i n g of functions sa t i s fy ing in the disc $ the condition 

4 M, whereas Sg(M) - the subclass of S (M) , consis t-
ing of functions with rea l c o e f f i c i e n t s . 

In [17], [18] and [4] ( c f , also [3] ) , for N = 6, s = 8 
.and any even N, successively, there has been determined a 
problem of estimating the N-th coef f ic ient of functions of 
the c las ses S^(M) when M i s su f f i c i ent ly large . In the 
method applied.in these papers use i s made of , among others, 
the d i f ferent ia l - funct iona l equation of extremal functions in 
the c las ses S^(M) [2], yet with the avoidance of complica-
ted integration of this equation. I t seemp natural to apply 
this method to the examination of coe f f i c i ent s of functions 
of the c las ses S(M). One knows in these c la s ses the d i f f e -
rent i a l -functional equation of extremal functions [ l ] . Bes i-
des, i t turned, out more than once that i f , in any extremal 
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2 A.Zieliiiska 

problem in the c lass SR(M), the extremal function was a 
function F ( z ) , z e B, then, in an analogous problem in 
S(M), such was a function e ~ i 0 F ( e i 0 z ) , 0 .4 © ^ 2ir. 

In the present paper the functional Rc A ^ defined i n 
the c lass S(M) i s considered, where N i s any even p o s i t i -
ve integer , TJ > 6. By applying the method in question, i t 
has been shown that there ex i s t s a constant MJJ such t h a t , 
for a l l M > M^ and any function W = P Q (z ) , z € 3 , r e a l i z -
ing the maximum of th i s functional ( for N > 8 , some addit io-
nal assumption i s needed), the domain Pq(E) i s the 
disc |V7|<i.i from which exactly one analytic arc issuing from 
some point WQF on the c i r c l e |W| = M has been removed. 

An analogous problem, consist ing in characterizing domains 
obtained by extremal mappings, was considered in the c lass S 
by, among others, A.C.Schaeffer and D.C.Spencer. These authors 
proved, in part icular , that each function, for which any l i -
near functional defined in the c lass S a t ta ins i t s maximum, 
maps the disc E onto a plane from which exactly one analytio 
arc issuing from the point 00 has been removed ( [ 9 J , p.149, 
lemma XXX). The analogous theorem in the c lass of bounded 
functions would, however, be f a l s e , which can be shown by, 
at l e a s t , a function rea l iz ing the maximum of the functional 
Re defined in the c lass S(M) ( c f . e . g . , [ 10 ] ) . 

Let us s t i l l r e c a l l that c o e f f i c i e n t s of functions of the 
c lasses SCLI} were, exactly estimated in the case when M was 
s u f f i c i e n t l y close to 1 ( [ 1 3 ] , [14] , [15]; [ 12 ] ) . For M suf -
f i c i e n t l y large, such estimations are known only for N = 2, 
3, 4 ( [ 7 ] ; DO], [16] , [ 5 ] ; H 1 ] ) . 

The theorems included in the present paper may become 
start ing-point for further invest igat ions of c o e f f i c i e n t s with 
even indices . 

Z.J.Jakubowski has raised a hypothesis t h a t , s imilarly as 
in the c lasses SR(M) ( c f . £ 4 ] ) , the only functions in the 
c lasses S(M), for which Re A ^ (N = 6, 8 , . . . ) , a t ta ins 
maximum, are functions of the form 
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Bounded univalent tunctions 

e _ i 8 p M ( e i 0 z ) ' 2 £ E ' 0=0 ,1 , 

where W = i a a Pick function given by the equation 

(1) 5 - j r - ^ z e B 

h s X d - z ) 2 
I1 " M/ 

and sa t is fying the condition Ijj(O') = 0 . 

2. Remarks and auxi l iary theorems 
Let N be any fixed even positive integer , 1\T 

M - any r e a l number, M > 1. The functional 

(2) J H ( ? ) = Re Ajjp, P € S(M), 

i s continuous, whereas the c l a s s S(M) - compact; consequent-
l y , the family of functions for which this functional a t ta ins 
i t s maximum i s non-empty. This family wil l be denoted by 

I t i s self -evident t h a t , i f P e S(M), then, for each 
e e < 0, 2tc) , the function 

P Q (z) = e - i 0 P ( e i 8 z ) , z € E, 

also belongs to the c lass S ( L I ) . Hence i t immediately appears 
t h a t , i f F 6 ifjjiM), then, for 9 = , 3 - 0 , 1 , 2 , . . . ,N-2, 
the function ? e also belongs to 9^(11). 

