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ON THE SINGULAR POINTS OF PRINGSHEIM - DU BOIS REYMOND 
OF A FUNCTION OF TWO VARIABLES 

In t roduc t ion 
Let F(x,y) be a func t i on of c l a s s C°° i n R 2 . Then, p 

f o r any point (x,y) e R we can wr i te the equa l i ty 

(*) T p ( x , y , h , k ) = F(x,y) + 2 -¿y 2 (J) a n F U , 7 ) 

n=1 r=0 a^ay 1 1" 1 . 

The fol lowing cases are poss ib l e : 
a) There e x i s t s a number R(x,y) > 0 such t h a t f o r 

| h | < R ( x , y ) , [ k | < R ( x , y ) the s e r i e s (*-) i s absolu te ly con-
vergent and there e x i s t s a number ¿ ( x , y ) e (0,R(x,y) > such 
t ha t f o r | h | < 6 ( x , y ) , | k ] < 5 ( x , y ) we have 

T p (x ,y}h,k) = P(x+h, y+k). 

Then the point (x ,y) i s sa id to be a r egu l a r point of the 
f u n c t i o n P. 

b) Tiie number R(x,y) quoted under a) e x i s t s , but the 
number <5(x,y) does no t , i . e . any open disk of cen te r (x,y) 
conta ins a point (x+h' ,y+k') such t ha t T j ( x , y ; h ' , k') ^ 
i P(x+h', y+k ' ) . In t h i s case the point (x,y) i s cal led a 
s ingu la r point of Cauchy (C-s ingular p o i n t ) . 

c) The number R(x,y) quoted under a) and b) does not 
e x i s t . Then the point (x,y) i s said to be a s ingu la r point 
of Pringsheim-Du BoiB Reymond (P-s ingu la r po in t ) . 
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2 L.Meres 

As is well known [1], the point (x,y) is a P-singular 
point of the function F if and only if 

At,.,) . 11. Lup\ll, 2 (?) 
V r = 0 3x 3y 

The singular points of a function of one or several variables 
are defined in a similar manner. Zahorski [2] proved that for 
a function of one variable of class the set P c R is 
the set of all its P-singular points and the set C C R is 
the set of all its C-singular points if and only if 

(I) P is of class Gj and C is of class Pg. and of 
first category, 

(II) P u C = P~u~C, P n C = 0. 
On the other hand, it is known [3] that the conditions (I) 
and (II) are necessary for a function of several variables of 
class C°°, and that if P is a void set, then they are al-
so sufficient. A full characterization of the pair of sets P 
and C is unknown till now, even for m = 2, that is we do 
not know whether the conditions (I) and (II) are sufficient 
(when both sets P and C are non-void). The method used by 
Zahorski in constructing the desired function of one variable 
is long and difficult and, moreover, it cannot be generalized 
to functions of several variables. There are two reasons for 
thi3 being so: 1) closed sets have even in R a more compo-
sed structure than on the straight line, so that lemmas which 
give a topological basis for the construction of the needed o 
function are false in R ; 2) Zahorski based his construc-
tion on the approximation theorem of Runge, to which there is 
no analogue for the multidimensional space. Making use of a 
theorem of Whitney and of the quoted result of Zahorski 
it can be proved that for any closed set P lying in Rm 

there exists a function F(x1,...,xm) -of class C ^ in Rm 

for which any point of the set P is P-singular and any point 
of the set R m \ P is regular. However, such proof for the 
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Singular points 3 

sufficiency, of conditions ( I ) and ( I I ) in the case where C 
i s a void sd.t does not point any way to be followed in the ge-
neral case (when both sets P and C are non-void). 

In this paper we shal l prove that for m = 2 closed-
ness gives a f u l l characterization of the set of P-s ingular i -
t i e s in the class of functions which have no C-s ingular i t ies ; 
the method used to this purpose 
- i s almoBt elementary, 
- does not make use of the theorems of Whitney, Zahorski and 

Range, 
- includes the analogous resul t of Zahorski and may be con-

sidered as a s impli f icat ion in the one-dimensional case, 
- can be extended to the case Rm (m > 3)» 
- may possibly be applied to the general construction (when 

both sets P and C are non-void). 

