

G.D. Awasthi, A.K. Shukla

ON SOME CURVE IN A SUBSPACE OF A FINSLER SPACE

1. Introduction

Consider a subspace F_m with coordinates u^α ($\alpha=1, \dots, m$) and metric tensor $g_{\alpha\beta}(u, u')$ imbedded in a Finsler space F_n with coordinates x^i ($i=1, \dots, n$) and metric tensor $g_{ij}(x, x')$, then we have [5]:

$$(1.1) \quad g_{\alpha\beta}(u, u') = g_{ij}(x, x') x_\alpha^i x_\beta^j;$$

where

$$x_\alpha^i = \partial x^i / \partial u^\alpha.$$

In a Finsler space there exist two sets of $(n-m)$ dimensional normals, one $n_{(\mu)}^i$ ($\mu = m+1, \dots, n$)¹⁾ independent of x^μ and the other $n_{(\mu)}^{*i}$ depending on x^i . The secondary normals $n_{(\mu)}^{*i}$ satisfy the following relations [2]:

$$(1.2) \quad g_{ij} n_{(\mu)}^{*j} x_\alpha^i = n_{(\mu)i}^* x_\alpha^i = 0,$$

$$(1.3) \quad g_{ij} n_{(\mu)}^{*i} n_{(\mu)}^{*j} = 1,$$

1) Early Greek indices α, β, γ etc., take the values from $1, \dots, m$; later Greek indices μ, ν, τ etc., take the values from $m+1, \dots, n$ and Latin indices i, j, k , etc., take the values from $1, \dots, n$.

$$(1.4) \quad g_{ij} n_{(\mu)}^{*i} n_{(\nu)}^{*j} = \Phi_{(\mu)} \delta_{\nu}^{\mu},$$

and

$$(1.5) \quad x_{\alpha\beta}^i = \sum_{\mu} \varrho_{(\mu)}^{*} n_{\alpha\beta}^{*i} n_{(\mu)}^{*i}.$$

where $\varrho_{(\mu)\alpha\beta}^{*}$ are the secondary second fundamental tensors of the subspace.

Consider now a set of $(n-m)$ congruences $\lambda_{(\mu)}^{*i}$, of curves such that one curve of each congruence passes through each point of the subspace F_m . If $\lambda_{(\mu)}^{*i}$ can be expressed as:

$$(1.6) \quad \lambda_{(\mu)}^{*i} = t_{(\mu)}^{*\alpha} x_{\alpha}^i + \sum_{\nu} c_{(\mu\nu)}^{*i} n_{(\nu)}^{*i},$$

then we have

$$(1.7) \quad \cos \theta_{(\mu\nu)}^{*} = c_{(\mu\nu)}^{*}$$

and

$$(1.8) \quad 1 - t_{(\mu)}^{*\alpha} t_{(\mu)}^{*\alpha} = \cos^2 \theta_{(\mu\nu)}^{*},$$

where $\theta_{(\mu\nu)}^{*}$ is the angle between the vectors whose contravariant components are $\lambda_{(\mu)}^{*i}$ and $n_{(\nu)}^{*i}$.

A curve C in F_m which is imbedded in F_n has $m-1$ curvatures and $m-1$ normals relative to F_m and $n-1$ curvatures and $n-1$ normals relative to F_n . Let curvatures and unit normals relative to F_m be denoted by $K'_{(r)}$ ($r = 1, \dots, m-1$) and $\xi_{(r)}^{\alpha}$ ($r = 2, \dots, m$) and those relative to F_n by $K_{(r)}$ ($r = 1, \dots, n-1$) and $\eta_{(r)}^i$, ($r = 2, \dots, n$) respectively. The unit vector tangent to the curve C is denoted by $\eta_{(1)}^i$ or $\xi_{(1)}^{\alpha}$ according to that, if it is regarded as a vector in F_n or in F_m .