Moreover, note t h a t , for each function F e we 
have: Re A^, = A ^ . 

L e m m a 1. Let n > 2 be any fixed positive i n t e -
ger . I f the only functions in the c l a s s S, for which 
Re A ^ = n, are the Koebe functions 

K £ ( z ) = ~ ; ~ — ' 2 e 3 , | £ | = 1» 
(1 - £ z ) 
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A.Zielineka 

then, for each function P e S, 

Re A ^ ^ n. 

P r o o f . First of all, let us observe that, if F 
is a function of the class S, than, for each number a, 
0 < a. < 1, the function 

Fa(z) =-^F(oiz) = z +aA 2 pz 2 + ... +an"1Anî,zû + ... 

is holomorphic and univalent in the diso | z | < ̂  ; so it 
also belongs to the class S. 

Suppose, despite of the proposition, that there exists 
a function FQ e S such that 

Re A^p > n. 

It follows from the above remark that, for « o - - ^ î r i - Â - r 
0 

(0 < o(0 <l)t tiie function F belongs to S. But a o 
Re A - = n, so, in accordanoa with the assumption, 

F (z) - — - j , z e E, |£| = 1, 
0 1 o ( 1 - tz)d 

This contradicts the fact that the function EL is holo-cx. 
1 1 0 

morphic in the disc , end thus, in particular, at 
the point z = fi". 0 

l e m m a 2. Let N be arly fixed even positive inte-
ger, N > 6. For K > 8, assume ija addition that the only 
functions in the class S, for which Re A^p = N, are the 
Koebe functions 
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Bounded univalent func t ions 5 

2 3 r i i 
(3) K.{z) = 5 , z € E, e , = e N - 1 , 

(1 - e . j « r J 

j = 0 , 1 , . . . , N - 2 . 

Then there e x i s t s a oonstant M̂  (Mjj > 1) such that), f o r a l l 
III > ftjj and each func t ion P 6 7^(14), 

A2P 4 0 . 

The proof w i l l be ca r r i ed out f o r N = 6. In doing t h i s , 
e s s e n t i a l use w i l l be made of the fol lowing Federson r e s u l t 
[ 6 ] : f o r each func t ion F e S, the es t imat ion 

(4) Re A6p K 6 

ho lds , with tha t equa l i ty i n (4) takes place only f o r f u n c -
t ions (3) (K = 6, j = 0, 1j 2, 3, 4 ) . 

So suppose t h a t , f o r N = 6, the proposi t ion of the lemma 
does not hold. Then there e x i s t s an increas ing sequence 
(M. ). 0 of r e a l numbers and i t s correspondent sequen-u II— I • <!,*** 
ce ( F h ' h - 1 2 o f f a c t i o n s belonging r e spec t i ve ly to the 
f a m i l i e s 3^(11^), h = 1 , 2 , . . . , and such tha t 

(5) = 0 , h = 1 , 2 , , . . . 
h 

In v i r t u e of the compactness of the c l a s s S, from the s e -
quence 2 o n e 0 X ' t r a c t a subsequence 
(Pu ) 

m m= 1 , 2 , . . . 
converging almost uniformly to some func t ion 

P e S . Prom (5) and the Weiers t rass theorem we then, have 

(6) 
lim A = A 2 | . 0 , 

lim Acp = Arò. 
m 
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6 A.Zieliriska 

It is known that, for each M > 1, the Pick function 
W = PM(z), z € E, defined by equation (1) and satisfying 
the condition PM(0) = 0, belongs to the class S(M). More-
over, denoting 

CX3 

PM(Z) = z + 2 *n,yPn> z e B, 
n=2 

we have (cf. e.g., [4]): 

lim P M = n, n = 2,3 M «M If"1 

From this and the Pederson result 

P6Mh < A6Ph < 6 

m m 
A 

and, in consequenoe, =6. So F is one of Koebe func-
tions (3), which contradicts (6). 

For N > 8, in view of an additional assumption and Lem-
ma 1 , our reasoning runs in the same way as that for N = 6. 

Let N still be any fixed even positive integer, N £ 6, 
In the sequel, we shall assume (similarly as in Lemma 2) that, 
for N > 8, the only functions in the class S, for which 
Re A j j j, = N, are functions (3). 

