

Wiesław Grycak

SOME REMARKS ON NULL GEODESIC COLLINEATIONS
IN 2-RECURRENT RIEMANNIAN MANIFOLDS1. Introduction

A non-flat n -dimensional ($n > 2$) Riemannian manifold is said be of recurrent curvature [9] (briefly, a recurrent manifold) if its curvature tensor satisfies the condition

$$(1) \quad R_{hijk,l} = c_l R_{hijk}$$

for some non-zero vector field c_j , where the comma indicates covariant differentiation with respect to the metric.

As a generalization of the concept of a recurrent manifold, Lichnerowicz [4] initiated investigations of n -dimensional ($n > 2$) Riemannian manifolds whose curvature tensors satisfy the relation of the form

$$(2) \quad R_{hijk,lm} = e_{lm} R_{hijk}$$

Non-flat manifolds of such a type, i.e. satisfying (2) for some tensor e_{ij} , are called second-order recurrent or, briefly, 2-recurrent manifolds.

According to Katzin and Levine [3] a Riemannian manifold is said to admit a symmetry called a null geodesic collineation if there exists a vector field v such that

$$(3) \quad L\Gamma_{ij}^h = g^{hr} g_{ij}^Q, r,$$

where Q is a certain function, and L_{ij}^h denotes the Lie derivative with respect to v .

If $Q = \text{const}$, the null geodesic collineation is an affine one.

Roter proved [6] that a null geodesic collineation in a locally symmetric as well as in recurrent manifold is necessarily an affine one.

The purpose of the present paper is to obtain some generalizations of his results.

Throughout this note we assume that all considered manifolds are connected, of class C^∞ and have indefinite metric forms.

2. Preliminary results

In the sequel we need the following lemmas:

Lemma 1 ([1], Theorem 1). If B_{hijk} is a generalized curvature tensor ([5], [8]) on a Riemannian manifold M satisfying the condition

$$(4) \quad B_{hijk,lm} - B_{hijk,ml} = 0$$

and a_{ij} , b_{ij} are symmetric tensor fields such that

$$(5) \quad a_{ij,lm} - a_{ij,ml} = b_{im}g_{jl} + b_{jm}g_{il} - b_{il}g_{jm} - b_{jl}g_{im},$$

then

$$(6) \quad \left(b_{lm} - \frac{b}{n} g_{lm} \right) \left(B_{hijk} - \frac{S}{n(n-1)} (g_{hk}g_{ij} - g_{hj}g_{ik}) \right) = 0,$$

where $b = g^{rs}b_{rs}$, $S = g^{rs}g^{ij}B_{rijs}$.

Lemma 2 ([2], Theorem 1). If a vector field P_i satisfies the equation

$$(7) \quad v_r^R{}^F_{ijk} = P_kg_{ij} - P_jg_{ik}$$

for some vector field v_i , where g_{ij} and R^h_{ijk} are the metric and curvature tensors of the manifold M respectively, then

$$(8) \quad P_h \left(B_{lijk} - \frac{S}{n(n-1)} (g_{lk}g_{ij} - g_{lj}g_{ik}) \right) = 0.$$

Lemma 3 ([6]). If a Riemannian manifold admits a null geodesic collineation, then the following relations

$$(9) \quad a_{hi,j} = A_h g_{ij} + A_i g_{hj},$$

$$(10) \quad a_{hi,jk} - a_{hi,kj} = A_{h,k} g_{ij} + A_{i,k} g_{hj} - A_{h,j} g_{ik} - A_{i,j} g_{hk}$$

hold, where

$$(11) \quad A^h = g^{hr} Q_{,r} \quad \text{and} \quad a_{ij} = L g_{ij}.$$

3. Main results

Now we shall prove the main results of this paper.

Theorem. If a 2-recurrent manifold M admits a null geodesic collineation, then this collineation is necessarily an affine one.

Proof. The condition (2) implies

$$R_{hijk,lm} - R_{hijk,ml} = (e_{lm} - e_{ml}) R_{hijk},$$

whence, by Lemma 2 of [7], we get

$$(12) \quad R_{hijk,lm} - R_{hijk,ml} = 0$$

everywhere on M .

