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APPLICATIONS OF INEQUALITIES
OF GARABEDIAN-SCHIFFER TYPE FOR PAIRS
AND BOUNDED FUNCTIONS NOT ASSUMING CERTAIN VALUES

Introduction
Two functions, F and G, are cslled a pair (F,G) if
they are univelent in A = {z:|z|'<1},

2 2

Flz) = alz + 8,2 + eee), G(z) = blz + 5,2 Foaels

and such that

F(z)G(g) # 1

for any (z,2)e AxA. The class of all pairs (F,G) as de-
fined above is denoted by 4. This class was intensely inve-
stigated in the work of J.A.Hummel and M.Schiffer [2], and
class close to those belonging to the class A were examined
by A.Seiler [3].

In [6] we proved inequalities of Garabedian-Schiffer ([1])
type for pairs of vector functions [4] and presented a throught
discussion of these inequalities. The present paper is a con-
tinuation of gstudies presented in [6] and deals with the prob-
lem of meximization of certain functionals in the class A
of pairs (F,G) not assuming two values. In particular we
give corollaries concerning bounded functions, Bieberbach-
~Bilenberg ones and Grunsky-Shah functions, not assuming cer-
tain values.
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2 K.Wtodarczyk
1. The area inequality
For any fixed u,ve @ such that u # v, uv # 0, let
b,y be a subclass of A of those pairs (F,G) for which
9 .
n,veC\ [F(B) v 1/G(8]] . Let (F,G) e b, y» ond let
H
r" Fz) _[u-F’zUV2 ’_l_J_. alu-v) A A 2
~F{z ZVJ-IJ._V-‘ Z + see = a+a1z+8,22- +ooo’
(1lﬁ
—sz 1/2 bu-v) pLA A D
Hence
A2 /‘.2
(2) F(Z) = u=-v~F (Z) , G(Z) = 1 - GA(Z)
1 - #2(z) v - u G°(z)
We define the coefficients a_ = (u,v), bqp = bqp(q,v),
¢, = ¢ p(u,v), d = dqp(u,v), 3,0 = 0,1,2,0e4, geherated
in the bicylinder A xA by the functions:
g (2221 [F(z) + R(sl] S e 2,
_ gp-
B(z) - Pls) q,p=0
ks 9 p
g L2= ;:[c):mc;(, i(qﬂ S ot
2l - 5 g,p=0
Aoy Blay & q p
log 1+ ggzz g{';; D IR e
e R )
A A o0
1+ G(z) Fle) _ <.
log = . = d 2 ¢ .
- G(z) ¥(8) qz_o ik
s P=
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Applications of inequalities 3

‘anee, in particular, we have

‘ , Vi
(3) a°°_=log E?ﬁ—vﬂ-, log W,Et:’,: —log '—(TJ.:wTT' 4 _logj}?

2 .
_a2_ . .1.2(1.1 0.2 b oL b2(0uy)?
211 = 8 '33"§a(u v)’ Byq =Dy" =By g b7 (u-v)",
(4)
- R u+ v
g9 % d4q =g ad o=

Assume that -

.. P,(w) Q
(5) Ho(w)=Po(w)—Qo(w), H1(w)=-d(u-w)(v—w) [lf + l(iv):l,

a1b : b1a

where

(6) P ) =1 ‘?V(W)'l’du/v . =1 1+€7 W) ,
o™ °8 fw) /v Q .(W) 8 1-w{w)

1/2
EIREE

%(W)

a ;
[l =b
Vavw + =0

and let

oo oo
(7) HOOF(z) z quq - log 3z, Hoo‘l/G(z) = z quq + log 2,
= q=0

(lzl=r, 0<r<1)

oo oa
. - g - q
(8) H,oF(z) = Z c 2%, Hy01/6(z2) = Z RN
q=—°° q:-oo
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4 . K.Wtodarezyk

A simple consequence of Theorem 1 [6] is

Theorem 1, If (P,G) € Ay yr then
?
2 2
(9) a (I8g12 + 13,12 ) < 2 Bo{, - 3.},
g=1
and for |&| = [¢] =1,
=2 =2 2
(10) -Re{s C,C_q +T DD 1} lc_q 12 + [D_4]

with that equality takes place if and only if

(11) €y = =£%C_y, Dy = =D, G =Dy =0, q=2,3,.0.

