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J6zefa Cnugata

ON THE CONTINUOUS SOLUTIONS OF A FUNCTIONAL EQUATION
CONTAINING ITERATIONS OF THE UNKNOWN FUNCTION

Let thers be given the funotional equation
(1) lx) = hix,@lx),o(F] [x,¢]),00 0,0 E] [5,9] )

where the expressions ?3 [x,(p] (3=1y¢ee4n) are defined by
the recurrent formula

??33 [x,] := gj('x,c?(xn
(2) »
%?[X,CP] :=f?(x,(P(%S]+1 [x,CP])), m=1"'_'°’qj"19 J=130e4,n,

and 93 {(j=1,eee,n) are fixed natural numbers., The functions

h, f? (m=1,...,qj, j=1,eee,n) involved in equation (1) are
given functions, whereas ¢ is the unknown function,

The problem of the existence of continnous (or lipschi-
tzian) solutions of a functional equation containing itera-
tions of the unknown function was studied by many authors (see
e.g. [1] - [6]).

The existence of a unique solution of equation (1) in the
class of functions lipschitzian in arbitrary metric spaces
was investigated by the author of this paper in [3]. Here we
are going to prove by means of Schauder ‘s principle a theorem
on the existence of solutions of equation (1) in a class which
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2 ‘ J.Czugsta

is narrower than C°, but contains the class of lipschitzian
functions. This theorem yieldé 8 generalization of Theorem 3
established by H.Adamezyk in paper [1].

In order to prove the existence of & soiution ¢ of equa-
tion (1) we admit that the given functions h, fgx satisfy
the folllowing assumptions:

1° ho: oy

fg‘ s XxY—X m = 1,..0,Qj; j = 1,.00,11,
where (x,g) is a compact and connected metric space and

(Y, l+ll) 4is a finite-dimensional Banach space.
2° There exist ¢eX, peY such that

(3) f?(@.ry) =t, h(E,.'vs.--. n) =7,

m = 1,-.0,‘!3, J = 1,000,30'

3° The function h 1is continuous in its domain of defi-
nition and satisfies the following condition: ,
for arbitrary points x,X € X, J;,j3 € ¥ (i = (),....n)~
such that

"yi - -y-i” QZw(e(x,i)), is= 0,1,...,1‘.\

holds
(4) Ilh(x,yo,y1,...,yn) - h(i,io,...,yn)” SQ(Q(X’E)),

where w 18 a real function defined, continuous and strictly
increasing in the interval (0,d>, with d = diam X, and
satisfying the equality w(() = 0.

4° The functions . fg‘ (2 = 1,00099353 3 = 1,00.,n) are con-
tinuous and satisfy the conditions:

(a) for arbitrary points x,X € X, u,i € Y such that

lu - 0]l €2w(glx,%))
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Continuous solutions 3

there holds the inequality

(5) e(f?(x’u), fgl i,ﬁ)) éq(x,i), III=1,...,QJ, j=1,o.-,n

(b) to any positive number ¢ there exists a positive
number k, such that for all x,X¥ ¢ X, u,i ©Y such that
e(x,x)>& and [ju-0jg 2m(g(x,'i).) the following inequa-
1ity holds

(6) gle](x,u), £}(,8)) 2 ky,  I=14e.00n.

Assume, moreover, thé notation %l [x,u] :=x, xe€ X,

Theorem, Under the assumptions 19 - 4° the equa-~
tion (1) has at least one solution @+ X —>Y bounded and
satisfying the conditions

(7)) @) =9, lolx) - x| Swle(x,%)), =x,%e€ X

Proof. To prove the theorem we shall make use of
Schauder's fixed point theorem as well as of the Arzela-isco-
1i theorem (see [7], p.164).

Consider the space F whose points are the functions
@p:X — Y continuous and bounded in X. ILet the nora of the
point ¢ of the space F be «defined by the equality

(8) el = sup ligtx)]] -

The space F under the norm (S) is a Banach space. In this
space we chall consider the set 4 of all its points ¢ which
sztisfy the conditions (7).

we shall prove that the set A 1is convex. Indeed, for ar-
oitrary ¢,, ¢, € 4 and ¢ € {0,1)> we have, by the first
of conditions (7), the equality

(e, + (1-t)@,)(5) = to,(8) + (1-t)e,(E) = p.
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4 J.Czugata

Using the property of the norm and the second of conditions
(7) we get the inequality

”(t?‘l"'(‘l"t)@z’(x) - (t¢1+(1"t)¢2)(i)"<w(e(x'i)’ x,i € X.

