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Alicja Zielifiska

ON SOME EXTREMAL PROBLEM IN CLASSES
OF BOUNDED UNIVALENT FUNCTIONS

1. Introduction

Denote by S the class of functions F holomorphic and
univalent in the disc E = {z: 12} <1}, with th¢ Taylor ex-
pansion

Fz) =2 + 22 AnF'zn, z € E.
n=2

Let S(M), M > 1, Dbe the subclass of the family S, con-
sisting of functions satisfying in the disc E the condition
[F(z)| < M, whereas Sp(M) - the subclass of S(M), consist-
ing of functlons with real coefficients,

In [17], [18] and [4] (cf. also [3]), for N = 6, N = 8
and any even N, successively, tkere has been determined a
problem of estimating the N-th coefficient of functions of
the classes SR(M) when M 1is sufficiently large. In the
method applied.in these papers use is made of, among others,.
the differential~functional equation of extremal functions in
the classes Sp(M) [2], yet with the avoidance of complica-
ted integration of this equation., It seems natural to apply
this method to the examination of qoefficients of functions
of the classes S(M). One knows in these classes .the diffe-
rential-functional equation of extremal functions [1]. Besi-
des, it turned out more than once that if, in any extremal
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2 A,Zielirska

problem in the class SR(M), the extremal function was g
function F(z), 2z € E, then, in an anrlogous problem in
(1), such was a function e °F(e®z), 0 ¢ ¢ < 2m

In the present paper the functional Ee ANF defined in
the class S(M) is considered, where N is any even positi-
ve integer, N > 6, By applying the method in question, it
has been shown that there exists a constant M§ such that,
for sll W > M§ and any function W = Fo(z), z € B, realiz-
ing the maximum of this functional (for N 2 8, some additio-
nal assumption is needed), the domain FO(E) is the
disc |%| <1 from which exactly one analytic arc issuing from
some point WOF on the circle |W] = M has besn removed..

4n analogous problem, consisting in characterizing domains
obtained by extremal mappings, was considered in the class S
by, among others, A.C.Schasffer and D.C.Spencer. These authors
proved, in particular, that each function, for which any li-
near functional defined in the class S attains its maximum,
maps the disc E onto a plane from which exactly one analytic
arc igsuing from the point oo has been removed ([9], p.149,
lemma XXX). The analogous theorem in the class of bounded
functions would, however, be false, which can be shown by,
at least, e function realizing the maximum of the functional
Re Ajp defined in the class S(i) (cf. e.g., [10]1).

Let us still recall that coefficients of functions of the
classes S(il) were exactly estimated in the case when M was
sufficiently close to 1t ([13), [141, [151;[12]). For M suf-
ficiently large, such estimations are known only for N = 2,
3, 4 ([71; 01, [163, [535 C111).

The theorems included in the present paper may become
starting-point for further investigations of coefficients with
evén indices.

ZeJsJakubowskl has raised a hypothesis that, similarly as
in the classes SR(M) (cf. [4]1), the only functions in the
classes -S{M), for which Re Ayp (N =6, 8, ¢ee), attains
maximum, are functions of the form
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Bounded univalent <unctions 3

-.e e i N -
o™t PM(ei z), z € B, e =-gﬁg% , 320, 1,000 ,0=2,

where W = PM(z) is a Pick function given by the eguation

(1) w = 2 ’ E,
-0

and satisfying the condition PM(O) = O,

2. Remarks and auxiliary theorems
Let N be any fixed even positive integer, & > 6,
M - any real number, M > 1., The functional

(2) Jy(P) = Re Ay, F € S(u),

is continuous, whereas the class S{M) - compact; consequent-
ly, the family of functions for which this functional attains
its maximum is non-empty. This family will be denoted by
Fy(H).

It is self-evident that, if F e S(l), then, for each
® €<0, 29), the function

Fe(z) = e'igF(elez), z € E,

also belongs to the class S{il), Hence it immediately appears
that, if Fe FylU), then, for o=l , j=0,1,2,...,8-2,
the function PFg also belongs to ?N(M).

