

M.S. Khan

REMARKS ON SOME FIXED POINT THEOREMS

The well-known fixed point theorem of Lj.B. Čirić has been used to prove some results concerning common fixed points of a pair of mappings defined on a complete metric space. Our work refines some known results.

1. Introduction

Let (X, d) be a metric space. Then clearly a fixed point of a mapping $S: X \rightarrow X$ is a common fixed point of S and the identity mapping I_X on X . Motivated by this, Jungck [5] obtained the following generalization of the Banach Contraction Principle by replacing I_X by a continuous mapping $T: X \rightarrow X$.

Theorem A. A continuous self-mapping T of a complete metric space (X, d) has a fixed point if there exists a real number $\alpha \in (0, 1)$ and a mapping $S: X \rightarrow X$ which commutes with T and satisfies

- (i) $S(X) \subset T(X)$,
- (ii) $d(Sx, Sy) \leq \alpha d(Tx, Ty)$ for all $x, y \in X$.

Indeed, S and T have a unique common fixed point.

Following is yet another generalization of Banach Contraction Principle which is due to Čirić [2].

Theorem B. Let S be a self-mapping of a metric space (X, d) . If the inequality

$$(*) \quad d(Sx, Sy) \leq \alpha \max\{d(x, y), d(x, Sx), d(y, Sy), d(x, Sy), d(y, Sx)\}$$

holds for all $x, y \in X$, $\alpha \in (0, 1)$, and X is S -orbitally Complete, then S has a unique fixed point.

Mappings satisfying $(*)$ are called quasi-contractions.

More recently, Das and Naik [3] proved the following result which unifies Theorem A and Theorem B.

Theorem C. Let (X, d) be a complete metric space. Let T be a continuous self-mapping on X and S be any self-mapping on X that commutes with T . Further, let S and T satisfy

(i) $S(X) \subset T(X)$,

(ii) $d(Sx, Sy) \leq \alpha \max\{d(Tx, Ty), d(Tx, Sx), d(Ty, Sy), d(Tx, Sy), d(Ty, Sx)\}$
holds for all $x, y \in X$ and $\alpha \in (0, 1)$.

Then S and T have a unique common fixed point.

It may be mentioned that Theorem C has also been obtained earlier by Ranganathan [7]. Also note that in the proof of Theorem A, use is made of the Continuity of S , which is a consequence of (i), but no continuity argument of S has been used in the proof of Theorem C. It is known that every complete metric space is orbitally complete but the converse is not true (see Čirić [1]). Therefore Theorem B, as claimed by Das-Naik [3] and Ranganathan [7], does not follow from Theorem C by taking $T = I_X$.

In this note we show among other things that Theorem C actually follows from Theorem B. To do this we first prove a coincidence theorem which is subsequently utilized to establish the main theorem.

2. Main results

Theorem 2.1. Let S and T be two mappings of a non-empty set X into a metric space (Y, d) satisfying the following conditions for some non-negative real number $\alpha < 1$:

(i) $S(X) \subset T(X)$

(ii) for all $x, y \in X$ the inequality

$$d(Sx, Sy) \leq \alpha \max\{d(Sx, Tx), d(Sy, Ty), d(Sx, Ty), d(Sy, Tx), d(Tx, Ty)\}.$$

If $S(X)$ or $T(X)$ is complete under the metric d ; then there exists a point $a \in X$ such that $S(a) = T(a)$.

P r o o f . Let U be a choice function for the family $\{T^{-1}(y) : y \in S(X)\}$. Then $S \circ U$ is a mapping of $S(X)$ into itself and satisfies

$$d(S \circ Ux, S \circ Uy) \leq \max \{ d(S \circ Ux, x), d(S \circ Ux, y), d(S \circ Uy, y), d(S \circ Ux, y), d(S \circ Uy, x), d(x, y) \}$$

for all $x, y \in S(X)$. So if $S(X)$ is complete, then by Theorem B we have $S \circ U(b) = b$ for some $b \in S(X)$. Put $a = Ub$. Then $a \in T^{-1}(b)$ and we have $b = T(a)$. Hence $S(a) = S \circ U(b) = b = T(a)$, as required. If $T(X)$ is complete then we consider a choice function for the family $\{S^{-1}(y) : y \in T(X)\}$.

R e m a r k s :

(i) Machuca [6] obtained a coincidence theorem for mappings satisfying a contraction type condition which is a special case of a quasi-contraction. Hence Theorem 2.1 generalizes Machuca's result.