Hence t@, + (1-t)p, satisfies conditions (7) and 4 is a
convex set,

We shall now prove that A is a set of equicontinuous
functions, Let € be an erbitrary real positive number. The-
re exists a 6=w'1'(£) such that the condition ¢(x,X) < 6,
(x,x € X), 1implies the inequelity "(p(x)-—q)(i)" < & for any
@ € A. Indeed, for @e A we have (by inequality (7))

llolx) - @) < wlglx,®)) < ww™(e) =€,

which means that the functions ¢ of the set A are equi-
continuous,

Taking into account the form of equation (1) we submif
the set A to the operation W= T [¢] defined by the equa-
lity

(9)  W(x) = hix,@(x), @£ [x,0]) 0.0 ,0(2) frie])), x € X
We shall prove that the operation T maps the set ¢4 into

itself. Iet ¢ ¢ A. The first of conditions (7) is satisfied
tor W= ?[¢], since by assumption 2° we have

¢(5) = b(g,0t5), P(%} [&?J’.-n.?ﬁl[ﬁ.‘}’])) =
= n(E,,r;,...,p)'_= De
Let us now show that the second of conditions (7) is also sa-

tisfied for Y= T[p]. To this aim we shall first prove that-
for all x;X € X the following imequality holds
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Continuous solutions 5

e(?g[x'?]' %?:l[i’?]) € e(x’-x-)' m = 1.---.‘-115 is= 1,0..,210
Now.for all x,X € X we have, by virtue of definition
(2), of the second of conditions (7) and of assumption 4°(a),

the inequality
Ad3 qi _ 9y qi _ - -
e, [x,cp],? [x,¢]) = o(2; (xs0(x)), £,7(%,0(X))) < g(x,%),
(i = 1,ooo,n)o
Hence, by the second of conditions (7), we get
A%y A4 _ -
”‘p(fi [x"PJ) - (P(fi [xo(P])" Q'w(e(xox)o (i=1|°"on)'

From this inequality and from assumption 4%(a) it follows that
A93=1 A4 -1 - q;-1 9
oY [x9], 31 [T)) = olet (xe(R [xe])),

q;=-1 _ q; . . _ _
fil ,(x,(p(?il[x,go]))) <@g(k,®) for all x,Xe X, i=1,...,0

An analogous argument leads to the following estimate

Q(%;_’[x,(p], f‘;-_-'[i@]) < g(x,f) for x,X € X, i=1,000,n,

Hence, using the second of conditions (7) and the notation
Aq| . -
fgl'[x,(p] = x we obtain for i = 0,1,s..,n the inequality

(100 o) xe]) - 03] ®e) ll cwlelx,®)), x,% e X

From inequality (10), assumption 3° and definition (9) it fol-
lows that
Iv(x) -w(zl<wlglx,®)), x,% ex,

whence we conclude that T(4) € A,
- 323 -



6 J.Czugaka

We snhall prove that the operation T defined by equation
(9) is continuous; that is to say, we have to show that if
Ppr P € A sstisfy the relation

(11) Ha flg, - o= o,
p-ﬁ“

then for the points le = T[(Pp], Y= T[(p] of the set T(A)
the following equality holds

plil ke, - wlii= o.