2. C_B -curves in a Finsler space

First of all we shall define C_B -curves as the curves of the subspace having the property that at every point, its normal geodesic surface (formed by first and second normal) contains the tangent vector to a curve of the congruence of curves through that point. Next we define C_B -curves of order p as the curves of the subspace having the property that at every point, its normal geodesic surface (formed by first and $p+1$ -th normal) contains the tangent vector to a curve of the congruence of curves through that point. If the vector with contravariant components $\lambda_{(\mu)}^{*i}$ lies in this geodesic surface, then we have

$$(2.1) \quad \lambda_{(\mu)}^{*i} = a_{(\mu)} \eta_{(2)}^i + b_{(\mu)} \eta_{(p+2)}^i,$$

where $a_{(\mu)}$ and $b_{(\mu)}$ are to be determined.

From (1.6) and (2.1), we obtain

$$(2.2) \quad t_{(\mu)}^{*\alpha} X_{\alpha}^i + \sum_{\gamma} c_{(\mu\gamma)}^{*} n_{(\gamma)}^{*i} = a_{(\mu)} \eta_{(2)}^i + b_{(\mu)} \eta_{(p+2)}^i.$$

If we assume that the curve C is an asymptotic curve of order p in a Finsler space [4], then we have

$$(2.3) \quad \eta_{(p+1)}^i = \xi_{(p+1)}^{\alpha} X_{\alpha}^i.$$

Differentiating (2.3) w.r.t. the arc length of the curve C we obtain the equation

$$(2.4) \quad K_{(p+1)} \eta_{(p+2)}^i = K'_{(p+1)} \xi_{(p+2)}^{\alpha} X_{\alpha}^i + \sum_{\mu} \Omega_{(\mu)}^{*\alpha} \xi_{(1)}^{\alpha} \xi_{(p+1)}^{\beta} \eta_{(\mu)}^{*i}$$

which can be written in the form

$$(2.5) \quad K_{(p+1)} \eta_{(p+2)}^i = K'_{(p+1)} \xi_{(p+2)}^{\alpha} X_{\alpha}^i + \sum_{\mu} K_{(\mu)}^{(p+1)} n_{(\mu)}^{*i},$$

where

$$(2.6) \quad K(\mu)(p+1) = \Omega^*(\mu) \alpha \beta \xi^{\alpha}(1) \xi^{\beta}(p+1).$$

By virtue of (2.3) and (2.5), the equation (2.2) takes the form

$$(2.7) \quad t^*(\mu) x_{\alpha}^i + \sum_{\gamma} c^*(\mu \gamma) n_{(\gamma)}^{*i} = a(\mu) \xi^{\alpha}(2) x_{\alpha}^i + \\ + c(\mu) (K'(p+1) \xi^{\alpha}(p+2) x_{\alpha}^i + \sum_{\gamma} K(\gamma)(p+1) n_{(\gamma)}^{*i}),$$

where $c(\mu) = b(\mu)/K(p+1)$. Multiplying (2.7) by $g_{ij} x_{\beta}^j$ and using (1.1) and (1.2) we obtain

$$(2.8) \quad g_{\alpha\beta} t^*(\mu) = a(\mu) g_{\alpha\beta} \xi^{\alpha}(2) + c(\mu) K'(p+1) g_{\alpha\beta} \xi^{\alpha}(p+2).$$

Again multiplying (2.7) by $g_{ij}(x, x') n_{(2)}^{*j}$ and summing on i , we get

$$(2.9) \quad c^*(\mu \gamma) = c(\mu) K(\gamma)(p+1).$$

Now multiplying (2.8) by $\xi^{\beta}(2)$ summing on β , and using the relations

$$(2.10) \quad \begin{cases} g_{\alpha\beta} \xi^{\alpha}(2) \xi^{\beta}(2) = 1, \\ g_{\alpha\beta} \xi^{\alpha}(2) \xi^{\beta}(p+2) = 0 \end{cases}$$