V. Let 

(1 ) K^, Kg, . . . , Kn, . . . 

be the sequence, defined in paper [ 5 J , § 4, of closed squares 
corresponding to the closed set P c R^. Let ( a n » b n ) 
the center and 21fl the length of the side of the square Kn. 
Consider an arbitrary sequenoe { m ^ of rea l numbers ^ 1. 
Assume, as in paper (formulas ( 1 7 ) ) , that 

(2) r n = 20n , Cn = M 2 . 1 0 2 n + 1 / 1 Bn = M^IO11/!*» = l ^ l f 

and oonsider the entire functions f Q ( x , y ) , related to the 
squares Kn, defined by formula (18) of paper [ 5 j : 

= (M2/cfn)U(x-a n ,B n ,L n )U(y-b n ,B n ,L n )cos C n U-a n )cos Cn(y-bn) 
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4 L»Merea 

and l e t 

( 3 ) 

At l a s t we s e t 

F U . y ) = 2 f n ( x ' 7 ) * 
n=1 

( 4 ) a - 1 - ( 2 / 1 0 0 V j r ) e x p ( - 1 0 0 ) , b = 2 e " 2 0 / 1 0 0 - ^ r . 

L e m m a 1* I f k > 2 , t h e n t h e f o l l o w i n g i n e q u a l i -
t i e s h o l d a t any p o i n t ( x , y ) 6 K k : 

( 5 ) 
3 K f k

( x ' 7 ) 

a x ^ a y 4 1 ^ 
> * £ ( | - c o s C k ( x - a k ) | a - b ) ( | c o s C k ( y - b k ) | a - b ) 

f o r [ c o s C k ( x - a k ) | ^ 1 / V 2 " anp[ | c .osC k (y -b f c ) | > 1 / V 2 \ 

(6) 

6 r k + 1 
3 * f k ( x , y ) 

>M*C k ( | - s i n C k ( x - a k ) | a - b ) ( | o o s C k ( y - b k ) | a - b ) 

f o r | - s i n C k ( x - a k ) | > l / V ? and | c o s C k ( y - b k ) | £ l / V T , 

(7 ) 

8 r k + 1 
8 * f k ( x , y ) 

4 r k 4 r k + 1 >M£c k ( | c o s C k ( x - a k ) | a - b ) ( | - s i n C k ( y - b k ) | a - b ) 
3x 

f o r | c o s C k ( x - a k ) | > 1/V21 and | - s i n C k ( y - b k ) | > l / V ? , 

( 8 ) 
3 * f k ( x , y ) 

> M k ° k ( | - s i n C k ( * - a k ) | a - b ) ( | - s i n C k ( y - b k ) | a-b) 

f o r | - s i n C k ( x - a k ) | > 1 / ^ and | - s i n C k ( y - b k ) | 
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Singular pointa 5 

P r o o f . We start by observing that for any natural 
number k ^ 2 we have the ineq uality 

(9) (2.20k+l)ln(4»20k+D + 4*20kln1,3 - 102k < -20k, 

easy to verify by induction. I f (x,y) e Kk, then (x~ak) e 
6 < - l ' k , l k > = < -L k +h k , L k -h k > , (^k=lk) and> similarly, 
(y-bk ) e < -Lk+hk,Lk-hk hence, according to the inequality 
(9) of [5 ] , we have 

U(x-ak ,Bk ,Lk ) > 1 - (2/V3?Bkhk )exp(-3^) = 

= 1 - (2/Mk.10kVi?)exp(-M^.102k) > a. 

Therefore 

(10) U(x-ak ,Bk ,Lk ) > a and U(y-bk ,Bk ,Lk ) > a. 

Prom the condition (x,y) e Kj. it follows that 

(11) |x-ak + Lk | and [y-bk + Lk| 

Prom [5 ] , form.(14), we get 

8rir 
3 f j j (x,y ) 

=Mk( cosCk (x-ak )U(x-ak,Bk,Lk ) ^4rk^ * ( c o s Ck (3 r~'V ' 

.U (y -b k ,B k , I k ) + B 2 > 4 r k ) , 
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6 L. Meres 

8rk+l 
a fk(x,j) 2 
I V I frT* "k(-0k8i«Ck(x-ak)U(z^ajc,B]c,Lk)+S1 ^ • 
3x ^ 3y * k 

