
DEMONSTRATIO MATHEMATICA 

Vol. XV No 2 1982 

Kazimierz Wlodarczyk 

APPLICATIONS OF INEQUALITIES 
OF GARABEDI AN - SCHIFFER TYPE FOR PAIRS 

AND BOUNDED FUNCTIONS NOT ASSUMING CERTAIN VALUES 

Introduction 

Two f u n c t i o n s , P and G, are ca l led a pair (F,G) i f 

they are univalent in A = { z : | z | < 1} , 

F(z) = a(z + a2z + . . . ) , G(z) = b(z + bgZ + . . . ) , 

and such that 

F(z)G(4) + 1 

f o r any ( z , £ ) e A * . A . The c l a s s of a l l pairs (F,G) as de-

f ined above i s denoted by A. This c l a s s was i n t e n s e l y inve-

s t i g a t e d i n the work of J.A.Hummel and M . S c h i f f e r [2J, and 

c l a s s c lose to those belonging to the c l a s s A were examined 

by A . S e i l e r [3]. 

In [ 6 ] we proved i n e q u a l i t i e s of Garabedian-Schif fer (["ij) 

type f o r pairs of vector funct ions [ 4 ] and presented a throught 

d iscuss ion of these i n e q u a l i t i e s . The present paper i s a con-

t i n u a t i o n of s tudies presented i n [63 and deals with the prob-

lem of maximization of c e r t a i n f u n c t i o n a l s i n the c l a s s A 

of pairs (P,G") not assuming two v a l u e s . In p a r t i c u l a r we 

give c o r o l l a r i e s concerning bounded f u n c t i o n s , Bieberbaah-

-Bi lenberg ones and Grunsky-Shah f u n c t i o n s , not assuming c e r -

t a i n v a l u e s . 
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2 I t . T.72:odarczyk 

1. The a r e a i n e q u a l i t y 
F o r any f i x e d u , v e C s u c h t h a t u 4 v , uv ¿ 0 , l e t 

A u v b e a s u b c l a s s o : f A o f t h o s e p a i r s ( F , G ) f o r w h i c h 
a , V € C \ [ F ( A ) u l / G ( f i ) ] . L e t ( F , G ) € A u v , and l e t 

OH 

_ r u - F ( 2 | - [ 1 / ¿ _ . / u a ( u - v ) a a a 2 
1 ' L v - F ( z ) J \ v t z + . . . = a + a ^ + a ^ S . . . , 

5/ v r i - v G í z ) " ! 1 ^ 2 „ b ( u - v ) a a a 2 
G ( z ) = — u , g I z ) J = 1 + g z + ••• = b+ i b 1 a-Hb 2 a ' : +. . . . 

Hence 

F ( z ) , G ( z , - 1 - S f ( » ) . ( 2 ) = AA , AHB/ = ¡CTJ-
F ( z ) v — u G ( z ) 

We d e f i n e t h e c o e f f i c i e n t s a ^ = a g p ( u , v ) , p = b^ a , v ) , 
° q p = C q p ( u ' v ) ' d q p = d q p ( u ' v ) ' q ' p = g e n e r a t e d 
i n t h e b i c y l i n d e r A * A by t h e f u n c t i o n s : 

l 0 - ( z ~ 4 ) D ? ( z ) + F U ) ] _ y 

*<»> - *<«> • q ^ - o " q P 

q p 
3 n n Z ^ » 

S ( z ) - 3 ( 0 q £ 0 « 

A . . A 

1 - F ( Z ) G ( 4 ) q ^ = 0 q P 

1 0 8 1 + ; o i t * . . a . d v . 
* 1 - G ( z ) F ( ¿ ) A q , p = 0 
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A p p l i c a t i o n s o f i n e q u a l i t i e s 3 

* e n c e , i n p a r t i c u l a r , w e h a v e 

^ 3 ) A 0 0 = L O G ^ O 0 0 = L O G ^ , B 0 0 - L O G ^ F 

A 1 1 - A 2 2 " A 3 - I A 2 U - T ) 2 ' B 1 1 = B 2 2 - B 3 - L B 2 ( A . V ) 2 , 

( 4 ) 