2. Haximization of the functional Iabl

We prove the following

Theorem 2, If (F,G)eAuv, then
?

(12) |ab] € 16 uv

Ve« W]t

Bguality in the case when u/v > 0 takes place only for
the pasirs (F,G) (Figu.:c:e 2) defined by formulae (2), where
A
the functions F and G (Pigure 1) satisfy the equations

Vu(v F(z) [ ]1+ez v/ G(z)
(13) 22) 4{_‘ ‘\/_ {—‘ ~62 " %) W J—]‘]fé:
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Applications of inequalities 5

Proof . From inequality (9) it follows that
(14) Re{A, - By} >0;

equality holds if and only if

(15) & =B, =0, q=1,2,..., Re{s }=Re{B }.

Since, irr virtue of (5) - (7),

Ay = 855 = %00 By 00 ~ “oo*
therefore, in view of (3), inequality (14) will take the
form (12).
Suppose that in (12) equality holds, and let u/v > O.
Then, from (15) it follows that, for the extremal pair (F,G),
the equations

HOOF(z) = A -log z, H, 01/G(z) = B,+log 2, Re{Ao-Bo}=0

are satisfled. Consequently, taking Ao = ~log €, B0 = log T,
we have

(16) -Re{H °F(z)}= log|ez|, Re{HOM/G(z)}:log |z}, [eT} =1,

and hence it appears that the equations (13) are satisfied
and |eT|= 1.

Note that 0, * /v 1en(F,8)c\[Fan-Fa)1/8(80-1/8(0].
Really, since H_ # 0, equality in (9) takes place if and
only if the measure of the set D(F,G) =C\\[P(A)u1/G(8]] ie
equal to zero. Consequently, the images of A through the
mappings P and 1/G must £ill up, together with the bounda-
ries, the plane €, and since
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6 K.Wrodareczyk

A 1/2 N 1/2
B - [230E] vhe ]

also the images of A through the mappings f -ﬁ, 1/6 -1/&
must £i1l1l up, together with the boundaries, the plane C.
Since the functions f and 84

T
f(z) =1—+§‘:" 81(2) li%%o

are univalent in A, the functions f’.l and gy,

e P Ao
Byw) P, gy =GR
\‘u/v '4v/u

are univalent in, respectively, F(A) and a(A). In conse-
quence, there do not exist in F(A) distinot points Wis Wy
such that w,w, = -vVu/v, and there do not exist in G(8)

distinct points w1, LA such that W W, = -Vv/u.

Suppose that ‘Vu/v ie F(A}. Then, from the openness of
the set F(A), it follows that, for n sufficiently largs,

Win =4Vu/§ exp[i(n/2+1/n)], Won = -Wm e #(8).

WanVon = ‘Ju/v. Now,
suppose that. ‘\/u/v ie F(,A), and put w1n /v_v1n, Wén = 'v—vz'n.
= - 'Vu/v, which is also

However, this is impossible since

Then w.m, W2n € F(A) and w1n 2n

impossible. In' an analogous way, we check that im i é
B(B) w1/6(8) v - 1/G(D). | |
f 5 u/v ied [F(b)u - f‘(A)], then there exists some
z' € 835 such that
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Applications of inequalities 7

£, /v 1) =(4\lv/u Ny )1—"—5—2_'

1 -¢g2!

whence, by equating the real parts, we get that le ] = 1 and,
in consequence, also |[v]= 1, and thus equations (16)4 take
the form (13). We come to a similar conclusion if -Vu/v ie

e [F(D)v- 58] or Yoiv i ea[1/8(8)v - 1/8(8)] or
-\/4u/v ie 8[1/8(6)&- 1/8(8)].  So, fe] = lx]=1 and, in
consequence, +\/4 u/v € D(ﬁ,a).

The functions f1 and 84 transform A conformally onto
the set {1? : Re M >0}, whereas Re f1(w) 0 if and only if

Rew=0 or |w|= 4Vu/v, and Re‘§1(w) = 0 if and only if’
Rew=0 or |w|s= 4'Jv/u.