• (cosCk(y-bk)U(y-bk,Bk,Lk)+S2^4l,k), 

8rk+1 
3 * fk(x»y) 2 - 4 - Mk(cosCk(X-ak)U(x.ak,Bk,Lk)+E ) . 
3x k 3y k k 

. (-CksinCk(7-bk)U(y-bk,Bk,Lk)+E ^ ), 

8r.+2 
3 f (x yj 

3x 3y * * 

• (-CksinCk(7-bk)U(y-bk,Bk,Lk)+B2)4rk+1)', 

According to inequality (14a) of £5] we obtain for p = 4rk+1 

, B. (4r.+1)! • 4rk 

• exp(-B2(x-ak+Lk)2)+(l+(Bk/Ck)+{2B2/ck)|x-ak-Lk|)4rk • 

. exp(-B2(x-ak-Lk)2)) := B1 _ r K 
Prom the same ineq uality we draw for p = 4rk 
, , B. (4rk)!Cr1 4rk-1 l31,4r J ^ ̂  ' T f c f f ({1 + ( V G k |x-ak+Lk |) 

L 2 J ! 
o 9 o • . • 4rlf-1 • exp(-B^(x-ak+Lk)'i) + (l + (Bk/Ck) + (2B^/Ck) |x-ak-Lk|) * • 

j2/ „ T \2\ . exp(-Bk(x-ak-Lk) )) := E ^ . k 
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Singular points 7 

Sinoe p ! / [( p - 1 ) / 2 \ I i n c r e a s e s with p, we have 

( l + { B k / C k ) + ( 2 B ^ / C k ) | x - a k + L k | ) * < 

< ( l + ( B k / C k ) + ( 2 B ^ / C k ) ¡ x - a k + I k | 

whenoe 

( 1 2 ) B 1 , 4 r k < C^ B 1 , 4 a - k + r 

We s h a l l now find upper est imates f o r the expressions 

| B 1 , 4 r k l » | B 1 , 4 r k + 1 | ' | B 2 , 4 r k l ' | B 2 , 4 r k + l | ' 

By (12) i t i s c l e a r l y enough to find an upper est imate f o r 
.., « from which the est imates f o r E„ and E„ . 

w i l l follow by replac ing x by y and a k by b k . Let 

p = 1+B k /C k , q = 2B^/Ck , c = 4 r k , d = b|j then the posi -

t i v e funct ion g ( t ) - ( p + q t ) c . e x p ( - d t 2 ) , t 0 , takes an 

absolute maximum at the point 

t e t 0 = " 2 P d + 2 ( P 2 ^ 2 c d ) 1 / 2 = ( - - p / 2 q ) + ( l / 2 ) ( ( p 2 / q 2 ) + ( 2 c / d ) ) 1 / 2 , 

V C k + 1 / < V C k > 2 + 8 r k \ l / " ! f 2 r , 1 / 2 . 

1 k v . 1 / 2 
¥ ( 2 - 2 0 * ) < 

Mk* 10 

Sinoe g ( t ) decreases f o r t > t , we have g ( t ) 4 g ( l i ) o O it 
f o r t > l k . I-Ience, taking i n t o acoount the i n e q u a l i t i e s 
( 1 1 ) , we can wri te 
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L.Meres 

4r 

(l+(Bk/Ck)+{2B§/Ck)|x-ak+Lk|) k exp(-B^(x-ak+Ik)2}< 

< M + t B ^ J + i S B j l J / C j j i ^ . e x p i - B ^ J ) = !<• k 9 k 

= ( l + ( 1 / M k . 1 0 k + 1 ) + ( 2 / 1 0 ) ) 4 - 2 0 . o X p ( - 1 0 2 k . M ^ < ( l , 3 ) 4 - 2 0 .e" 1 0 . 

Prom this estimate and from inequality (9) i t follows that 
< i ! k . (4rk+1)I 4 . 2 0 k _1b2k 

{ 2 r k ) ! , l 1 ' 3 J *e 

k 2k 
= 2C k (4«20 k +1)l( l ,3) 4 , 2 0 »e"10 / tffa k . 10 k + 1 (2.20) k ) i< 

k 2k 
<2C k {4 .20 k +l)t( l ,3) 4 , 2 0 «e"10 /100V5?(2.20k) I = 

(2. 20k+i) (2.20k+2)... (4* 20k+1) (1,3)4* 2 ° k . e " 1 

lOOVir 

< ( 4 . 2 0 k + 1 , 2 • 20k+1 ( 1 § 3,4.20 k . f l - 10 2 k
 = 

100V? 