If we set $B_{hijk} = R_{hijk}$, $a_{ij} = Lg_{ij}$, $b_{ij} = A_{i,j} = Q_{,i,j}$, $b_{i,j} = -b_{,i}$ and $v_i = A_i$, then in view of (12) and (10), we see that the equations (4) and (5) are satisfied. Hence, by virtue of Lemma 1, the condition (6) holds.

We may assume that

$$(13) \quad A_{i,j} = \frac{b}{n} g_{ij}$$

in some neighbourhood U . Otherwise M would be of constant curvature and our assertion would follow from Theorem 2 of [6].

Therefore, differentiating (13) covariantly and making use of Ricci identity, we obtain (7).

Hence, in view of (12) and Lemma 2, $P_j = -b_{,j} = 0$ in U . But the last result, together with (7), yields

$$A_r^{R^1}{}_{ijk} = 0,$$

which, by covariant differentiation, implies

$$(14) \quad \frac{b}{n} R_{lijk} + A_r^{R^2}{}_{ijk,l} = 0.$$

On the other hand, as an immediate consequence of (10) and (13), we get

$$(15) \quad a_{kr}^{R^2}{}_{ijm} + a_{ir}^{R^2}{}_{kjm} = 0,$$

and therefore,

$$\begin{aligned} & a_{kr,pl}^{R^2}{}_{ijm} + a_{kr,p}^{R^2}{}_{ijm,l} + a_{kr,l}^{R^2}{}_{ijm,p} + a_{kr}^{R^2}{}_{ijm,pl} + \\ & + a_{ir,pl}^{R^2}{}_{kjm} + a_{ir,p}^{R^2}{}_{kjm,l} + a_{ir,l}^{R^2}{}_{kjm,p} + a_{ir}^{R^2}{}_{kjm,pl} = 0. \end{aligned}$$

The last relation, because of (9), (13), (14), (2) and (15), gives

$$A_k(R_{pijm,l} + R_{lijm,p}) + A_l(R_{pkjm,l} + R_{lkjm,p}) = 0$$

whence

$$A_l(R_{jmkp,l} + R_{jmkl,p}) = 0 \text{ in } U.$$

If $R_{hijk,l} + R_{hijl,k} = 0$, Bianchi's identity yields $R_{nijk,l} = 0$, and our assertion follows immediately from Theorem 2 of [6].

The last remark completes the proof.

Since a non-flat Riemannian manifold ($n > 2$) whose curvature tensor satisfies (1) as well as $R_{hijk,lm} = 0$ is 2-recurrent, we have

Corollary 1. Let M be a non-flat Riemannian manifold ($n > 2$) whose curvature tensor satisfies $R_{hijk,lm} = 0$. If M admits a null geodesic collineation, then this collineation is an affine one.

Corollary 2. ([6], Theorem 4). If a recurrent manifold admits a null geodesic collineation, then this collineation is an affine one.

REFERENCES

- [1] W. Grycak : Null geodesic collineations in conformally recurrent manifolds, *Tensor, New Series*, 33 (1979).
- [2] W. Grycak : On generalized curvature tensor and symmetric $(0,2)$ -tensors with a symmetry condition imposed on the 2nd derivative, *Tensor, New Series*, 34 (1980).

- [3] G.H. Katzin, J. Levine : Applications of Lie derivatives to symmetric, geodesic mappings, and first integrals in Riemannian spaces, *Colloq. Math.* 26 (1972) 21-38.
- [4] A. Lichnerowicz : Courbure, nombres de Betti et espaces symétriques, *Proc. of the Inter. Congr. of Math.*, 2 (1952) 216-223.
- [5] K. Nomizu : On the decomposition of generalized curvature tensor fields, *Differential geometry in honor of K. Yano*, Kinokuniya, Tokio 1972, p.335-345.
- [6] W. Roter : On null geodesic collineations in some Riemannian spaces, *Colloq. Math.* 31 (1974) 97-105.
- [7] W. Roter : Some remarks on second order recurrent spaces, *Bull. Acad. Polon. Sci., Sér. Sci. Math. Astr. Phys.*, 12 (1964) 207-211.
- [7] U. Simon : On differential operators of second order on Riemannian manifolds with nonpositive curvature, *Colloq. Math.* 31 (1974) 223-229.
- [9] A.G. Walker : On Ruse's spaces recurrent curvature, *Proc. London Math. Soc.*, 50 (1950) 36-64.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY, WROCŁAW

Received June 2, 1980.