It remains to notice that, if 0 < u/v < 1, the functions
A . A 4
f1, respectively &1 transform the sets {w: |w| < W/u/v,
Re w > 0}, respectively {w:|w|<4v u, Re w > 0}, conformally
onto the set {17: Ren > 0}, and if 1 < u/v, then they trans-

4
form the sets {w: lw] > Yu/v, Re w > 0}, respectively
4

{w:|w|>\Jv/u, Re w > 0}, conformally onto the sét {V:Rer) < 0},
whereas the functions  f,, |€|= 1, respectively -9 [©]=1,
transform A conformally onto the set '{T]: Re p > 0}. The
extremal domains are illustrated by Figures 1 and 2.

O<ulv<1 i1<ulv
o
p
[} [+]
18 0° - 2°Pa° 9°%1%%
_ P
TR B1a)
q:i-\/‘ulv psi-\/l'vlu
Figure 1
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8 K.Wtodaroezyk

0<ulv<) 1<ulv
Yuv' ﬂﬁ?
y -
\/ 1 | 1
Vuv T
FA) GlAa) Fla) 6lA)
Figure 2

3. Maximization of derivatives for pairs not assuming two
values

It (F,G) € Au,v’ and 2,,z, €4, 1let

: 242, 242, 2-24 . 2-2,
pl(z) = y 9{z) = —=, p(z) = ——, q(2) = ——=,
1+z1z 1+zzz 1-z1z . 1-22z
while
- u - F(z,) o v - Flz,)
(17) u =T -dalz,) v T-7v 6lz,)

There holds
Theorem 3. If (FG)e Au,v’ then (F,G) GAE,’G'
where

~ Fop(z) - P(z,) ~ Gog(z) - G(z,)

Flz) = 1 ;fFop(z)G(zz) y  Gl2) = 1 - Goq(z)F(E1)

and

Fop(z) - F(-z,) God(z) - &(-z

~ ~ 9 G(Z) = 2)

(18) Pl(z) = e .
1 - Goq(z)F(-z1)

As an immediate corollary of Theorems 2, 3 we get
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Applications of inequalities

Theorem 4, If (P,G) e Au,v’ 2412, e, then

[7/(z)8"(2,)]| €

16 1-F(z, )&(z, N2 |p-F(z 1) 10=v&(z, )] v-F(z,)] [1-u6(z, )1]
S (1=12,1%)(1= 12, 1F)] VI-F(2, ) [1-v6(z, )J+ Y-F(z, )] B-va(z, )|

In the case when Uu/v >0, where 1 and Vv are defined

by equalities (17), equality holds only for the pairs (F,G)e
€4, , defined by equations (18), where
]

~ ~AA 2
F =u-v£‘§z) 3 _1—G(z)
=) = =% Ba) = %2(z)

with that

o .
iy _ Fls) 45__VE 1 +ez
*=) YimT|\VE Ve TR
4v/ G( ) /V 4(” 1 +7
a ——-——-Z - B‘ 2 9 £ = 't: = 1.
G(Z) IV“_l l: ﬁ_’ J‘] -?z , l l l

4, Maximization of derivatives for bounded functiens

Let S.' stand for the class of all functions F, univa-~
lent in A, of the form

F(z) = bz + 32z2 + .ee), (O<IbILT),

such that |[F(z)| <1 for zed.

let S denote a subclass of S1
for which u ¢ F(4),

For any fixed ueAN\{0},
of thoss functions F
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10 K.Wtodarozyk

*j)

From Theorem 4, if 2z, = 2z, = Zyy Vo= 1/u, end G = F,
where F(z) = F(z), there follows

z
Theorenm 5e If PeS

1w %o € A, then

=

(1 - 17212 | [0 - Pz ] [1 - 5 P(2)}]
(1 - Izolz) [ju - PFlz)| + |1 - F(z°)|]2

[¥/(2,) | < 4

=1

Bquality takes place only for the function F € S1u sa-~
tisfying the equation

Fop - F(- -
ra) - op(z) (-z,)  a) =_fL_:EB_,

1 - ﬁos(z)ﬁ(-zo) 02

where

) IElZ - ﬁz(z) u - F(zo)

Ii"(z) = = ’ <~ = —————
A -
4&» [1 - F2(z] 1 u F(ZO)
while the function ¥ satisfies the equation

~ A
AEL . Bla) (o ET - ViED LEEE,  fe]- .