(ii) Theorem 2.1 offers criteria for the existence of solutions for equations of the form $Sx = Tx$, and $Sx = y$, $y \in X$ by specializing T to the constant mapping with value y .

Our main theorem reads as follows.

T h e o r e m 2.2. Let S and T be commuting mappings of a non-empty set X into a metric space (Y, d) and satisfying conditions (i) and (ii) of Theorem 2.1. If $S(X)$ or $T(X)$ is complete under the metric d , then S and T have a unique common fixed point.

P r o o f . By Theorem 2.1, there exists a point $a \in X$ such that $S(a) = T(a)$. Then commutativity of S and T gives $T(Ta) = T(Sa) = TS(a) = ST(a) = S(T(a)) = S(Sa)$. So using condition (ii) we have $d(Sa, S(Sa)) = 0$, that is, $S(S(a)) = Sa$. Hence $T(S(a)) = S(Sa) = Sa$. Thus $Sa (=Ta)$ is a common fixed point of S and T . The uniqueness of the

common fixed point of S and T is routine and follows once again from condition (ii). This completes the proof.

R e m a r k . In Theorem C the continuity of T was used both by Das-Naik [3] and Ranganathan [7]. Our Theorem 2.2 shows that even the continuity of T can be dispensed with.

Finally, we wish to present an application of Theorem 2.2

T h e o r e m 2.3. Let (X, d) be a non-empty complete metric space and S, T be mappings of the product space $X \times X$ into X such that

$$S(X \times X) \subset T(X \times X) \quad \text{and} \quad S(T(x, y), y) = T(S(x, y), y)$$

for all $x, y \in X$. If there exists a constant α with $0 < \alpha < 1$ and

$$(\ast \ast) \quad d(S(x, y), S(x', y')) \leq \alpha \max \{d(T(x, y), T(x', y')), d(T(x, y), S(x, y)), d(T(x', y'), S(x', y')), d(T(x, y), S(x', y')), d(T(x', y'), S(x, y))\}$$

for all $(x, y), (x', y') \in X \times X$, then there exists exactly one point $a \in X$ such that $S(a, y) = a = T(a, y)$ for all $y \in X$.

P r o o f . Let $y = y'$ and $x \neq x'$. Then by $(\ast \ast)$ for every $y \in X$ we have

$$d(S(x, y), S(x', y)) \leq \alpha \max \{d(T(x, y), T(x', y)), d(T(x, y), S(x, y)), d(T(x', y), S(x', y)), d(T(x, y), S(x', y)), d(T(x', y), S(x, y))\}.$$

Therefore by Theorem 2.2, for each $y \in X$ there exists only one $x(y) \in X$ such that

$$S(x(y), y) = x(y) = T(x(y), y).$$

Now we claim that $x(y) = x(y')$ for $y \neq y'$. Suppose not, then by $(\ast \ast)$ we would have

$$d(x(y), x(y')) \leq \alpha d(x(y), x(y')),$$

as $\alpha < 1$, we find that $x(\cdot)$ is some constant $a \in X$. So $S(a,y) = a = T(a,y)$ for all $y \in X$. Unicity of a is obvious.

R e m a r k . Theorem 2.3 extends a result of Iséki [4].

REFERENCES

- [1] Lj.B. Čirić : Fixed and periodic points of almost contractive operators, *Math. Balkanica* 3 (1973) 33-44.
- [2] Lj.B. Čirić : A generalization of Banach's contraction principle, *Proc. Amer. Math. Soc.*, 45 (1974) 267-273.
- [3] K.M. Das, K.V. Naik: Common fixed point theorems for commuting maps on a metric space, *Proc. Amer. Math. Soc.* 77 (3) (1979) 369-373.
- [4] K. Iséki : Application of Zamfirescu's fixed point theorem, *Math. Seminar Notes* 4 (1976) 215-216. MR.
- [5] G. Jungck : Commuting mappings and fixed points, *Amer. Math. Monthly*, 83 (1976) 261-263.
- [6] R. Machuca : A coincidence Theorem, *Amer. Math. Monthly*, 74 (1967) pp.569.
- [7] S. Ranganathan : A fixed point theorem for commuting mappings, *Math. Seminar Notes*, 6 (1978) 351-357.

DEPARTMENT OF PURE MATHEMATICS, LA TROBE UNIVERSITY,
BUNDOORA, VICTORIA. 3083, AUSTRALIA

Received August 28, 1980.