we get

$$(2.11) \quad g_{\alpha\beta} t^*(\mu) \xi^{\beta}(2) = a(\mu).$$

From (2.8), (2.9) and (2.11) we now obtain the equation

$$(2.12) \quad g_{\alpha\beta} t^{*\alpha}(\mu) K(\gamma)(p+1) = \\ = g_{\alpha\beta} \xi^{\alpha}(2) K(\gamma)(p+1) g_{\gamma\delta} t^{*\gamma}(\mu) \xi^{\delta}(2) + C^*(\mu\gamma) K'(p+1) g_{\alpha\beta} \xi^{\alpha}(p+2)$$

which on multiplication by $g^{\beta\epsilon}$ and summing on β yields

$$(2.13) \quad C^*(\mu\gamma) K'(p+1) \xi^{\epsilon}(p+2) - \\ - K(\gamma)(p+1) \left(t^{*\epsilon}(\mu) - g_{\gamma\delta} t^{*\gamma}(\mu) \xi^{\delta}(2) \xi^{\epsilon}(2) \right) = 0.$$

Equation (2.13) represents the differential equation of C_B -curves of order p in F_m . For a congruence specified by the parameters $t^{*\alpha}(\mu)$, the solution of (2.13) determines the C_B -curves of order p in F_m relative to that congruence. Denoting the L.H.S. of (2.13) by

$$(2.14) \quad \gamma^{*\epsilon}(p) = C^*(\mu\gamma) K'(p+1) \xi^{\epsilon}(p+2) - K(\gamma)(p+1) B^*(\mu),$$

where

$$(2.15) \quad B^*(\mu) = \left(t^{*\epsilon}(\mu) - g_{\gamma\delta} t^{*\gamma}(\mu) \xi^{\delta}(2) \xi^{\epsilon}(2) \right)$$

and calling $\gamma^{*\epsilon}(p)$ the contravariant components of the curvature vector of C_B -curves of order p we define these curves as follows.

A C_B -curve of order p of F_m w.r.t. a congruence determined by the parameters $t^{*\epsilon}(\mu)$ is a curve along which the curvature vector $\gamma^{*\epsilon}(p)$ is a null vector.

If in particular $p = 1$, then (2.13) reduces to the equation

$$(2.16) C_{(\mu\nu)}^* K'_2 \xi^{\epsilon} (3) - K_{(\nu)}(2) \left(t_{(\mu)}^{*\epsilon} - g_{\gamma\delta} t_{(\mu)}^{*\gamma} \xi^{\delta} (2) \xi^{\epsilon} (2) \right) = 0$$

which we call the differential equation of C_B -curves in F_m .

3. Some special properties

From (2.14) it follows that if $K_{(\nu)}(p+1) = 0$ (i.e., the curve C is an asymptotic curve of order $p+1$, [4]) and $\gamma^{*\epsilon}(p) = 0$, then we have either $K'_2(p+1) = 0$ (i.e., the curve C is a geodesic of order $p+1$, [4]) or the vector with components $\xi^{\epsilon}(p+2)$ is a null vector. Hence we have the following theorem.

Theorem 3.1. A necessary and sufficient condition for a C_B -curve of order p to be an asymptotic curve of order $p+1$ is one of the following:

- (i) it is a geodesic of order $p+1$ in F_m ;
- (ii) the vector with components $\xi^{\epsilon}(p+2)$ is a null vector;
- (iii) the congruence is formed of tangential vectors only.

In addition to this, if $K'_2(p+1) = 0$ and $\gamma^{*\epsilon}(p) = 0$, we get either $K_{(\nu)}(p+1) = 0$ or $B_{(\mu)}^{*\epsilon} = 0$. Hence we have

Theorem 3.2. A necessary and sufficient condition for a C_B -curve of order p to be a geodesic of order $p+1$ in F_m is one of the following:

- (i) it is an asymptotic curve of order $p+1$,
- (ii) the vector with components $B_{(\mu)}^{*\epsilon}$ is a null vector.