C I I - D N = - • 

A s s u m e t h a t 

I ; • R M * ) M ^ L 
( 5 ) H 0 ( W ) = P 0 ( w ) ^ 3 0 ( w ) , H ^ w ) = - - V ( A - w ) ( v - w ) - J T T - + - ¿ - ¡ r > 

L A^ 1) J 

w h e r e 

( 6 ) . P ( w ) - l o g J ^ J + ^ G , Q 0 ( W ) - l o g l ^ H • 
0 W ( W ) — YU/V 0 1 —W(W) 

« « • I • V - I • V I R - « I F » - * 

a n d l e t 

( 7 ) H 0 O P ( Z ) = ^ A q z q - l o g z| H Q O 1 / G ( Z ) = ^ B q z q + l o g z , 

q = 0 q = 0 

( I z | = r , 0 < r < 1 ) 

( 8 ) H ^ P I Z ) = ^ C Q Z Q » H ^ I / S F Z ) = 2 V 9 ' 
Q * 1 " — ¿ J Q 

Q=-OO Q=_OO 
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4 K«W3:odarozyk 

A simple consequence of Theorem 1 [ 6 ] i s 
T h e o r e m 1. I f (F,G) 6 A„ „ , then u tv 

(9) 2 o ( l A g ! 2 + l B q | 2 ) < 2 R e { A 0 - B j , 
q=i 

and f o r |s| = |* \ = 1, 

(10) - R e j e ^ C . . . , < I C ^ I 2 + |D_.,|2, 

with that equa l i ty t a k e s place i f and only i f 

(11) = - £ 2 C_ 1 f D1 = - r 2 ^ , Cq = Dq = 0 , q = 2 , 3 , . . . 

2 . Maximization of the func t iona l |abj 
We prove the following 
T h e o r e m 2. I f (F,G) € Au y > then 

(12) labl < 16 uv 

|Vu + Vv 
4 ' 

Equali ty i n the case when u/v > 0 takes place only f o r 
the pairs (F,G) (Figure 2) defined by formulae ( 2 ) , where 

A 
the funct ions F and G (Figure 1) s a t i s f y the equations 

n ) F(z) f"4/y _\fa]U£z ilv/u. G(z) b o 4/7] 
V v J 1 - £ z ' G ( z ) 

1+rz 
1 —xz 

end I e = I f = 1 . 
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Appl ica t ions of i n e q u a l i t i e s 5 

P r o o f . Prom i n e q u a l i t y (9) i t fo l lows t h a t 

(14) E e { A o - B o } > 0 ; 

e q u a l i t y ho lds i f and only i f 

(15) . Â  = Bq = 0 , q = 1,2 R e { A
0 } = R 0 { B

O } ' 

Sinoe, ixr v i r t u e of (5) - ( 7 ) , 

= - c , B„ = d - - b „ , 0 00. 0-0' 0 00 00* 

t h e r e f o r e , i n view of ( 3 ) , i n e q u a l i t y (14) w i l l take the 
form (12) . 

Suppose t h a t i n (12) e q u a l i t y h o l d s , and l e t u/v > 0 . 
Then, from (15) i t fo l lows t h a t , f o r the extremal p a i r (P,G), 
the equa t ions 

HQ°P(z) = A 0- log z , H 0 O I / Q ( b ) = B0+log z , R E { A O ~ B O } = 0 

are s a t i s f i e d . Consequently, t ak ing AQ = - l o g e , BQ = log t , 
we have 

(16) -Re{H0op(z)}= l o g | e z | , Re{H0o1/G(z)}=log|liz| , | c r | - - 1 , 

and hence i t appears t h a t the equa t ions (13) are s a t i s f i e d 
and | er | = 1. 

Note t h a t 0 , ± %[a7v ieD(F,G)hC\[P( A)W-F( A ) O 1 / G ( A K , - 1 / G ( A ) ] . 