Moreover, note that, for each function P € ?ﬁ(M), we
have: Re ANF = ANF'

Lemmma 1. Let n 22 bYe any fixed positive inte=-
ger, If the only functions in the class S, for which

Re App = n, are the Koebe functions

2

KE(Z) =
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4 4.Zielinska

then, for each function P € S,

Proof. First of 8ll1l, let us observe that, if F
is @& function of the class S, thesn, for each number «,
0 <a <1, the function

n

Fa(z) = — Plaz} = 2 +aA2F22 + eae +otn"1Aan + eoe

1
ol
is holomorphic and univalent in the dise |z|<-g—t s so it
also belongs to the class S.

Suppose, despite of the proposition, that there exists
a function Fo € S such that

Re AnF > ne
o}
n-{ n
It follows from the above remark that, for oy = mn—F—

(o <oy <1), the function 1“0L belongs to S. But
o
Re A = n, 8o, in accordance with the asssumption,
nFy,

2

—(—1——;72-, z € &, lE]" = 1.

F«O(Z) =

This contradicts the fact that the function F,  1s holo-
morphic in the disc |z|<j;— , and ’chus,‘ in pa.gticular, at
the point 2z =€, 0
Lemma 2, Let N be any fixed even positive inte-
ger, N 26. For N > 8, assume in addition that the oaly
functions in the class S, for whiech Re Ayxp = N, are the

Koebe functions
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Bounded urivalent functions _ .5

— z - -
(3) KJ(Z) -'antTZSZTQ" z € E, €J =8 ’

j=0,1’ooo,N-2o
Then there exists a constant ﬁN (ﬁn > 1) "such that, for all
M > ﬁN and each function F e Fy(M),

Aop # 0.

The proof will be carried out for N = 6. In doing this,
essential use will be made of the following Psderson result
[6]: for each function F e S, the estimation

(4) Re A6F £ 6

holds, with that equality in (4) takes place only for func-
tions (3) (N =6, J =0, 1, 2, 3, 4).

So suppose that, for N = 6, the proposition of the lemma
does not hold. Then there exists an inoreasing seguence
(Mh)h___1 2rene of real numbers and its correspondent sequen-
ce (Fh’h=1,2,... of functions belongirng respectively to the
families ?%(Mh), h =1,2,ee., and such that

(5) AZF = 0’ h = 1,2,'.. 3
h
In virtue of the compactness of the class S, from the se-
quence (F, ), _ one may extract a subsequence
h h—1'2’.0.

(Fh ) converging almost uniformly to some function
m m=1,2,ooo

Fe S. FProm (5) and the Welerstrass theorem we then have
lim A = 4,24 =0
: 2F 2F ’

( 6 ) m »00 hm

lim A = Acle

Mmoo 6Fhm 6F
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6 A.Zielifiska

It is known that, for each M > 1, the Pick function
W= PM(z), 2z € E, defined by sguation (1) and satisfying
the condition Py(0) = 0, belongs to the class S(M), More-
over, denoting

’ oo
Pylz) =z + z Pn’Mzn, z € E,
n=2

we have (cf. e.g., [4]):

lim PnM= n, n = 2,3..0. .

M >0 ’

From this and the Pederson result

Peu, < 4gp, < ©
m m

and, in conseguence, AGﬁ = 6., So F 15 one of Koebe func-~
tions (3), which contradigts (6).

For N 28, 1in view of an additional assumption and Lem~
ma 1, our reasoning runs in the same way as that for N = 6,

Let N still be any fixed even positive integer, N > 6,
In the sequel, we shall assume (similarly as in Lemma 2) that,
for N 2> 8, the only functions in the class S, for which
Re Ayp = N, are functions (3).