Denote 

(7) = ,JJ ^ ( M ) , M MefMjj,00) H 

A 

where M^ is the constant defined in Lemma 2. Let us divide 
family (7) into the following N-1 subclasses 

( 6 ) = |f e F„ i (2j-1) 4 Arg A2p < -jĵj- (2d+1)}, 

J-0,1 N-2, 
which is relevant for our further considerations, 
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Bounded univalent functions 7 

Families (8) are, of course, non-empty and disjoint. What 
A 

is more, for each M > Mjj and each ;) = 0,1,...,N-2: 

y W * yf(«) 4 V and 
L e m m a 3* Let j be any fixed number of the set 

{0, 1, ..., N-2}, whereas (Mh)h=1 2 . . ~ a n y 0 6 <J nence o f 

real numbers, such that lim M^ = <x» , M^ > Mjj, for 
h = 1,2,... . Prom each of thè families n SjjfM^), 
h » 1,2,... , let us choose arbitrarily one function 
Then the sequenoe (F^^h-I 2 1 8 a^mos't uniformly con-
vergent in the disc E to the function Ki given by formula 
(3). 3 

We carry out the proof by oontradiction, fixing (with no 
loss of generality), for instance, j « 0. In this case it 
suffices to make use of the compactness of the class S and 
the Pederson result (for N = 6), or Lemma 1 (for N > 8). 

3. Fundamental theorems 
Let us proceed to fundamental theorems on the images of 

the disc E, obtained by extremal mappings belonging to the 
families 3"W(M), where M is sufficiently large. 

• * 
T h e o r e m 1. There exists a constant Mg (Mg > 1) 

such that, for each M > Mg, any function W = F(z), z e E, 
of the class S(M), for which the functional 

J6(P) = Re Agpt F 6 S(M), 

attains its maximum, maps the disc E onto the disc |W|<M 
from which exactly one analytic arc issuing from some point 
Wqp on the circle |W| = M has been removed. 

P r o o f . 1) We shall first factorize, for K suffi-
ciently large, both sides of a suitable equation of extremal 
functions. 
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A.Zielinska 

Let F e Tg(M), M > 1. By the theorem of Z.dharsyl&Bki 
([1], pp.5-6), the function w = f(z) = -g-F(z), z e B, sa-
tisfies the following differential-functional equation 

( 9 ) [ ~ ) 2 Wp(w) = Jlp(z), 0 < | z | < 11 

where 

(10) 

( 1 1 ) 

3irp(w) 

ttp(z) 

6 

2 
m=2 L 

6 2 
m=2 

V6F 
, ( m ) 

w m - 1 

M°-1wm-1 + Mm~1 

(7-m)A7 p , 
m—1 + i7-m' 7-.m,F 

+ 5A6P 

min Re 
0<X<2jt 

6 A(m) 
"S1 6 F ix(m-1) 

n=tn 

A(1) - A nP nP' n = 2, 3., A1j) = 1» 

Functions (10) and (11) are non-negative on the circles 
fw| i 1» f z| = 1» respectively, and each of them has on the 
respective- circle at least one double zero. Besides, from the 
forme of these functions it follows that, if "W?-q,(w0) = 0, 
then j = 0, and if zQ) = 0, then K p j = 
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Bounded univalent func t ions 

Let us f i r s t examine the l oca t ion of zeros of the func-
t i on tl-p f o r M s u f f i c i e n t l y l a r g e . 

F i r s t of a l l , note that each of func t ions of the family 

9> = i j 3>(M) (M/- i s the constant defined in Lemma 2) 6 Mt(M6,°o) 6 6 

belongs to one and only one family j = 0 , 1 , 2 , 3 , 4 , de-
f ined by formula (8 ) . I t fol lows from Lemma 3, t h a t , f o r each 
number £ > 0 and any compact subset 6 of the complex plane, 

~ ~ A 
there e x i s t s a constant Mg (Mg > Mg) such t h a t , f o r a l l 

M > Mg, i f P 6 T g ^ , then, f o r each z 6 A : 

(12) | z 5 W p ( z ) - i U z ) ) | < £, 

where 

*3<" • 2 
m=2 

r ( 7 - m ) 2 e ^ ° 
„m-1 + ( 7-m)' 6-m „m-1 

d z + 30, £ j = e 

i = 0 , 1 , 2 , 3 , 4 . 

I t i s easy to v e r i f y tha t 

ttjU) = (a + e-j)2 JET-j(z), 

where 

JETd(a) = z 8 + 2e ; )z7 + 4 ^ z 6 + 6 c j s 5 + 9e j z 4 + 

+ 6z3 + 4£jZ2 + 2e^z + t y Z = 0 , 1 , 2 , 3 , 4 . 