A = - ’
#(z) lul 1 &z

The domains #(A) and F(A) are illustrated by Figure 3.
AT 1/8




Applications of inaqualities 11

5. Maximization of the third order functlonal for- pairs
and characterization of all extremal pairs

We shall now prove the following

Theorem 6, If (F,G) e Au,v’ then

(19) o 2| 4 |0 glo] < | 2|+ | g7 ]
where
ooy - o g o (12 (2 1))
D= by - b22 + 302 [(u--v)2 + 4@(%/)] .

In the case when u/v > 0, equality takes place only
for the pairs (F,G) € Au g+ Where the functions F and G
(Figure 5) are defined by the formulae (2), while the func-
tions ? and G (Figure 4},

f‘(z) = Yu/v + 312 + 3222’+ coes Glz) =1 + 312 + ﬁ_,,z2+...,

satisfy the equations:

4 _ 3’(2) V
Vora - Yorv Mg F2) - o s Iﬂﬁ e
Yorv x[;/u s YU W (27-8,) (2745, )

(20) Lo |
v/u - Na/v 1/ G(z) 2l:5 'ﬁﬂfﬁ' 27T
a(z) %ﬁ/u V; UW-Wa (zf—;z)(zthé)’
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12 K.Wtodarczyk

with that &) =e[&], B =vibyl, (5] = [5,] =1,
A
— a - y .
cztn e € 22 -y SR 141, fralorhl<r - HE R R
A
B
-2Im {5} =% g_a'%l[b I fmfeg}<r-3 B +wl"‘
1

And so, for every 31, 31, the functions %, & baelong
to the one- parameter families, where the parameters are, re-
spectively, 82, b? O &4 §2‘

Proof. Since, in view of (4)~(6) and (8),

A A A A
c_, = -1/(ab), D_, = 1/(ba), €, = -C_,C, D, = -D_,D,
ineauality (10) will take the form
22 2, . =2 2 2 2 _
(21) Re {s c_,%c +%% p_, D}<|0_1| + [ |% Tel=1x]e,

whenace, in view of the arbitrariness of & and T, teking
account of (1), we obtain at once inequality (19).

Note that, if, for the pair (P,G}, equality in (21)
does hold, then this equality holds also for the pairs (Fg,GJ),
where Fg{z) = F(6z), Gzlz) = 6(éz), [6]=16]=1. So we
may assume, after some eventual rotation, that (F,G) is
such a pair for which 31 =g [a1|, ﬁh =t‘h§&|.

Now, note that the function H1 can be repressnted in the
form

Hylw) = = % - L [ ww) . _®(w) l -
a

wiw)-a8 w(w)+a 1-w(w) 1+w(w)
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Applications of inequalities 13

N+ 1) [Ale) - S|
Vi ]

= AD A~ )
PSP T
a w(w)

A A
and G, = -C_,C, D, = -D_,D,
A A
& _% _uveVw [¥a 5 .02 _ u-vesvuv ¢
“a 2{u-v 81 "%, 2(u-v 1°

1
So, taking account dy (11),

A A 2
H1°F(z) = rx—;b [— -;— + C + zcz]? H1°1/G(z) = —_T%1a -%+D+zt ]
1

and, in consequence,

Nu/v  F(z) ]

)4
ol

1+£_\E_' [f‘Q(Z) + No/y ]
v
(22) = 2]‘31|(4Vv/u+'\/4u/v)—*2—%$———- R

z2"€E“+Cz~1

148 [G2(z) . VV/u']

Ww/u a2

(23) /u G (Z) = 2llb I‘l_‘< V/u+ Vu/v)—z—ﬁ———.
&(z) - VV/u 2°¢°+Dz-1
4v/u &(z)

Since H, # 0, eguality in (21) takes place if and only
if the area D(F,G) 1B equal to zero. Hence it appears that
the set D(F,G) possesses no interior points and also the set
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14 K.Wrodarczyk

D(f‘,a) possesses no interior points; the functions F and
-F are defined by equation (22) whereas ths functions G
and -G are defined by (23).

