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INVARIANT SUBMANIFOLDS OF f A-MANIFOLD

Invariant subspaces in elmost complex X2n and inveriant

submanifolds of an almost contact manifold have been studied
by Yano and Schouton [3], Yano and Ishihara [4], respectively.
Upadhyay and Gupta [2] defined and studied the fl-manifold.
The purpose of the present paper is to study the invariant
submanifolds of gz-manifold.

1. Preliminaries

Let M be an m-dimensional C°~ Riemannian manifold im-
bedded in an n-dimensional C®° Riemannian manifold 1, whe~
re m<n and the imbedding is denoted by & : M —>= M, Let
B be the mapping induced by &, that is, B =d§: s T(E) — T(8),
where T(M) and T(L) are tangent bundles of I and I
respectively., If T(ﬁ,M) is the set of all vectors tangent -
to $(if), then B : T(M) —T(M,M) is an isomorphism [1].

The set of all vectors normal to &(M) forms a veator
bundle W(M,H) over $(H) and is called the normal bundle
of H. The vector bundle induced from N(m M) by ¥ Is de-
noted by N(ﬂ). Let us denote by ¥ : N(M)—-"N(M ) the na-
tural isomorphism,

Throughout this paper, we use the following notations and
conventions:

(i) Jr(M) denotes the spage of all C°  tensor fislds
of the type (r 8) associated with T(M), -

(11) UL(H) denotes the space of all C™ tensor fields
of the type (r,s) normal to .
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4n elemant of ﬂl(ﬁ) is a vector field on = sand en element
of 'ug<ﬁ) is a vector fielc normal to M.

Let X and Y be any vector fields defined along @(ﬁ)
and tangential to ®(i)., Let X and Y be the local exten-
cions of X end Y, Then [X,Y] 1is a vector field tangen-
tial to i and its restriction '[i,Y]lQ(ﬁ) to &(I) can
be determined independently from the choice of local extan-
sioms X and Y. Thus we can define [X,¥] by

(1.1) [x,7] = [X,T][8(E).

Since B is an isomorphism, therefore for all X, € Ul(ﬁ)
we have

(1.2) [8%,8%] = 8[%,1].

Definition 1a1e If in an n-dimensional ¢°°
menifold i, a C™ tensor fisld £ of the type (1,1) sa-
tigfies

(1.3) £2 - 2%1 = 0,

where A is a complex number not equal to zero and I is
the unit tensor field; then f d1is said to possess a NW=-struc~

ture on M and M is called a W-menifold [2].
Let us assume that i is a C° gz-manifold endowed with

a C(1,1) tensor field f satisfying [2]

(1.4) - £3 2% = o,

where A 18 a complex number not equal to zero, that is,
£f is a fl-structure on M,
If we put

(1.5) 8 =(§
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I Dbeing the unit tensor field; then we have
(1.6) 8+%t=1, 8t =18 = 03
(1.7) 82 =8, t%=1t,

Thus there exist two complementary distributions S and T
corresponding to the projection operators s and % resSpeo=
tively. These projection operators satisfy the following re-
lations [2]

(1.8) fa =8f =f, ft = tf = 0;
(1.9)  £25 =2°%, 22t = t£2 = 0

that is, £ acts on S as a N-gtructure operator and on T
as & null operator,

Such a manifold M always admits a Riemannian metrig
tensor G such that

(1.10) | G(X,Y) = G(£X,fY) + G(tX,¥),

for all X, T e J)(¥). Then in view of (1.8) and {1.10), we
have .

(1.11) G(X,Y) = G(£X,£%Y) + G(tX,£T),
(1.12) G(£%,Y) = 6(£2X,£Y).

Let us define & and g* on M and N(H) respectively
as follows

(1.13) T(%,7) = G(BX,BY)o &
and
(1.14) g*(u,n') = G(yN, pu'),

for all N, ¥'eul(d).
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It can be easily shown that g 1is a Riemannian metric tensor
in M which is called the induced metric tensor of i and
g* 1is a tensor field which defines an inner product in N(H).
The tensor g% 4is called the induced metric tensor of N(ﬁ).
Let V be the Riemannian connection determined by G
in M, then V¥V induces a connection V in .®(M) defined

vy [4]

(1.15) %Y = Vg Y| 8(1),

where X,Y are C° vector fields defined along & (M) and
tangential to &(M).

This in view of (1.1) and (1.15), #e have

(1.16) V¥ - VX = [x,1],

2. Invariant submanifolds of fa-manifold

Let i be a C°° m-dimensional manifold imbedded in a
C™ f,-manifold M endowed with (1,1) tensor field f sa-
tisfying (1.4).

Definition 2,1. ¥ is said to be an inva-
riant submauifold of M -if the tangent space TP(Q(E)) of
é(u) is invariant by the linear mapping f at each point p
in (1) [4].

In this paper, we shall assume that ¥ is an invariant
cubmanifold of WM, Therefore for X e Ul(ﬁ), we have

oo

(2.1) £BX = BX°,

where X° is some vector field in ﬁ. Thus we define a (1,1)
tensor field f 4in 1, that is, a mapping

e —x(@ vy - 2O

- 336 -



Invariant submanifolds 5

From (2.1) we have
(2.2) £(BX) = B(£X).

Theorem 2.1e Let N and ¥ be the Nijenhuis
tensors of M and M determined by the (1,1) tensor fields
f and f, respectively, Then N and N are related as
follows

(2.3) N(s%,8¥) = BN(X,7).

