DEMONSTRATIO MATHEMATICA
Vol. XV No2 1982

Lucjan Meres

ON THE SINGULAR POINTS OF PRINGSHEIM-DU BOIS REYMOND
OF A FUNCTION OF TWO VARIABLES

Introduction
Let PF(x,y) be a function of class C° in R2, Then,
for any point (x,y) € R° we can write the equality

o n n
(%) Tolx,33h,k) =P(x,3) + D 1r S (8) LE(xT) 77,
n=1 r=0 axtay™ T

The following cases are possible:

a) There exists a number R(x,y) > O such that for
[h]<R(x,y), |k]|<R(x,y) the series (#) is absolutely con-
vergent and thers exists a number 6(x,y) € (0,R(x,y) > such
that for |h|<8(x,y), [k]<8(x,y) we have

TF(x,y;h,k) = F(x+h, y+k).

)

Then the point (x,y) is said to be a regular point of the
function F.

b) The number R(x,y) quoted under a) exists, but the
number &(x,y) does not, i.e. any open disk of center (x,y)
contains a point (x+H ,y+k’) such that TF(x,y;h',E) #

# P(x+h', y+k’). In this case the point (x,y) is called a
singular point of Cauchy (C-singular point).

¢) The number R(x,y) gquoted under &) and b) does not
exist, Then the point (x,y) is said to bs a singular point
of Pringsheim~Du Bois Reymond (P~singular point),
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2 L.Meres

As is well known [1], the point (x,y) is a P-singular
point of the function F if and only if

A(x,y) = lim sup jz (m).@_F(X.Z)
n->~oco

ra fl=-2

The singular points of a function of one or several variables
are defined in a similar manner. Zahorski [2] proved that for
a function of one variesble of class C°° the set P CR is
the set of all its P=-singular points~and the set C CR 18
the set of all its C-singulaer points if and only if

(I) P is of olass Gg and C 1is of class Fy and of
first category,

(ITI) PuC=PuUC, PNC =¢g.
On the other hand, it is known [3] that the conditions (I)
and (II) are necessary for a function of several variables of
class €°°, and that if P is a void set, then they are al-
so sufficient. & full characterization of the pair of sets P
and C is unknown till now, even for m = 2, that is we do
not know whether the conditions (I) and (II) are sufficient
(when both sets P and C are non-void). The method used by
Zshorski in constructing the desired function of one variable
is long and difficult and, moreover, it cannot be generdlized
to functions of several variables, There are two reasons for
this being so: 1) closed sets have even in R2 & more cCompo=-
sed structure than on the straight line, so that lemmas which
give a topological basis for the construoction of the needed
function are false in R2; 2) Zahorski based his construg-
tion on the approximation theorem of Runge, to which there is
no analogue for the multidimensional space, Making use of a
theorem of Whitney [4] and of the quoted result of Zahorski
it can be proved that for any closed set P 1lying in R™
there exists a function F(x,,...,x;) of class ¢™ in R
for which any point of the set P is P-singular and any point
of the set R®\P is regular. However, such proof for the
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Singular points 3

sufficiency of conditions (I) and (II) in the case whare C
is g vold seét does not point any way to be followed in the ge-
neral case (when both sets P and C are non-void).

In this paper we shall prove +that for m = 2 c¢losed-
ness gives a full characterization of the set of P-singulari-
ties in the class of functions which have no C-singularities;
the method used to this purpose
- is almost elementary,

- does not make nse of the theorems of Whitney, Zahorski and
Runge,

- includes the analogous result of Zahorski and may bBe con-
sidered as a simplification in the one-dimensional case,

- can be extended to the case R™ (m > 3),

- may possibly be applied to the general construction (when
both sgets P and C are non-void).

1. Let

(1) K1, K2, ecoey Kn, see

be the sequence, defined in paper [5], § 4, of closed squares

corresponding to the closed sev P C R2. Let (an’bn) be

the center and 21n the length of the side of the square Kn‘

Congider an arbitrsry sequence {Mn of real numbers Mn > 1.
Assume, as in paper [5] (formulas {17)), that

(2) =z, = 20", ¢, =u2.102112 5 - M -10%/12, 1 =1 412

and oonsider the entire functions fn(x,y), related to the

sqguares K.» defined by formula (18) of paper [5]:

fn(x,y) =

= (42/¢%n)T(x-a,,B,,1,)0(3-b,,B,, I )cos C/(x-a )cos C (3-b,)
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4 L.Meres

and let
©o

(3) Flx,3) = D £,(x,3).
n=1

At last we set

(4)

a =1 - (2/1004Mexp(-100), b. = 26~20/100y7.