Let g be an arbitrary real positive number. To the num=-
ber € we choose an € = €(g) such that

(12) 0<E<E

and that, for any fixed x e X, the set Xe of points X € X
defined as follows
)}, k>2
is non-void.
Let us now examine the distance between the poinits u5,1p

of the set T(A). For this purpose we shall estimate the
distance "le(x) - ¥(x)]| which is given by the formula

rojomi

(13) Xg = {i € X 3 w-1(%)< g(x,%) < w'1(

(14) by (x) - w(x)fl =
= "h(x, ¢p(x), (pp(%} [x,(pp]),n..(pp(fl [XOVPJ)) -

- h(x’(P(x) 9?(?; [xi(P])vO-os(?l [x,¢]) ) “ _
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Continuous solutions fi

and satisfies the inequality

(15) liwp(x) - wixllig

<"h(Xs‘fp(X), (Pp(ﬂ [x,q’p]),...,cpp(g':l[x,(pp])) -
- 0(%0(R), o E][E@])se ey @(ELEQINI +
+ (%), @RI E.0Dseee, @(E)[F0])) -

- a(x,@(x), @(E [x, 015 ene, @(E ]I

for any fixed x € X and for X e X;. Consider the sscond
term of the sum (15). Now, by formulas (7) and (9) we get

Ih(Zo@(R), @(E] (%)) 0enes @(EL 0D -
- 8(x,0(x), ¢ (£] [tp])veens @(E] [x,0])) | € @ (lx,%)).

Taking into account the definition (13) we obtain for the se-
cond term of the sum (15) the following estimate

(16) [ 8(E,9(3), @(Z1[s0]),eees @ (21 [T0])) -
- hix,p(x), go(ﬂ [x,(p]),...,'cp(%l[x,(p]))”<
<w(w"'1(%))= %— sy, X€X, X€ Xeo

Turning now to the first term of the sum (15) let us con-
sider the expression "Qp(x) - @(X)]] which we majorize as
follows

(7 "‘Pp(x) - ezl eplxl - (x| + | olx) = @(E)
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8 J.Czugata

From condition (11) it follows that to the previously fixed
number € > 0 we cen find an N_ such that for p > NE
the following inequality holds

loy(x) - plx)] < £

By definition (13) we have for any X € X,

o™ (§) < gtx.3),

The function ® 1is strictly 1ncreésing, hence

£ colglx,E)).

Therefore

(18) e (=) - ¢(x)]| € wlg(x,X}) for xe€X, X € X

Making use of (7), (17) and (18) we get (for p > NE) the
relation

(19) lg,(x) - @) < 20(e(x,X)) for xeX, X e X,.
By a similar argument we can majorize the expression
hop (2 g ) = @l2] [Bg]) s for i=1,2,000,n,
Now, applying the triangular inequality to the norm we get
lo 2l e ]) - (2,0 <
lo 2l (x0,) - 9(El [, D +lo(2] (e, ]) - @(F] RDI,
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Continuous soclutions 9

whence, by the second of conditions (7) we obtain
(200 o (21 ri0,]) - @(E[Fe] ) < || 0, (2] [ ]) -

- ¢ (2] [xi0, D +w(e(F] [x,9,], T [F WD),

From assumption (11) it follows that to the previously fixed
number € >0 we can choose an N'E such that for p > Né the
following inequality holds

(21) Il(ep(ﬂ[x.%]) -w(ﬂ[x,cpp])u <—kﬁ; k> G

Let us note, moreover, that by a progedure similar to the
proof of inequality (10) we deduce from conditions (11), (19)
and assumption 4°(a), for all xe¢ X, ¥ ¢ X,, the inequality

(22) Nl (¥ [xp,]) - @(Z[E0]| < 20(g(x,3)),
1=1,2,000,n, P>NE°

To the number ¢& = w1 (%) we can choose, by assumption

4°(b), a number k, =w™! (}:—) such that for all the x,XeX

for which g(x,i) > w™! (;k_ and (22) are satisfied the fol-
lowing inequality holds

e(gl[x’(Pp]v §1[§1¢]) )(0-1 (%) .

From this inequality and from the fact that w is a mo-
notone increasing function it follows that

% < D(Q(?{ [xt‘Pp]: ?‘1[5.?]) Je
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10 J,Czuga.la

Combining this with inequality (21) we get
(23)  lloy(2} [x.0,]) - w(E{[x,0, ] <

<w(e(f’1[x,<pp], ?}_[i,tp])) for i=1,...,n, x€X, X€ X,

Using (20) and (23) we obtain for p > ma.x(Né, N;.') the rela-
tion

(24) llo (2] [x,0,]) - @(F][F0])] < 20(g(E] [x,00,]s # [Roe])),

which is true for xe¢ X, X € Xey L= 1hee0,n.