Proof., By virtue of (1.2) and (2.2}, we have

n(sX,8%) = [#8%,£8%] - £[B%,£8¥] - £[£8%,8¥] + £°[8%,BY] =

i

B([¥%,¥7] - 2[X,%7] - #[3%,1] + #9[%,1) -

-‘-‘--B (i,i)o

Hence the result.

For the invariant submanifold ¥ of f,-manifold M, we
shall consider the following two cases: o

Case I. The distribution T is never tangential to &(ii),
that is, to any vector field of the type tX, where X is
a vector field tangential to &(H).

Case II. The distribution T is always tangential to
¢(m).

Let us consider the Case I, that is, the distribution T
is never tangential to the invariant submanifold ®&{}). In
this case, any vector field of the type tX is independent
of any vector field of the same frame BX for X e J;(ﬁ).
Applying f to (2.2}, we obtain

Since any vector field tangential to ®(H) is not contained
in the distribution T, therefore, the vector fields of thse
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type BX are in the distribution S, Thus in oconssquence of
(1-9), we have '

B£°X = 2 °BX
from which it follows that
(2.4) %2i =‘2’2§.

Consequently, the (1,1) tensor field T in M is a m-strue-
ture on the invariant submanifold M.

Let us define a tensor field S of the typs (1,2) in M
a8 follows

(2:5) S(X,Y) = M(X,T) + Ve(sT) - Vg(sX) - ¢[X,T]

for any vector fields X, Y € J;(M).

Theorem 2.2 Let the distribuftion T be never
tangential to @(ﬁ). Then the (1,2) tensor field S defined
in M- is given by

(2.6) s(BX,BY) = N(BX,BY) = BW(X,Y)

for X, Y e Ug(M).

Proof . Since any vector field tangential to @(ﬁ)
is not contained in the distribution T, therefore in con-
sequence of (1.6), we have

t(B%) = 0,

for any X € Ul(ﬁ). Hence in view of (2.3) and (2.5), the re-
sult follows.

Definition 2. The fi—structure f is said
to be a normal in ¥ if = Q.

Theoren 23, 4n inveriant submanifold II imbed-

ded in » ﬁx—manifold i such that the distribution % is

2.
E
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never tangential to (M) is a W~manifold with induced
T-structure fo If thi‘ﬁ&-structure £ ishpormal in M,
then the W-structure f 1is integrable in M.

Proof. The proof follows by virtue of the equa-
tions (2.4), (2.6) and Definition 2,2,

Next we shall consider the Case II, that is, the distri-
bution T 1is always tangential to the invariant submanifold
$(i). Therefore for X e Jl(ﬁ), we have

(2.7) +8% = BX°,

where X° is some vector field in i,
Let us define a (1,1) tensor field t in M such that
%X = x°. Then the equation (2.7) can be expreased as

(2.8) tBY = BtX.
Also we can define a (1,1) tensor field s on M by
(2.9) sBX = BeX.

Since in M the relation s + t = I (I Ybeing the unit ten-
sor field) holds, therefore the (1,1) tensor field § in M
is well defined.

The orem 2,40 The (1,1) tensor fields ¢t and &
in M defined by (2.8) and (2.9) respectively satisfy the
following relations

e
"
=
0]
et
]
o+
@R
]
=
-e

(2.10) 8 +

"
R

Proof .. We have
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Operating the above equation with Bf, we obtain
sBX + tBX = IBX,

which in view of (2.8) and (2.9) becomes

BaX + BX = BIX,.
This implies that
gi + %i = i.

That is8 8 + 1 = f.
Next operating st = ts = 0 by BX and making use of
(2.8) and (2.9) we get

Bgff = 0.
This implies that 8% = O.
Similarly, making use of (2.8) and (2.9) in (1.7) we can
prove that
2.5 f-7%
This (2.10) and (2.11) hold in M., Hence & and % are com-
plementary projection operators in M, given by

F\2 z\2
5=(% t-7-(%
B _(A)’ t =1 (l)'

This proves the theorem.
Now in consequence of (1.4) and (2.2), we have

B2 X = £3(BX) = a%¢(BY) = A°BFY.
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This implies that

(2.12) 3 -a%F = o,

Hence % acts as a fl-tstructure in T and is called the
induced fa-structure on M. The Rismannian metric 2 given

by (3]
(2.13) g(%,Y) = g(2L,%Y) + &(3%,7)
also holds for i,

Let V be an operator in  defined by

(2.14) B(VxY) =V 3BY,

where V is the Riemannian connection in M.
It can be easil; shown that the operator V is a connection
in H. Now by virtue of (1.1) and (2.14), we have

(2.15) v’if - V?i = [i’j.

Thus V is a Riemannian connection in . _
Let us define a (1,2) tensor field § in H as follows

(2.16) S(X,1) = ME,T) + V¥ - V5033 - %[x,7)
for ’i,? € Jl(M)o

Now in view of (1.2), (2.3), (2.5), (2.8), (2.14) and
(2.,16), we have

~

(2.17) S(BX,BY) = BS(X,Y).

Definition 2.3, The f,-structure f is said
to be normal in M if 3 = 0.
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Theoremn 2.5, A4n inveriant submenifold L im-
bedded in a fy-manifold M such that the distribution T is
always tangential to Q(ﬁ), is a ﬁa-manifold with induced
fy-structure f, If the f£;-structure f is normal in I,
then the f;-structure f 1is normal in i

Proof. The proof follows by virtue of the equa-
tions (2.12), (2.17), Theorem 2.4 and Definitions 2.2 and 2.3.
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