Let us denote by $K_{B(p)}$ the curvature of the C_B -curve of order p , then we have from (2.14) the following relation

$$(3.1) \quad K_{B(p)} = K'_2(p+1) C_{(\mu\nu)}^* \pm K_{(\nu)}(p+1) \left(1 - \sum_{\alpha} \cos^2 \theta_{(\mu\nu)}^*(\mu\nu) \right)^{1/2} \cdot \sin \beta_{(\mu)},$$

where $\beta_{(\mu)}$ is the angle between vectors $t_{(\mu)}^{*\alpha}$ and $\xi^{\beta}(2)$. The positive and negative signs are to be taken according as

the angle between $t_{(\mu)}^{*\alpha}$ and $\xi_{(p+2)}^{\beta}$ is $90+\beta(\mu)$ or $90-\beta(\mu)$ respectively. From (3.1) we can easily obtain:

Theorem 3.3. A necessary and sufficient condition for a C_B -curve of order p to be a geodesic of order $p+1$ in F_m is one of the following:

- (i) the curve is an asymptotic curve of order $p+1$,
- (ii) the congruence is that of normals only,
- (iii) the vectors $t_{(\mu)}^{*\alpha}$ and $\xi_{(2)}^{\beta}$ are parallel.

In particular for a congruence of tangential vectors equation (3.1) takes the form

$$(3.2) \quad K_B(p) = \pm K_{(\gamma)(p+1)} \sin B(\mu)$$

which by virtue of the relation [4]:

$$(3.3) \quad K_{(p+1)}^2 = K_{(p+1)}^{12} + K_{(\gamma)(p+1)}^2$$

yields

$$(3.4) \quad K_{(p+1)}^2 = K_{(p+1)}^{12} + K_B(p) \cosec^2 \beta(\mu).$$

Hence we have the following theorem.

Theorem 3.4. For the congruence of tangential vectors, C_B -curves of order p are geodesic of order $p+1$ in both F_m and F_n simultaneously, provided the vectors $t_{(\mu)}^{*\alpha}$ and $\xi_{(2)}^{\beta}$ are not parallel.

Again equation (3.1) for a normal congruence reduces to

$$(3.5) \quad K_B(p) = K_{(p+1)}^1$$

which by virtue of (3.3) yields

$$(3.6) \quad K_{(p+1)}^2 = K_B(p)^2 + K_{(\gamma)(p+1)}^2.$$

Hence we have

Theorem 3.5. For the congruence of normals, C_B -curves of order p are asymptotic curves of order $p+1$ and geodesic of order $p+1$ in F_n simultaneously.

Again if the vectors $t_{(\mu)}^{*\alpha}$ and $\xi_{(2)}^\beta$ are parallel we have

$$(3.7) \quad K_{(p+1)}^2 = K_{(\nu)(p+1)}^2 + K_B^2(p) \sec^2 \theta^*(\mu\nu).$$

Thus we get

Theorem 3.6. If the vectors $t_{(\mu)}^{*\alpha}$ and $\xi_{(2)}^\beta$ are parallel, then a necessary and sufficient condition for a C_B -curve of order p to be geodesic of order $p+1$ in F_n is that it has to be an asymptotic curve of order $p+1$, provided the congruence is formed not of tangential vectors only.

REFERENCES

- [1] P.B. Bhattacharya : Curves on the surface of reference whose normal plane at any point contains the ray of the congruence through that point., Ganita (1950).
- [2] R.S. Mishra, R.S. Singh : Union and hyper-asymptotic curves of a Finsler subspace and hypersurface, Rend. Circ. Mat. Palermo (2) 14 (1965).
- [3] S.C. Rastogi, H.K.N. Triivedi : On a curve in a subspace of a Riemannian space (accepted for publication in (1970) Comptes rendus de l'Academie Bulgare des Sciences).
- [4] S.C. Rastogi : Generalised curves in a Finsler space (accepted for publication in Univ. Nac. Tucuman, Argentina, 21 (1971).
- [5] H. Rand : The differential geometry of Finsler spaces, Berlin (1959).

DEPARTMENT OF MATHEMATICS, LUCKNOW UNIVERSITY, LUCKNOW, INDIA
Received January 28, 1980, revised version January 12. 1982.