From the univalence of the functions £, and g, in 4,

27T
+TDz2T -1

£.(z}) = 2E g,(z) =
2 z2£2+eCze-1 G 242

the univalence of the functions §2 and §2 in, respecti-
vely, P(8) and G(A), '

f‘z(w) = u4[v
W u/v
3qu/v w
2
gz(w) = /IJ. v ’

follows in virtus of (22) and (23). Consequently, there do
A
not exist in F(A) distinct points w,, w, such that
1 2
W, = - Va/v or

. ; ‘ Y 4 2
1 wﬁ[—v' ( 2_ _ v >= _ (4-‘lv/u - 4u/v> s

and there do not exist in a(A) distinct points w,,w, such
_ 172
that w.w, = - W/d or
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Applications of inequalities 15

4 4
R e R AR e gt
T w1>(m wz) (4o Vore .

4 A 4 A
Note that + Vu/v i e D(F,G). Por, if VYu/v i e F(d),
then, for n sufficiently large, we would have that
A . 4V_| . A
Wi Wop, € F(b), which is impossible. And, if - Vu/v i e F(4),

then wi ,wj € ﬁ(A), which is also impossible. Analogously,

we check that x ¥a/v 1 £ -F(8)v1/G(8) v -1/8(8).
0f course, O € D(F,G).
4 A
So, suppose that Vu/v ied [F(A) v -f‘(A)] « Then there
existe some 2’'¢dA such that

£ ("'-‘/u/v i) = 2[4, (%/’v/u + Yoy )fz(z:),

whence it follows that Re {Eé}: 0 and thus, that

Z€E
(ze-2,)(ze+g,) "

(24) £,(2) =

where |,] =1, iC = -(;1-5;'1) = -2 Im 4, i. In consequen-

4 A A
ce, from (22) it follows that +Vu/ved [F(&) v - (4] c D(F,E),
whence, in turn, by (23), it follows that

t25) (z) = 2r .,
82 (zv=-25)(zT +5,)

wherse '[§2] =1, D= —(gz-fé) = =2 Im{gz}i. Similarly, we
verify that the functions f2 and g, are, respectively, of
the form (24) and (25) also in the remaining cases, i.e.,

it Aav 1ea [F(d) o - #A)] or Vv ied [1/8(8)v ~1/8(b]]
or -4'\Ju/v. 1€ [1/6(8) v - 1/6(0)].
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16 X,Wxodarczyk

4
Consequently, we have demonstrated that O, iVu/v i,
4
+Wu/v e D(f‘,a), and, sinae

- —

' W(w) _4Vu[v
17ty o) = EVEE Vo Vo Napw o)

Y Vel w(w) _IVu/; Vo -{Vu/v‘
.-ﬁlu/v %(W)

s —

that equations (22) and (23) take the form (20).
Functions (24) and (25) transform A conformally onto,
respectively, the sets

Cc\ [{'9 t=oo<Im 1?‘4 -m—z,ﬁemo}u{? H Eiil—zdm?@o,ReV:d}] ’

k=1'2’

A : . 4
whereas Refz(w) = 0 if and only if Rew =0 or |[w| =Vu/v
or '

L4 2
(26) S - Vu/v =(4f——~v 78 E ,——1u/v>2'
Vu/v

4
while Re§2(w) =0 if and only if Re w = 0 or |w| = Yv/u or

b2 |
(27) Z_L - —% = (4\/v/u - 4\/u/v>2.
v/u

Let us still notice that %2 (Ez) transforms the set
4 4
{wxlwl<\lu/v‘;: Rew>0} (the set {w:lwl<Vv/u, Rew>0}), when
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Applications of inequalities 17

4
0<ufv<1 (when 0 < v/u<1), end the set {w:|w] >Vu/v,

4
Rew>0} {the set {w:lwl >Vv/u, Rew>0}), whan 1 < afv
(when 1 < v/u), conformally onto the set

C\{?: |Im1?| > EW |1 -WL Rep = 0}_.