R e a l l y , s ince H Q ^ 0 , e q u a l i t y i n (9) t akes place i f and 
only i f the measure of the se t D(F,G) = C \ [ F ( A ) O 1 / G ( A ) ] i s 
equal to ze ro . Consequently, the images of A through the 
mappings P and 1/G must f i l l up, t oge the r wi th the bounda-
r i e s , the plane C , and s ince 
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6 K.W3:odaroz;yk 

í ( » ) 
u - F(z 
v - Fíz f u 

1/2 
1/G(z) = u -

v - 1/G(z 
1/2 

also the images of A through the mappings F, -F, 1/G, -1/G 
must f i l l up, together with the boundaries, the plane C . 

Since the functions f 1 and g^, 

f « U ) 1 + ez 1 + r z 
r " ' " 1 - e z » ®1 ^ = 1 " xz » 

A A 

are univalent in A, the functions f^ and g^, 

"Vu/v -yv/u 

A A 
are univalent in, respectively, F(A) and G(A). In conse-
quence, there do not exist in F(A) distinct points v^, ŵ  
such that w-jWg = - Vu/v, and there do not exist in G{A) 
dist inct points w ,̂ w2 such that w-jw2 = " Vv/n» 

Suppose that Vü/v i 6 P(A). Then, from the openness of 
the set F(A), i t follows that, for n suff ic ient ly large, 

4/—^ _ ^ 
w1n = a*P&(*/2+1/n)] , w2n = -w1n e P(A). 

However, this i s impossible since w-jnw2n ^ ~ Vu/v. Now, 

suppose that - Vu/v i e P(jA), and put = w ^ = w¿n. 

Then w£n £ F(A) and w^nw2n = " Vu/v, which i s also 

impossible. In* an analogous way, we cheok that + Vu/v' i ^ 
-P(A) ul/G(A) o - 1/G(A). 
If Vu/v i e 3 [p( A) u - P( A)] , then there exists some 

z' e 3 A such that 
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A p p l i c a t i o n s of ineq u a l i t i e i s 7 

t* (Va/v 1) - ( V v / i - V u A V + £ Z > , 
1 \ /1 - e i ' 

whence, by equating the real parts, we get that |e| = 1 and, 
in consequence, also | t ] = 1, and thus equations (16) take 
the form (13). We come to a similar conclusion i f - Vu/v' i e 

e [p( A) o - F(A)] or tyü/v i e a [i/G(A) u - 1/G(A)] or 

- >/ü/v i € 3 [ l / G (A )u _ 1/G(A)]. So, | = |* |= 1 and, in 
4 1 > A A 

consequence, + \u/v € D(F,G). 
The functions f^ and g^ transform A conformally onto 

the s«t {17 : Re^ > 0 j , whereas Re f.,(w) = 0 i f and only i f 
Re w = 0 or [w | = and Re g^w) = 0 i f and only i f 

Re w = 0 or |w | = %¡v/a\ 
It remains to notice that, i f 0 < u/v < 1, the functions A i ^ 

f^, respectively g^, transform the sets {w:|w| < Vu/v, 
Re w > o } , respectively {w: |w | < R e w > ()}, conformally 
onto the set {17 i Re 17 > o|, and i f 1 < u/v, then they trans-
form the sets {w:[w| > Vü/v", Re w > 0}, respectively 
{w: |w| >^v/u, Re w > o|t conformally onto the sét {ipsRei? < o} , 
whereas the functions f ̂ , |e|= 1, respectively g 1 t | r | = 1 , 
transform A conformally onto the set {17: Re 1} > o j . The 
extremal domains are illustrated by Figures 1 and 2. 

0<u/v<1 1<u/v 

Figure 1 
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8 K.Wìodarozyk 

0 <u/v<1 1<u/v 

FIA) GIA) F(ùl 6(A) 

Figure 2 

3. Maximization of derivatives for pairs not assuming two 
values 

I f (F,G) e AU j V , and z ^ z g e A , l e t 

z+z «Til 4 Z +Z 0 tì— A J A -BA 
p(z) r - i - , q(z) = — z r i - , p(z) = q(z) ^ , 

z-z. z-z. 