Denote

(7) gy = AJ Fym,

where ﬁN is the constant defined in Lemma 2. Let us divide
family (7) into the following N-1 subclasses

(8) 3’1(\13) = {F € Fy :—Nl_r-.T (2§-1) € Arg A,p < -N—’_%- (23+1)}’

j=0,1,.oo’N-2'
which is relevant for our further considerations,
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Bounded univalent functions 7

Families (8) are, of course, non-empty and disjoint. What
is more, for each M > MN and each J = 0,171,004 ,8=23

(: 4 U7 a8
FI) o g5u) £ 9 ana 9] 50 - 5.

Lemma 3. Let Jj be any fixed number of the set

{0, Ty esey N-Z} whereas (Mh)h_1 2,000 " any sequence of
real numbers, such that 1lim M =o0o, MN, for
h¢°° h

h=1,2,¢ees « From each of thé families 3(3)4n ?N(Mh),

h = 1,2,e00 , 1let us choose artitrarily one function. F(j)
Then the sequence (Fé ))h_ 2,000 is almost uniformly con-
vergent in the disc E to the function K:j given by formula
(3.

We carry out the proof by contradiction, fixing (with no
loss of generality), for instance, Jj = O. In this case it
suffices to make use of the compactness of the class S and
the Pederson result (for N = 6), or Lemma 1 (for N 2 8).

3. Fundamental theorems

Let us proceed to fundamental theorems on the images of
the disc E, obtalned by extremal mappings belonging to the
families ?N(M), where M is sufficiently large.

Theorem 1. There exists a constant M6 (M6 >1)
such that, for each M > MG’ any function W = F(z), z € B,
of the class S(M), for which the functional

Jg(F) = Re Agpr F e S(4),

attains its maximum, maps the disc E onto the disc IWIi<M
from which exactly one analytic arc issuing from some point
Wop oOn the circle IWl = M has been removed.

Proof. 1) We shall firat factorize, for I suffi-
ciently large, both sides of a suitable equation of extremal
functions.
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8 A.Zieliriska

Let F e F4(M), M > 1. By the theorem of Z,Charzydski
(1], pp.5-6), the function w = f£{z) =%F(z), z ¢ B, sa-
tisfies the following differential-functional squation

\ 2
(9) (=) wpm =nplz), 0 <1mi< 1,

where

(10) Wylw) = > _Mm-1v1:m-1 + Mm?-f "m-1:l - ¥p»

6 r~
(7T-m)A - _
(11) np(z) = 2 sz"m E+ (7-m) A7_m’Fzm 1] +
m=2 L
6 ,(m)
A .
? = min Re .ﬂ‘_ elx(m-1)
F 0¢x¢2 [52 Mm-1 ’

F(Z) = E A 2 » ZGE, m = l’ 2’ ooy’
nF
n=m

A&) = AnF, n = 2, 3_, XX R A1F = 1.

Functions (10) and {11) are non~negative on the circles
[w] 2 1, [2] = 1, respectively, and each of them has on the
respective circle at least one double zero. Besides, from the
forme of these functions it follows that, if Wg(w,) = 0,
then Wy (%—) = 0, and if Ng(z ) = 0, then nF (_;__) = 0.

0 0
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Let us first examine the location of zeros of the func~
tion 7ZF for 1 sufficiently large.
First of &ll1, note that each of functions of the family

= iy) ?b(M) (ﬁs is the constant defined in Lemma 2)
MG(MG,N)

belongs to one and only one family ?ﬁj), J =0,1,2,3,4, de-
fined by formula (8). It follows from Lemma 3, that, for each
number € > 0 and any compact subset A of the complex plans,

¥

~ ~ A
there exists a constant Mg (MG > M6) such that, for all
I >'ﬁ6, if Fe Téj), then, for each z € A:

(12) [2°(Mg(z) - ny(2))] <,
where
6 2.6-m — 2
(7-m)“e i
uj(z) = 2 [;:.;1-3—+ (7-m)2 sg""‘ zm""] + 30, £j=e_?-
m=2 z

J = 0v1r2'314'

It is easy to verify that

?Zj(Z) =—;5— (z + 'e'j)?'.zj(Z).