Consequently,

(28) nax 1 ’ L }g lg/v Vv - Vo , k=1
{Itk-iTz TETE T B MRy
< - W - Vo =,
B I+ |’

1t 0 <In{g}<1, then 2(1-Im{g,}) = |&,-1] %< [54+1)2
and, in virtue of (28),

LB (W]
B vl el R Sl R

Whereas, if =~1 < Im{¢1} < 0, then, proceeding analogously,
we shall get that

Vv + Vu

- -1
(1 > v/u -

A
84

)g In{3.} < O.

And so,

|tnge}| < 1 - L7u |3, f,:f: fﬁ-
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18 K.Wtodarczyk

Similarly, we prove that

[ofe < 1 - 4 6, TR

The minimum of the modulus of the function f (32 on
the boundary of the domain {w |w|<m, Re w > 0} when
0 <'ufv <1, {w |w|<‘\/;71?, Re w>0} when 0< viu<i1),
or on the boundary of the domain - {w-;wpm, Re w > U}
when 1 < u/v<eo, ({w {w| >\/m, Rew > 0} when 1<v/u< o0),
is attained at the points wy, -‘and W (w02 and W02)
with that wp, I {rym w, (w,, T e, w,), while

w, \[u/v-4iu/v+1-|;-u/lu v Vu/v-6¥u/v u/v+1 i, when '\/37;6(0;3;
v

W, =Ju/v+—44u/v+1+|1-Vj/v|\}u/v-6wlu/_v+1 i, when \f_—’u/vesz‘@;oo),
2\Ju v

fwol = 1, Im{wo} L .U.E__‘EZV_ » when Yu/v € [3-24Z31)u(1;3+2vZ].
u/v

The slits of the extremal domains #(a) (-i‘(A)), issuing
from the points w,, and ;01 (-wy, end -w,,), 2lie on
the curves defined by equation (26), whereas those of the
extremal domains G(A) (-G(A)), issuing from the points
woz'( at)xd Wop (=Wy, 2nd -Wy,), 1lie on the curves defined
by 27 Al :
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Applications of inequalities 19
0<Wiv&3-2v7 o . ;
Y1 '
Fla) " P '
A ’ : (-3
6a) P '
A A 04 Py A A
) N 118 ! |
3-2V2¢ V ulv< E . |
Yos
A o W, 0% | )
fa) 1V L/ ‘
814 ' 3
02
0
WM"‘/a [ ) o
: ]
3292 VUiV
You -
) ;?o ?o ao o % [ X-] [y K X -]
Fta) Sy
G (4) Yoe : .
[
o0 ° o0 o 0° o ° L) ° o0 °
A0
Y
1<WIV €327
a dlo
LX) ° oo} o LK) °3 oe ° o0 °
#a .
6(a) p )
o0 ° o0 ° Qoo f* L ° oo °
. Brm -
&y=p 0<§,<p §,=80 -p<byco  -p=d
§2°4 0<§y<q 9<5<0  -a=h
A 14 A NT+YU _ 11 VYviVu N -
§1=Im;1, p=1 - 5 Vv/u 84 G y 9=1 = 5 | b4 = g2 Im;2
Figure 4
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0 < Vulv' € 3-2v2'

3.2v7

Yulv
°
-]

uivg
7€

Fid)
G
1<
3e2V
Fla)
GlA)

Figure 5
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Applications of inegualities 21

6. Estimation of the third order functional for bounded
functions

From Theorem 6 one directly obtain the corresponding re-
sult in the class of S4u

Theorem 7. If F e S1u’ then

laga < 1 = (p12[trur - 17100 + 41w + 1/101)]

Bquality takes place only for the functions F € S1u
(Figure 6) defined by the formula

a2
p(a) - ul? = #2(a)
(2 ufd -Fﬂzﬂ

where the functions ﬁ, F(z)
tisfy the equation

A A
lul + 8,z + a222 + eee 4 Sa=

F(z) _ lu] .
1Nl _ Nl Fa) o, | 2] 1+ g ¥z
Fz) _Yiar  1/4io-vin T g - ) (32 4 3y

Yim  F(z)

o<yl € 3-2~J"

3- 24H2|u|<1

PFigurs 6
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with. that a, =q[ay|, [z,] =1,

a
|
0

1

4+ Jul 244)u)-1  lImg <11

1 2(1“'“' )

1:‘I3| .