1+ZjZ 1+ZgZ 1 - z ^ 1-z 2 z 

while 

(17) 
i - F(z.,) 

u = 1 - u G(z2) » 
~ v - F ( 2 i ) 
7 = 1 - v Q[z2) • 

There holds 
T 

where 
T h e o r e m 3. I f (F,G) e then (F,G) e A g ^ , 

Fop(z) - F ( Z l ) „ . 
' ( z ) = 1 - Pop(z)G(z2) ' G ( z ) = 1 - Goq(z)F(Z l) 

Goq(z) - G(z 2) 

and 

(18) F(z) = 
Fop(z) - F ( - z 1 ) 

1 - Fop(z)G(-z2) 
, G(z) = 

Goq(z) - G(-z 2) 

1 - GoqizjFf-z^ 

As an immediate corollary of Theorems 2, 3 we get 
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Applications of inequal i t ies 9 

T h e o r e m 4. I f (F,G) e a^Zg 6 A, then 

< 16 |1-F(z„ )G(z )|2 lfr.r(«„)] Cl-vG(zp)] [v-F(z„ )] Ll-uG(z9 )] [ 
^ (1-IZ-, |!*)(1- |z2 f ) | VQu-F(Zi )] [1-vG(Zp )3+ Vpr-F(Sl El-uG(z2 )1|" 

In the case when u/v > 0 , where a and v are defined 
by equa l i t ie s (17), equality holds only for the pairs (F,G)6 
e A„ defined by equations (18), where 

- a " - . g f i - j - J s ! z ! • 1 - F ¿ ( z ) v - uG (z) 

with that 

Vs7? F(z) 

a I v 
1 + ez 
1 - ez ' 

V- < A 
v/u G(z) 4/v _4 u 

u V v M - K I = 1. 

4. Maximization of derivatives for bounded functions 
Let S^ stand for the c l a s s of a l l functions P, univa-

lent in A, of the form 

F(z) = b(z + &2Z + • • • ) , (0 < | b | < 1 ) , 

suoh that |P(z)| < 1 for z e A . Por any fixed u 6 A \ { o } , 
l e t S 1 u denote a si 
for which u ¿ P(A). 
l e t denote a subclass of S^ of those functions F 
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10 K.W3:odarozyk 

Prom Theorem 4» i f zQ = z^ - z 2 , v = 1 /a , and G = F, 
where F(z) = F ( z ) , there follows 

T h e o r e m 5. I f F 6 S 1 u , zQ e- A, then 

l » ' ( . „ ) | < 4 ' 1 " ' r U l " 2 r ' I 0 1 " F ' ' " l ] D ' 5 F ( ' ° ' 3 l . 
" (1 - \ z o f ) [|u - P ( . 0 ) | + | 1 - 3 FU 0 )| ] 2 

Equality takes place only for the function F e sa-
tisfying the equation 

Pop(z) - P(-z_) _ z - z 
P(z) g - , P(z) = 0 

1 - Pop(z)P(-z 0) 1 - z o z ' 

where 

F(z) J S l 2 - ^ » , — 
ÏÏ [l . P 2 ( z i ] \ 1 -

U - ? ( z 0 ) 

while the function F s a t i s f i e s the equation 

= ( 1 / V í s T - V Í K I ) H f f - , l e i - l . 
p(z) V M 

The domains P(A) and P(A) are i l lustra ted by Figure 3. 

j S l / u 

FIA) f U ) 

Figuré 3 
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Applicat ions of i n e g a a l i t i e s 11 

5. Maximization of the th i rd order f u n c t i o n a l f o r pa i r s 
and c h a r a c t e r i z a t i o n of a l l extremal pa i r s 

We s h a l l now prove the fol lowing 
T h e o r e m 6. I f (F,G) e A u ,v ' then 

(19) 

'vhere 

0 " a 3 - a 2 

D = b3 - b 2
2 +-g-b 2 [ (u -v) 2 + 4Vuv(a+v)] . 