We s h a l l prove t h a t the point z = i s the only zero 
of the func t ion on the c i r c l e ( z | = 1. To t h i s end, 
l e t us observe tha t the func t ion 
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10 A.Zieliriska 

«,(.) - J , U - t / ^ U ) - I • L , ]- 6 
z m=1 

has, with the exception of the points z = £. and z = -£., »J J A . 
the same zeros as the function "fty The equality 7Tj(e ) = 0 
(0 < x < 2x) is liable to hold only if 

cos + + cos 3 + x) + cos + x) = 3, 

i.e., if x = or x = 27t - . Consequently, the 
A 

only zero of the function Tl̂  on the circle ( z | = 1 is the 
point z = Ej not being, as can be seen, a zero of the poly-
nomial JPy So, indeed, the only zero of the function 
on the circle [ z | = 1 is the point z = 

Taking account of the symmetry of functions we may 
therefore represent each of them in the form 

(z+ej2 Z+Ej ni 
(13) tt3(a) = — n - V 

z m=1 

where 

3 - 0t1,2,3t4l| 

|ziJ,| < 1* "» - 1» 2* 3, 4 (3 = 0, 1, 2, 3, 4), 
Let us now fix arbitrarily i (j = 0,1,2,3,4) and sur-

round all zeros of the function ^ with sufficiently small 
disjoint discs. By (12) and the Hurwitz theorem, there exists 
a constant M^* (JP^ > Mg) such that, for all M > M^', 
zeros of function (11) corresponding to any function 
F € cTg(M) lie, respectively, in chosen neighbourhoods 
of zeros of the function Tty with that in each of these 
neighbourhoods the number of zeros of both the functions is 
the same (multiplicities being taken into consideration). Con-
sequently, for and any function F € y6(M), func-
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Bounded univalent func t ions 1 1 

t i o n (11) has , according to (13)» four ze ros : z ^ (m=1,2,3,4) 

i n the disc E and f o u r : — (m=1,2,3,4) outside t h i s d i s c . 
zmP 

Besides , from the theorem of Z.Charzynski [ l ] we know t h a t 
t h i s f unc t ion has at l e a s t one double zero in the c i r c l e 
| z | = 1 . Consequently, f o r M > M ^ and P JgfM), 
we have 

(14) 
m=1 ' mP 

w h e r e lzmpl < 1» m = 1 » 2 » 3 » 4 J i zOpl = 1* 
Prom equation (9) we f u r t h e r i n f e r t ha t the points w ^ = 

= ffZjjjp), m = 1 , 2 , 3 , 4 , are zeros of func t ion (10) sinoe 
f 'Unj j , ) ji 0 (m = 1 ,2 ,3*4) . So, again by the theorem of Z.Cha-
r zydsk i , we have 

•2 4 
(15) 9ft (w) = W " W f ) f - | (w - (w 

w m=1 \ wmP / 

where ( w ^ l < 1 , m = 1 , 2 , 3 , 4 ; |wQ p | = 1. 

Let I I?= max 
b 0O<4 

We have demonstrated t h a t , i f M > M*, then, f o r any 
func t ion P e 7g(M), the func t ion w = f ( z ) = ^ P (z ) , z e E, 
s a t i s f i e s equation (9) in which the func t ions and 
are of forms (15) and (14) , r e s p e c t i v e l y , 

2) We s h a l l now make use of the well-known Royden theorem 
(L8], p.660) by which each func t ion w = f ( z ) = - ^ P ( z ) , z e E, 
where P e 3*g(M) , M > 1, maps the disc E onto the disc 
[ w | < 1 lacking a f i n i t e number of ana ly t ic arcs , 1 g , . . . 
(k = k ( f ) , k > 1) with the fol lowing proper t ies ( [9] ) pa r t s 
I I I and IV)s 

1° The arcs l ^ . . . , ^ run in the disc [ w | < 1 , with 
the exception of , at most, the}.r ends. 
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12 A.Zieliriska 

2° They are d i s j o i n t , with the exception o f , at most, 
t h e i r ends. 

3° The union of the arcs l 1 t . . . , l k end of the c i r c l e 
| w | = 1 constitutes a continuua. 

4° Along each of the arcs 

(16) Re / [ W p ( w ) ] 1 / 2 cons t , 

where Wp i s func t ion (10) . 