From relations (19) and (24) we conclude, by Wirtue of
assumption 3°, that for p > max(NE, Né, N;) the following
inequality holds

Ih(x,0,(x) ,(pp(%} X ,(Pp(§l[x,(pp]) )-h(Z,0(%),0(T] (Z,0]),
veen s EN[E, @I S wlo(x,R)), xeX, ¥ eXg

whence, taking into account (13), we get the following esti-
mate

(25)  ln(x,q(x) (2] (00,10 sue e 0 (ER X000, ]0) -
- b(F@(D) 021 [Z,0]) e e, 9 ELFODI <& &

Finslly, by inequalities {12), (15), (16) and (25) we obtain

x el ol
[]wp(x) -yixlll<e for xe X, p> max(hE,NE,NE).

Thus the inequality [l w_ - wl||<& holds for any € >0 end

mn

for p> max(NE,N%,Ng); that is to say, the operation =
defined by equality (9) is continuous,
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To prove that the assumptions of Schauder s theorem are
satisfied, we have merely to show that the set A dis compact.

To this purpose we have to show that for any x € X the
set B, := U {(p(x)} is compact in Y. Let y,, y, € 3,.

“rom the deflnitlon of the set B it follows that

y1 = (P1(x)’ ‘y2 = (Pz(x), (P1, (Pz € A,

By inequality (7) and essumption 1° we have

N3q = 350 =leq(x) = @o(x)}| < 20(g(x,E)).

From this inequality it follows that the set B, is bounded.
Eence the set B_ is compact in Y, By Theorem 10,1 of [7],
p.164, the set A is compact in §. The set A, being a
closed subset of the set ¥, is compact.

Since all the assumptions‘ of Schauder s theorem are ca-
tisfied, there exists at least cne solution ¢ : X —*7Y of
equation (1) satisfying conditions (7), which completes the
proof of our theorem,

Example, Consider the equation

@(x) = % X - '5%5 sin % X + -d—q)(x) +3%(p(%x +%sin(p(x)),

where ¢ 1s the unknown function, x € X := -1,1>,. dssume
= (we0,00), w: (0,2> =<0,2), w(t) = t, The given

functions involved in the equation: h : X*Y2—>Y,

£] : ZxY —=X are defined as follows

251 3 1., 1 1 )
h(x,50,3) =595 * -~ 577 805X+ gV, +33 Vqs X€X,y T3 €7,

f}(x,u) =%x +-gsin u, xeX, uey
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12 JeCaugata

and are continuous in their domains of definition and satisfy
assumptions 1°, 2% of our theorenm,

Let us show that the remaining assumptions of the theorem
sre also satisfied. Now, for all x,X € X, 35,35 € ¥, 1=0,1
such that

Iyi'iilszlx—ih (1=0,1)

we have the inequality

|h(xpy°’y1) - h(§'§°1§1)l S Tmlx - X] .

Hence the function h satisfies the conditions of assumption
3° of the theorem. Moreover, let us note that for arbitrary
x,¥ eX, un,ueY the following estimate holds

lfQ(x,u) - f}(;‘c,ﬁ)ls%_lx - X -hg |u - 1.
Hence, using the condition |u - W|<2 |x - X[, we get

lf}'(x,u) ~ £11(%,8)|< +1x - xl.

The function f] satisfies the cohditions of assumption
)
4°(a).

Let us prove that assumption 4°(b) is also satisfied.
To any- real number ¢& > O thers-exists a positive number k;
(say k, = —gZ,) such that for all x,X¥ ¢ X, u,ui.e¢Y such
that ‘

|x - | 22, |Ju-1l<2|x - 7|

the following inequality holds '
lf}(x,u) -f](f,ﬁ)l?]-é—lx-xl "8" ln - u” -glx-xl
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Hende the given functions f}, h, involved in the considered
eguation, satisfy the assumptions of the theorem.

It is easy to see that the function ¢ : X — Y defined
by the formuls p(x) = %—x is in the set X a solution of
the considered equation and that it satisfies conditions (7).
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