In the case when u/v > 0, equa l i ty takes place only 
f o r the pa i r s (F,G) e An „ , where the func t ions P and G Uy V 
(Figure 5) are defined by the formulae (2) , while the func -A A 
t i o n s F and G (Figure 4) , 

F(z) = "Vu/v + a^z agZ2, + . . . , G(z) = 1 + + b 0 z 2 + . . . , 

s a t i s f y the equat ions : 

hz) Nafi 

- l/u/v P ( z l -FT la Z E 

F(z) " ^ - t G a " ^ ' ^ - « i « - * , )(«*+*,) ' 

G(z) VvTu 
A " A . . 

( 2 0 ) 

ZT - W v n/^7u | Vv+Vu 
G U I ( « ^ H « ^ ) ' 

^ G(z) 
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12 K»W3:odarczyk 

with that = e , g, = t | |, j = |$2 j = 1, 

A A A A 
And so, for every a1, ^ » the functions P, 6 belong 

to the one-parameter families, where the parameters are, re-
spectively, a2, big or 

P r o o f . Sinoe, in view of (4)-(6) and (8), 

C_1 = -1/{a.,b), D-1 = l/(b^a), 01 = -C^C, D1 = -D^D, 

ineauality (10) will take the form 

(21) R e { g 2 C^2C + ? 2 D ^ ^ j ^ l c ^ l 2 + Id.^2» |«|-|<|-1t 

whenoe, in view of the arbitrariness of £ and X , taking 
account of (1), we obtain at once inequality (19)» 

Note that, if, for the pair (F,G), equality in (21) 
does hold, then this equality holds also for the pairs (Pf,Q^), 
where Fg-iz) =F(6z), Gtf(z) =G(iz), | C J = | i | = 1 . So we 
may assume, after some eventual rotation, that (F,G) is 
such a pair for which a^ = £ | a^ | v ,bLj =tf |ib!j|* 

Now, note that the function H^ can be represented in the 
form 

_ _ ! _ _ _ _ _ L _ + 1 . r w(w) + w(w) 1 = 
w(w)-a w(w)+a a |_1-w(w) 1+w(w) J 

H ^ w ) = -
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Applications of inequalities 13 

2(Va + 1/V&) w(w) 

L V ? w(w) J 

1 + a - a i2{w) 
A 

a ' W2(w)j 

and °o " -C^C, D0 = -D^D, 

A 

£ a2 u-v+4Vu7 [v £ i. b2 u-v+4Vuv C C = -r— - o/ — i/r~ a., D = * — - ..T.. i— D. 
a 2 {u-v J u 2 ( u-v J V 

So, taking account by (11), 

H-JOFU) = T f V [- \ + 6 + Z c2], H^°1/G(z) = - ̂ r [- ̂ + D + Z T 2 ] 
â  b b^ & 

and, in consequence, 

1 + 
(22) m iii Wu/v' 

, Vu/v 

F S T . 2| V. Z£ 
O O A 

z^+Cz-l 

P(z) 

1 + 
(23) 

u g |"G2(Z). VVTUH 

Since H1 ^ 0, equality in (21) takes place if and only 
if the area D(F,G) is equal to zero. Hence it appears that 
the set D(F,G) possesses no interior points and also the set 
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14 K.W2:odarczyk 

D(FtG) possesses no interior points; the functions F and 
A A 

-P are defined by equation (22) whereas tha functions G 
and -G are defined by (23). 

Prom the univalenoe of the functions fg and gg in A , 

fp(z) = p p » 6p(z) - o p zr̂  , ¿ z ¿£ ¿ + e C z e - 1 « ^ + f D zt - 1 

A A 
the univalenoe of the functions f 2 and g 2 in, respecti-
vely, P(A) and G(A), 

w _ Ü Z Z 
V̂u/v' w 

follows in virtue of (22) and (23). Consequently, there do 
A 

not exist in F(A) distinct points w^, w^ such that 
wiwCJ = - Va/v or 

and there do not exist in G(A) distinct points w^,w2 such 
that w-w„ = u or 
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Applications of i n e q u a l i t i e s 15 

Note that + "fyüTv i e D(F,G). Por, i f ?[a/v i e F(A), 
then, for n s u f f i c i e n t l y l a r g e , we would have that 

w 1 n ,w 2 n e P(A), which i s impossible. And, i f - Vu/v' i e P ( A ) , 
then w-in , w2n 6 which i s also impossible. Analogously, 

we check that ±^ fa /v i i - F ( A ) o 1 / G ( A ) u -1/G(A). 
Of course, 0 e D(F,G). 