5° Each common point of an arc and the c i r c l e | w| = 1, 
or of two a r c s , i s a zero of f u n c t i o n (10) . The number of 
a rcs defined by equation (16) , meeting i n such a ze ro , depends 
on the m u l t i p l i c i t y of the zero; i n p a r t i c u l a r , i n a double 
zero four a rcs (16) meet, forming one with another , r e s p e c t i -
ve ly , angles of measure IT (|CSG, part I I I ) . 

6° At l e a s t one of ends of each arc i s a zero 
of func t ion (10) . 

Let us take any func t ion P e 9"g(M), where M > Mg, and 
A 

i t s correspondent func t ion w = f ( z ) = jjj-F(z), z e B. We 
s h a l l show tha t the number k of a rcs as described i s equal 
to 1. 

Note t h a t , according to property 3°» a t l e a s t one of the 
a rcs l ^ , . . . , ^ must have a point i n common with the c i r c l e 
| w | = 1. Without l o s s of g e n e r a l i t y , l e t us assume tha t i t 
i s the arc 1^. In view of 5° , the common point of the 
arc and the c i r c l e [w | = 1 i s a zero of func t ion (15) , 
and thereby, i t i s the point Since on the c i r c l e 
| w | = 1 condi t ion (16) i s s a t i s f i e d , two of the arcs d e s c r i -
bed in property 5° are area of t h i s c i r c l e , forming each with 
the other an angle of measure 3T. Consequently, only one 
a ro , namely , may en te r the i n t e r i o r of the c i r c l e . Bes i -
des , i t fol lows from 5° and (15) t ha t no other arc ( ^ » . . . » l ^ ) 
has a point in common with the c i r c l e | w | = 1. So, i n accor-
dance with 3°, the union of a rcs l p , . . . , ! ^ i s the empty s e t , 
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Bounded univalent functions 13 

or any of these arcs has a point in common with the end of 
the arc lying in the diso | w| <1. Thè second clause of 
this alternative, however, cannot hold since such a common 
point would be a zero of function (15), and thus, one of the 
points w^p, m = 1,2,3,4. This is imposable since each of 
these points is an interior point of the domain f(E). 

* 
We have thus proved that, if M > Mg, then, for any func-

tion F 6 7"g(M), the function w = f(z) = ̂ -F(z), z e E, 
maps the disc E onto the disc |w| <1 from which exactly one 
analytic arc issuing from some point WQJ, on the circle 
j w | = 1 had been removed. 

Hence we immediately obtain the proposition of the theorem. 
T h e o r e m 2. Let N be any fixed even positive 

integer, N > 8. Assume that the only flmctions in the class 
S, for which Re A ^ = H, are Koebe fuifctions (3). Then the-
re exists a constant M^ (M^ > 1) such that, for eaoh M > M^, 
any function W = F(z), z € E, of the class S(M),. for which 
functional (2) attains its maximum, maps the disc E onto the 
diso | W | < M 'from which exactly one analytic arc issuing 
from some point WQP on the circle [W| = M has been removed. 

The proof runs analogously as that of Theorem 1. By the 
theorem of Z.Charzynski ["ij, eaoh function w = f(z) =-^-P(z), 
z € E, where F e 7 N(M) (Ji >1), satisfies differential-
-functional equation (9), where 

(17) 

(18) ttp(z) N-m+1 . 
zm-1 N-m+1,F + (K-m+1)AK_m+1)Pz 

+ (K - 1) A w - f p , 
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14 A.Zieliriska 

N A(m) $ ' * 
T F = min Re [" ̂  J ^ L eix(m-1)"l 

Functions (17) and (18) have the same properties as functions 
(10) and (11), respectively. 

In virtue of the assumption and Lemma 3, we obtain, simi-
^ it 

larly as in Theorem 1, that there exists a constant M^ (Mjj>1) 
such that, for all M > M^ and any function F e 3"h(M), func-
tions (18) and (17) are, respectively, of the forms 

(z z )2 11-2 / \ 
- n (Z - ZmF> z . 

z m=1 * mP ' 

lz0pl = 1> lzmpl<1» m = 1,2,...,N-2. 

- n-1 n ( w - wmp) ( w — ) » 

w m=1 V mF ' 

Iwof I = 1» wmF = f(zmF)' n=1,2,...,N-2, 
w = f(z) = F(z), z € B. 

Hence, basing ourselves on the Royden theorem and properties 
of f-structures ̂ 9], we get the proposition of the theorem. 
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