:where

.zj(z) =28 4 22327 + 42?26 + 62325 + 9€§z4 +

+ 6z3 + 45?22 + 2532 + e?, jJ =0,1,2,3,4.

We shall prove that the point 2z = -¢, 1is the only zero
of the function %, on the circle [z] = 1. To this end,
let us observe that the function
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10 A.Zielidiska

P 2m-1
wy(z) =5 (2-%;)° Zy(z) = Z [egm®e + (e, Tl 8

has, with the exception of the points 2z = Ej and z = 'E;j’

the same zeros as the function ’JZJ. The equality 7! (eix)
(0 { x <2x) is liable to hold only if

cosS(—z’bSi+x)+coa 3(3’551+x)+cos(35“1+x)=3,

2

i.e., if =x = ..ﬁi';"l or xA= 27(——?— . Consequently, the
only zero of the function ’llj on the circle [z]| = 1 1is the
point 2z = €, not being, as can be seen, a zero of the poly-
nomial . So, indeed, the only zero of the function 'Jlj
on the circle [z]| =1 1is the point 2z = -'é'j.

Taking account of the symmetry of functions nj, we may
therefore represent each of them in the form

( Z+E )2

J = 0’17273:443

where Iz&j)l< 1, m=1, 2,3, 4 (J=0,1, 2,3, 4.

Let us now fix arbitrarily § (J = 0,1,2,3,4) and sur-
round all zeros of the function . with sufficiently small.
disjoint diacs, By (12) and the Hurwitz theorem, there exists
a constant utd) (M 3> ﬁs) such that, for a1l M > M ‘”,
zeros of function (11} corresponding to any function
Fe s'éj)n 3’6(M) lie, respectively, in chcsen neighbourhoods
of zeros of the function 'IZJ, with that in each of these
neighbourhoods the number of zeros of both the functions is
the same (multiplicities being taken into consideration). Con-
sequently, for llI>MM:j and any function Fe?’é“n?ﬁ(n), func-
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Bounded univalent functions 11

tion (11) has, according to (13), four zeros: Zup (0=1,2,3,4)

in the disc E and four: —— (m=1,2,3,4) outside this disc.

z
oF
Besides, from the theorem of Z.Charzyriski [1] we know that

this function has at least one double zero in the circle
|zi=1. Consequently, for M > M(j) and F e Séj)r\ Fe(M),
we have

(14) WF(Z) =—'5'— l_] (z - sz) (z -

where [szl <1, m= 1,2,3,4; IZOFI = 1.

From equation (9) we further infer that the points Wop =
= f(sz), mn=1,2,3,4, are zeros of function (10) sinee
f’(sz) #0 (m=1,2,3,4)e So, again by the theorem of Z.Cha-
rzyhskl, we have

(W-WOFQ 4 1
(15) Wy (w) =—;5—)— L:L (w = wyp) (w -=—>

Vop
where |w.n| <1, m=1,2,3,4; [wyp| = 1.

Let M/ = max u(d),
0¢J<4

We have demonstrated that, if M > My, then, for any 4
function F e F;(M), the function w = f(z) = 1 F(z), z €E,
satisfies equation (9) in which the functions Wy and Ny
are of forms (15) and (14), respectively,

2) We shall now make use of the well-known Royden theorem
([8], p.660) by which each function w = f(z) =-%-F(z), 2z € E,
where F € GE(M), M >1, maps the disc E onto the disc
[w]<1 lacking a finite number of analytic arcs Lyslpseeeydy
(k = k(£), k > 1) with the following properties ([9]) parts
III and 1IV):

1° The ares 1,,...,1, Tun in the disec [w|<1, with
the exception of, at most, thejr ends,
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12 AosZieliniska

2° They are disjoint, with the exception of, at most,
their ends.

3° The union of the arcs 11"°"1k eiud of the circle
[w] = 1 constitues a continuum,

4° Along each of the arcs

(16) Ref[mF(w) 1/2 i,';—: const,

where ’KF is function (10).