So, suppose that Vu/v' i e 3 [p(AJ w 4 ( A ) ] . Then there 
e x i s t s some z'e 2A such that 

f2 í) = 2ia11(V^Ti + V ^ ) f 2 ( z ' ) f 

whence i t follows that Re { e c } = 0 and thus, that 

(24) f 2 U ) = z e 

( z e - 4 1 ) ( z & + <.,) 

where = 1 , I C = - ( ^ - ^ . j ) = -2 Im ^ i . In consequen-

c e , from (22) i t follows that e 3 [P{A) u - P(A)] c D(P,G) t 

whence, in turn, by ( 2 3 ) , i t follows that 

(25) g 2 ( z ) = zr 
( z t - <;2)(ZT +. $ 2 ) 

where [ £ 2 | = 1» = - ( $ 2 - ? 2 ) = - 2 I m { $ 2 } i . S i m i l a r l y , we 
v e r i f y that the functions f 2 and g 2 a re , r e s p e c t i v e l y , of 
the form (24) and (25) also in the remaining cases , i . e . , 

i f - W v i e a [P(A) u - P(A)] or i t / r i e a [l/G(A) o -i/G(A]Q 

or [l/G(A) v* - 1/G(A)]. 
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16 K.Wiodarczyk 

Consequently, we have demonstrated that 0, Wu/v i , 

Wu/v' e D(F,G), and, sinoe 

w(w) Vu/v' 

Vv/u - Vu/v Vu/v w(w) 

wj(w) Vu/v' Vv/u -Vu/v' 

Vu/v w(w) 

that equations (22) and (23) take the form (20). 
Functions (24) and (25) transform A conformally onto, 

respectively, tlie sets 

C\ 

k-1 ,2 . 

whereas Ref2(w) = 0 i f and only i f Re w = 0 or | w| =Vu/v 
or 

(26) W V u / v 

Vu/v 
4/rv7u -Vu/v^ , 

while Reg?(w) =0 i f and only i f Re w = 0 or | w| = VvTu or 

(27) 
i 1 

w . Vv/u 
4/ 1 ~ W 
Vv/u 

= ^Vv/u1 - Vu/v^. 

Let us s t i l l notice that f 2 (g 2 ) transforms the set 

{w:|w|<Vu/v* Rew>o} (the set {w:|w|<fyv/u, Rew>o}), when 
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A p p l i c a t l o n a o f i n e q u a l i t i e s 17 

0 < u/v < 1 (when 0 < v / u < 1 ) , tmd the se t { iv:|w| > V u / v , 
4 r — 

Hew > o} ( the s e t ^w;|w| > Vv/ 'u j H e w > o } ) , when 1 < a/v 

(when 1 < v / u ) , c o n f o r m a l l y onto the s e t 

|lmi^| > 2 fyuTv | i - V u 7 v | , Rei^ = o } . 

Con s equen t l y , 

(28) max 1 . 1 g V o / v 

< 

and, i n v i r t u e o f ( 2 8 ) , 

V 7 

Jp + V u 

Vv - V T 
V 7 + v i r 

c=2. 

1 1 | a l ' 
~ 2 VH77 

Vv + v ^ 

V 7 - V i 

Whereas, i f -1 < I m f c J < 0 , t h en , p r o c eed i ng a n a l o g o u s l y , 
we s h a l l get t h a t 

1 - - l - VvTu V v + V u 

Vv - v u 
< 0. 