=
 2Ck e(2.20k+1)ln(4+20k+1)+4* 20 k . In1 ,3 - 10 2 k < 

~ 1 0 0 V * 

< 2 ° k
 e " 2 ° k < Cv.b . 

100 V* 

Finally, we have |B1 | 4 l . + 1 1 '< V b a n d ' b y { 1 2 ) ' l E 1 , 4 r k l < b ' 
Since |ab+o|>[ab| - | c | , from the last inequalities, from 
the analogous inequalities x'or E2,4r and B2,4rk+1 a n d 

from (10) we get 
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Singular points 9 

8r. 
» * f k (x ,y ) , 

4 r t 4r. 
3x * 

>M2( |cosC k (x-a k ) |U( X -a k > B k ,L k ) - l E ^ J ) • 

• ( |coeCk(y-hk)| U(y-b k ,B k ,L k ) - |B 2 > 4 p | ) > 

>Mk( |coeC k (x-a k ) |a-b)( |cosC k (y-b k ) ja-b) , 

and the inequality (5) i s thus establ ished. In a s imilar man-
ner we get 

8r,+1 
3 f k 0 s , 7 ) 

4rv+1 4r. 
Zx * 3y * 

l^{C k | -e inC k (x-a k ) |a-bC k ) ( |cosC k (y-b k ) |a-b) , 

whenoe the inequality (6) follows. The same argument leads to 
inequal i t ie s (7) and (8) . 

2. L e m m a 2. For any sequence {a^}- of rea l num-
bers AQ > 1 there ex i s t s a sequence {MJJ of rea l numbers 
Mn > 1 such that at any point (x,y) 6 KQ the function 
F(x,y) defined by formulas (2)-(4) s a t i s f i e s for n >2 at 
l ea s t one of the inequal i t ies 

(13a) 
8r 

3 P(x.y) 
4r_ 

dx n 3y 
(13b) 

8r +1 
a n . F(x.y) 

3x 
4r +1 i r n 

n 3y n 
>A. 

(13c) 
8r +1 

3 n 

3x û 3y n 
> V (13d) 

8r +2 
a n 

9x n 

P(x,y) 

P r o o f . Let M̂  = 1. Assume that we have already 
defined the numbers M ,̂ Mg, . . . ,Mk_.j, a l l of them > 1. Then, 
according to the notations (2) , the numbers 
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10 I,. Meres 

01t C2,...,Ck-1 and B^.B 1» 2' 3k-1 

are also known, arid so are the entire functions f.j(x,y), 
f2(x,y) f w ( i j ) , whioh are the terms of the series (4), 

p ^ 
(L.. = + rj " 20"). We shall show that it is possible 
to define the next term Mk> 

Since the square Kk is closed, the numbers 

»i, 1 - max k'1 (x,y)€K 

8r. 

2J 4r̂ . 4r, 
i=1 3x K K 

Ji, o = tnax 
(X, 7 )€K. 

k-1 2 
i=1 3x 

,8rk+1 

4rk+1 
fjU.y) 

3y 
4rb 

>v -j ~ max (x,y)eKk 

k-1 g8rk+1 

i? ¡T̂ 7
4rk+1 f^x,;?) 

J,, . = max k' 4 (x,y)€K, 

k-1 2 l * f^x,?) 
4r.+1 4r.+1 

i=1 dx K 3y 

exist and are finite. If 

J k s= max(Jkf1, J k > 2, J k f y Jkf4), 

> 1, 

where a, b are the numbers defined by formula (4)» then the 
number 
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Singular points 11 

Mk = ((Ak + Jfc + 1 )H) 1 / 2 > 1 

s a t i s f i e s the imposed condit ion. Indeed, by v i r t ue of theo-
rem 1 of paper [ s i we have 

MA) *** TU.J) V f i ( * ' 7 ) , 
3xp ayq 3xp 3yq 8x p 3yq 

• 2 
i-k+1 

8 ™ f j U . y ) 
3xp d yq 

I t makes no harm t h a t , he re , only f ^ ( x , y ) . . , f k ( x , y ) are 
exactly defined ( f i x e d ) , whereas f s ( x , y ) f o r s > k depend 
on the f r ee parameter Mg, since Theorem 1 of [ 5 ] provides 
such a d i s t r i b u t i o n independently of M_ under the condit ion 