5° Each common point of an arc and the circle |w| = 1,
or of two arcs, is a zero of function (10), The number of
arcs defined by equation (16), meeting in such a zero, depends
on the multiplicity of the zerc; in particular, in a double
zero four arcs (16) meet, forming one with another, respecti~
vely, angles of measure %; (C9l, part III).

6° At least one of ends of each arc 11""’1k is 8 zero
of function (10).

Let us take any function F € SE(M), where M > Mz, and

its correspondent function w = f(z) =-%-F(z), 2 e E. We
shall show that the number k of arcs as described is equal
to 1.

Note that, according to property 3°, at least one of the
arcs 11”"’1k must have a point in common with the circle .
|w] = 1. Without loss of generality, let us assume that it
is the arc 11. In view of 5°, the common point of the

arc 1, and the cirele [w| = 1 1is a zero of function (15),
and thereby, it is the point Wope Since on the circle
[w] = 1 condition (16) is satisfied, two of the arcs descri-

bed in property 5° are ercs of this circle, forming each with

the other an angle of measure I, Consequently, only one

aro, namely 11, may enter the interior of the circle. Besi-

des, 1t follows from 5° and (15) that no other arc (1,,...,1;)
has a point in common with the c¢ircle |w| = 1. So, in decor-
dance with 3°, the union of arcs 12,...,lk’ is the empty set,

=392 -



.Bounded univalent functions 13

or any of these arcs has a point in common with the end of
the arc 1,, lying in the disc | w] <1. The second clause of
this alternative, however, cannot hold since such a common
point would be a zero of function (15), and thus, one of the
points Wops M= 1,2,3,4. This is imposgble since each of
these points is an interior point of the domaln f(E).
We have thus proved that, if M > Mg, then, for any func-
tion F e F((M), the function w = f(z) = %-F(z), 2z ¢ E,
maps the disc E onfto the disc [w| <1 from which exactly one
analytic arc issuing from some'point Wop OR the circle
{w] = 1 had been removed.
Hence we immediately obtain the proposition of the theorem.
Theorem 2, Let N be any fixed even positive
integer, N 2> 8. Assume that the only functions in the class
S, for which Re Ayp = N, are Koebe furictions (3). Then the-
re exlsts a constant Mg (Mg > 1) such that, for each M > Mg,
any function W = F(z), 2 € E, of the class S(M), for which
functional (2) attains ite maximum, maps the diasc E onto the
diso |W| < M ‘from which exactly one analytic arc issuing
from some point: Wop On the circle [W| =M has heen removed,
The proof runs analogously as that of Theorem 1, By the
theorem of Z.Charzydski [1], each function w = f(z) =-%—F(z),
2 € E, where F-e ?ﬁ(M) (M >1), Bsatisfies differential-
~functional equation (9), where

YOI
. ] M~
() wp(w) = 2, Ty I R B - P
m=2 i
S Mn
=m+1 7 n by
(18) Mglz) = [";E-T byemeq, 7 + (N1 Ay o q 52 ] +
m=2

+ (N - 1) AI\I—F -’?F’
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P g
o = mi R Ny 1xim- ].
P oaxaom [zz w1

Functions (17) and (18) have the same properfies as functions
(10) and (11), respectively.

In virtue of the assumption and Lemma 3, we cbtain, simi-
larly as in Theorem 1, that there exists a constant M;; (M§>1)
such that, for all M > M;; and any function F e "J"N(M), func-
tions (18) and (17) are, respectively, of the forms

(z - ZOF)z -2 ( 1 )
= -z ) [z -1,
Nplz) =3 ﬂ (z - z,5) |2 =

lzopl = 1, [zgpl<ty B =1,2,...,8-2,

(w - w.)2 N=2
Molw) = OF (w - )( --—1—>,
plw = l—l w-wgollw _

m="
'VJOFI = 1’ WmF = f(sz)’ m=1’2,.¢o’N“'2,

w = f(z) =%—F(z), Zz € B,

Hence, basing ourselves on the Royden theorem and properties
of [ =-structures [9], we get the proposition of the theorem.
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