And go , 

K < i } | < 1 - - i V ^ / i T Vv + V u 
Vv - V ? 
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18 K.TOrodarczyk 

S i m i l a r l y , we prove t h a t 

ImUnH < 1 - 4 
V7 + V3 

| b 1 v t T V Í 

The minimum of the modulus of the f u n c t i o n f 2 ( g 2 ) on 

the boundary of the domain {w: | w| < V u / v , Re w > o } , when 
| 

0 < ' u / v < 1, ( {w : |w | < V v / u , Re w > o } , when 0 < v / u < 1 ) , 

or on the boundary of the domain { w : | w| >"Vu/v, Re w > a | , 

when 1 < u / v < ® « , ({wslwl > ^ v / u , Rew > o } , when 1 < v / u < o o ) , 

i s a t t a i n e d a t the po in t s w^^ and Wq̂  ( w 02 a n ( * ^02^ 

with t h a t Wq̂  = tyuTv wq (Wyg = t / v / u w Q ) , while 

w o 
[ a / v - 4 V S 7 y + 1 - h - ^ | V u / v - 6 V 5 7 v - f l ' whenV57v6(0 |3-2V2Í , 

V 2-yu/v 

w = l u / ^ u l l ^ l V u / v ^ l l t whenW^7v€D+2V2|o«»), 

\ 2 \ u / v 

| w 0 | = 1 , I m { w J = £ r when e [3-2^2 ,1 ) u ( 1 , 3 + 2 ^ ] . 
Vü/v 

The s l i t s of the extremal domains ( - P ( A ) ) , i s s u i n g 
from the po in t s and w^^ (~ w oi a n < * "^01 ^ • o n 

the curves de f ined by equa t ion ( 2 6 ) , whereas those of the A A 
extremal domains G(A) ( - G ( A J ) , i s s u i n g from the p o i n t s 
Wq2 and w ^ (~w02 a n < * ' 311 curves de f ined 
by ( 2 7 ) . 

- 366 ». 



Applicat ions of i n e q u a l i t i e s 19 

^«IinÇ.,, p=1 
a Vv+Vu 

1 Vv-Vu , <3=1 - i Vv+Va 
Vv-VH 

Figure 4 
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o < Vu77 < 3 - 2 V 2 Vuv 

1< Vu77«3*2V2T 

e (Aj 

3»2V?^Vu7V 

e (A) 

Figure 5 
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6. Estimation of the third order functional for bounded 
functions 

Epom Theorem 6 one directly obtain the corresponding re-
in the class of 

T h e o r e m 7. If F e S1u, then 

|a3-a22| ̂  1 |b|2[(|u| - 1/| u|)2 + 4(|u| + 1/|u|)] . 

1 u Equality takes place only for the functions P e S 
(Figure 6) defined by the formula 

X.) - if , 
u[1 - F'U)] 

A A A A O 
where the functions F, F(z) = |u| + a^z + agZ + ... , sa-
tisfy the equation 

F(z) VfuT 
i / v m r - v w _ viu"r F(Z) _ 2 
$(z) Via?" 1/VTw-VTST 
VTuT F(z) 

1 + mi 
1 - lui - fcolfr® + 

0<|u| < 3-2V? 

3-2V?«|u|d 
0 0 0 

Ul/U 

Figure 6 

* 369 -



22 K|.13:odarozyk 

with that a1 - i l a , ! , U 0| = 1, 

1+Ig| 
T=7u1 

Consequently, for every a 1 , the functions F belong to 
the one-parameter family, vhere the parameter i s a2 or 

7. Estimations of Schjwarz* derivative and two derivative 
The Sohwarz derivative {h>z} of the funotion h i s de-

fined as follows 

{h;z} = 6 a j - l 0 R M ' M f c ) az^-1-08 z-t 
.hi, » 

= h (z) 
$=z ~ h' (z) 

3 / h ^ z l Y 
\h'(z) / 

Theorem 7 can be generalized as follows: 
T h e o r e m 8 . If P e S 1 u , zQ £ A , then 