0 

tha t Mg ^ 1} t h i s condition i s indeed s a t i s f i e d while the 
Sequence i s being defined by induct ion. For the same 
reason, according to Theorem 2 of [ 5 ] , the l a s t term in (14) 
s a t i s f i e s at any point (x,y) e R2 the inequal i ty 

(15) 2 g A q < 1 
i-k+1 o x 

f o r each of the pa i r s : p = 4 r k , q = 4 r k ; p = 4rk+1, q = 4 r k ; 
p = 4r. , q = 4rfc+1{ p = 4rk+1, q = 4 r k + 1 . Prom the inequal i ty 
| a + b + o | > | b | - [a | - | c | and from (14) and (15) i t follows 
tha t f o r any of these pairs we have 

( 1 6 ) 3 p + q F(x,y) 3P+<3 f k ( x , y ) 
3xp 3yq 3xp 3yq - J k - 1 
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12 L.Meres 

at any point (x,y) e R . From the identity sin a + cos ot =1 
i t follows that for any real number cn we have 

|sin a | > 1 /V? or |cos o(| >1/V?. 

This means that at any point (x,y) e R at least one of the 
following conditions mast be satisf ied: 

(a) |oosCk(x-ak)| > 1 / ^ and | oosCk(y-bk)| >1/V2", 

(b) |-sinCk (x-ak ) | and |oosCk(y-bk)| 

(o) |cosCk(x-ak)| ^ 1 a n d | -sinCk (y-bk )| >1/t|2*, 

(d) |-sinCk (x-ak )| ^ l /V? and | -sinCk (y-bk )| >1/ -^ . 

Let (x,y) e Kk. I f (a) holdsi then from inequality (5) we 
obtain 

8 r k 3 * f k ( x , y ) 
^ a - b V = M,2 • 4- = 

3r * 3y 

which, together with (16), implies (13a). I f (b) holds, then 
(6 ) , together with inequality Ck > 1 and (16), implies (13(b), 
In the same manner we obtain (13a) i f (o) holds and, i f (d) 
holds, we get (13d) and the proof of the lemma is completed. 

2 
_3. T h e o r e m . To any closed set P c R there 

exists a function F(x,y) such that 
( i ) F(x,y) is of class C°° in R2, p 
( i i ) Any point (x,y) e R \P is a regular point of the" 

function F(x,y) , 
( i i i ) Any point (x,y) 6 P is a P-singular point of the 

function F(x,y) . 
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Singular points 

P r o o f . I f the aet P i s void, then the func t ion 
F(x,y) s 0 s a t i s f i e s the required condi t ions . Assume now 
tha t P i s a non-void s e t . Consider the sequenoe of squares 
(15), [5] , corresponding to the set P. Let 

1. 
Afl = nn»n!. 

*(*.*) = 2 V * » ^ 
n=1 

be the funct ion defined by formulas (2)-(4) and {Mn}, m|n 

the sequenoe selected according to lemma 2, with 
Then the assumptions of Theorems 1 and 3 of [ 5 ] , which imply 
( i ) and ( i i ) , are s a t i s f i e d . I f (x,y) 6 P, then (x,y) be-
longs to an i n f i n i t y of squares KQ of the sequence (1) ; hen-
ce, by v i r tue of the lemma, at l e a s t one of the i n e q u a l i t i e s 
(I3a)-(13<J) holds f o r an i n f i n i t y of j 
r e e x i s t s a subsequence 

This means tha t the -

max 
0<j<mk 

m. 

3xJ 3 y 

nxf7) 

(mk = Sr^ or 8 r k + 1 

of the sequence 

or 8rfc+2, r k 

>m P(x,y) 
= 20k, 

am F(x,y) I 
|0«j«m ÔX3 3y®"3 J 

lim 
k ~-ao m,. + o o ) 

such tha t 

max l - ^ M 
< * * V | 3x^ 3y k 

Henoe i t follows tha t 

m,. 
> A m k

= ( m k ) • ( m k ) I ' 

/ m m \ 1 '® 

/ m \ 1 / m 

> l i m sup (-¡jry max I 8 / f o t j j I ) > 
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14 L.Meres 

( I mk 
lim sup I ,1 . , max 3 j 

^ l ira sup 
k 

K - (m k ) ! ) £ = H n D k = +oo, 

which means that (x,y) is a P-singular point of the function 
F(x,y) and the proof of the theorem is thus completed. 
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