Conaeduantly, for every 31, the functions f‘ belong to
the one-parameter family, where the parameter is 32 or &..

-2Im{;°}i =9 A

7. Estimations of Schwarz derivative and two derfvative
The Sohwarz derivative {h z} of the function h is de=-
fined as follows

i h(zl-h(;)-l _h'z) _ (h" )
{h Z} G[aza;log ; _J;=Z hl (Z) % n' (Z)

Theorem 7 can be generalized as follows:
Theorem 8. If FeS,,, 2,68, then

an(zo)l2

: 6
F; < -
) z‘,’}l<<1-|z,,|2? 2T - (2] A2

(1u-B(a, )1 2 poe(a,) (22, , 10F(2) 1% 1100, )2
Tl =F(z )1 11 - W8(2)1]% |-z 0 [1 - 5F(z 0]} |

"Equality holds only for the function F € S“1 satiafying
the equation

Fop(z)-F(- o 2_a2 -
pla) = o)) ) '—“'—‘%ﬁ% Blz) =m0,

1-?05(2)%"(-20) Al1-r(2
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2

A A ~ A
where the function ¥, F(z) tuj + 312 + 852° + oss, s8-

tisfies the equation

Flz) _ Wi

~ -~ A A
VA R S Vd F(z)=2 841 1415y 12z
¥iz) _Nlu = Al 1= (yz2 =2 )yz +2_)
el 1/ -WiE Yz = 500 yz + 5
1ul P(z)
with taat 8, = 18,0, 15,1 = 1,
a, 8, a
2 Infp 3 =y o2, 1E1%eaid= =, |imz <1-l|._11+_“1'_,
ot =7 &, 2(1-111%) 17 ol €12 Tl - W
Proof. It
~ Fop{z)=F(z ) 242 ~ u-F(z )
(29) F(z) = S y plz) = _o y N
1-.F0p(z)F(zo) 1+2 2 1-uF(zo)
then it follows from Theorem 3 that F e S So, if

1%
¥(a) -%(z+§2z2+...), then = F'(2,)(1-12,1°) (1-1F(z 1 )7,
3-32 {F, }(1 Iz, 12)2/6 and the proposition followe ,

from Theorem 7 applied to the function Fe S1
A8 a simple corollary from Theorem 7 we have
Theorem 9, If FeS,, z,€4, then

z F"(é ) zoF'(zo)Feéo) 2[20]2 4lz ] [z F' (2]
25— 2 -y oy (Normary - Sae ey
P'(z,) 1=[F(z )] [z =117 1=[z,]° 2 B'lF(fo)l ]

(1u-P(z )| - 1=EF(z )1 )2 lu-F(z )1 +11-8F(2 )|
Pl T -2 0% e or-w(a,n| V2[

for z, # 0,
- 371 -
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and

|32|‘;2 -

lo] [(Var - 14102 + a(ViuT + 1/\/173)].'

=

Proof. Let io be a function defined by the for-

mula F (z) (§(22))1/2 where the mapping F is defined

by (29). Consequently, ¥ (z) = b1/2(z+a 23/2 + ees), with
that

F() F(Z)F(ZJ
~ 1 2 -
ey Tl R ey (1 Il

and ﬁo € 8145. The desired result follows immediately from
Theorem 7.

Remarks,. 1° Prom Theorem 4, 1f 2z = Z4 = %y
v = 1/u, Epd G = F, respectively 3z, = 2z, = 22, v = =1/4,
and G = ~F, we obtain analogues of Theorem 5 in the class
of Bleberbach~BFilenberg functions, respectively in the class
of Grunsky-Shah functions, not assuming certain values.
2° The analogue to Theorem 6 in the class A of pairs was
given in paper [5]. 3° Prom Theorems 6 and 3 one easily ob-
tains analogues of Theorems 8 and 9 in the class of pairs,
of Bieberbach~-Eilenberg functions, and of Grunsky-Shah fun-
ctions,
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