(|u-F(zJ| 2 -UHiF(z r )| 2 ) 2 , |u-F(z0)|2+|1-uP(z0)1! 

|ru-P(z0)] C1 - uP(a 0 J3r |[u-P(z0)] [1 - uP(z03) 

Equality holds only for the function F € S 1 u sat isfy ing 
the equation 

u t i -p^ug 1-Fop(z)P(-z0) 1-a0a 
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A A ^ A A P 
where the f u n c t i o n P , P { z ) = | u | + a^z + a 2 z + s a -

t i s f i e s the e q u a t i o n 

= 2 

w i t h t h a t a 1 = ^ 1 ^ 1 , | < 0 | = 1 , 

1 + mi 2LZ 
1 - lu i ( f z - £ ) ( y z + 

2 . , . 

ii1 2 ( 1 - 1 u l ) u 

1 + lui 
1 - lui 

P r o o f , If 

F o p ( z ) - * F ( z J z+z 
( 2 9 ) P ( z ) = , , , p { z ) = — ^ 

1 - P o p ( z ) P ( z 0 ) 
, u = • 

1+Z 0 Z 1 - u P ( z 0 ) 

t h e n i t f o l l o w s f r o m Theorem 3 t h a t F e S ^ . S o , i f 

F ( z ) = b ( z + A 2 z 2 + . . J , t h e n B = P ' ( Z 0 ) ( 1 - | Z 0 I 2 ) ( 1 - | P ( Z 0 ) | 2 ) - 1 , 

a ^ - a 2 2 = Î P i Z 0 | ( l - | i z 0 l 2 ) 2 / 6 , and the p r o p o s i t i o n f o l l o w s 

f r o m Theorem 7 a p p l i e d t o the f u n c t i o n F e S ^ . 

As a s i m p l e c o r o l l a r y f r o m Theorem 7 we h a v e 

T h e o r e m 9 » ï f P € S 1 u , zQ e A , t h e n 

/ ' ( z j _ z F ' f z j F f e ) 2|z | 

F 'U 0 ) 
-+ 2 

[ P ( z J | a 2 — 
Ol 

z j ^ T 

4 [ z ( I V ' K ' I 
H » 0 r 2 [H»< «o - » r ] ' 

J (m-? (B 0 ) l - l 1 -nP ( » ) l ) 2 m - P ( z 0 ) l + | 1 - u F ( z 0 ) | 1 

X { i : u - P ( z 0 . ) ] C 1 - Û P ( z > + 4 | [ u - P ( . z 0 ) ] r i - u P ( z 0 ) ] | 1 / 2 J* 

f o r zq ^ o , 
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and 

|a 2 |<2 - \ |b| [{VTuT - 1/VnTT)2 + 4(VuTT + 1 / V u T ) ] . 

P r o o f . Let FQ be a function defined by the f o r -

mula P Q (z) = ( P ( z 2 ) ) 1 ^ 2 , where the mapping F i s defined 
by ( 2 9 ) . Consequently, I ^ U ) = b 1 / 2 ( z + a 2 z 3 / 2 + . . . ) , with 
that 

1 * " ( » „ ) 9 P ' ( z J P ( z J 9 

and P 0 e The desired r e s u l t follows immediately from 
Theorem 7. 

R e m a r k s . 1° From Theorem 4» i f zQ = z^ = z 2 , 
v = 1 / u , and G = F, r e s p e c t i v e l y zQ = z^ = ¡ ¡ 2 , v = - 1 / u , 
and G = - F , we obtain analogues of Theorem 5 in the c l a s s 
of Bieberbach-Bllenberg funct ions , r e s p e c t i v e l y in the c l a s s 
of Grunsky-Shah functions, not assuming c e r t a i n values . 
2° The analogue to Theorem 6 in the c l a s s A of pairs was 
given in paper [ 5 ] . 3° Prom Theorems 6 and 3 one e a s i l y ob-
t a i n s analogues of Theorems 8 and 9 in the c l a s s of pa i rs , 
of Bieberbach-Bilenberg functions, and of Grunsky-Shah fun-
ctions» 
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