Lemma 1, If k > 2, then the -folloiving ineguali=-

ties

(5)

Brk
) fk(zy)

hold at any point (x,y) € Ky :

>M§( fcosCy (x~a) )| a=b)( |cosC) (y-b; )] g-b)'

X h’ay
for |cosCy(x~a,)| »1/¥2" and [cosCy(y-by )| > 12,
aB:L'k+1f ( )
: X,J .
(6) 4rk+1k 4;‘1; > ¥2¢, ( [-51nC, (x~a, )| a=b) ( [008Cy (y=by )| a=b)
ax ay
for |—sinck(x-ak)| 2 12 and ]cosck(y-bk)| > 1/¥2,
, 8rk+1
(7) e >Mkck( |cosck(x-ak).| a=b)( I—Bian!(;y-bk)l af-b)
ax "y .
for |cosck(x-ak)] > 142 and I-sinc_k(y-bk)l >1/42,
aerk+2f ( )
k' X»J 242 . .
(8) -Mk+13- B > M Cp |-sinck(x-ak)| a~b)( l-sinck(y-_-bk)la-b)
ix ~ 9y
for [-sian(x-ak)I > 1/42' and [-81n0) (3-~by )| >1/2,
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Singular poinss 5

Proof. We start by observing that for any naturel
number k 2 2 we have the inequality

(9)  (2020541)1n{4+20541) + 4020%1n1,3 - 102F < 20,
easy to verify by indnction. If (x,y) € K., then (x-g )e€

(3-b,) €< ~Ly+hy Ly ~hy D>; hence, according to the inequality
(9) of [5], we have

Ulx-a,,By,Ly) 2 1 - (2/ VEBhy Jexp(~32n) =
= 1 = (2/U 105 exp(-12: 10%) > a,
Therefore
(10) U(x-ak,Bk,Lk)‘> a and U(y-bk,Bk,Lk) > 8.
From the condition (x,y) € K it follows that
' 2 2
(11) [x-a, + L, 121y  and fy-by + I | 215,

From [5], form.(14), we get

8r
k
T

d (x,7)

=M§(coka(x-ak)U(x~ak,Bk,Lk)+E1,4rk)-(cosck(y-bk)-

OU(y-bk,Bk,Lk)+E2’4rk) »
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6 L.Meres

8rk+1
fk(x,y)

41, +1 4r
x 2y k

= 42 ] ' ; .
= Mk(-Cksinck(x-ak)U(x—ak;Bk,Lk)*31,4rk+1)

. (goka(y-bk)U(y-bkak'Lk)+E2;4rk)’

-8rk+1

8 fk(xiy)

4r 4r, +1
k 2y k'

- = Mi(°°5Ck(x’ak)U(X'ak'Bk’®k)+E1,4rk) .
X

. (-cksinck(y-bk)U(?-bk,Bk,Lk)+E2'4rk+1),

8rk+2 :

a fk(x’y)
4r, +1 42, +1

ax ¥ oy k

N 2 o ~
= Mk(-cksinck(x—qk)U(x—ak,Bk,Lk)+E1’4rk+1) .

* (-Cy8inCy (3=, JULT=DysBys I ) 485 g 4115
According to inequality (14a) of [5] we obtailm for p = 4oy +1

B (4r, +1)1 A . 4
IE1’4rk+1I$ZQé% !fﬁragijT——((1+(Bk/ck)f(23§/Ck)lx-ak+Lkl) k b

2 t 12). y 2. Ary
i exP(-Bk(X-ak+Lk) )+(1+(Bk/qk)+(2Bk/ck)'x-ak-Lkl) .

2 2 e T
L] exp( -Bk(x-ak_llk) ) ) = E1 ,4\rk+l.
From the same inequality we draw for p = 4r,

B, (4rk)!c£‘

. -
51,4 l<?¢=’ dry 1
y 4Ty g [f-g"—]l

. 2 : Ary
((1+(Bk/Gk)+(23k/Ck)lx-ak+Lk[) .

2 2 2 /0 ) Iee 4ry~1
« exp(-Bp(x-a,+L, )°)+(1+(B,/C} ) +(2BL/Cp ) [x-ay =Ly |} & o

« oxp(~BZ(x-a,~Ly)?)) = §1’4rk.
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Singular points 7

Sinoce p!/[(p-1)/2]1 increases with p, we have

2 4oy
(1+(B,/Cy ) +(2B)/Cy ) | -8yt Ty |) <

2 4 k
< (14+(B/C, )+(2By/C; ) [x-aytL, |) 7,
whenoce

— l_ —
(12) E1’4rk< G E1,4rk+1.

We shall now find upper estimates for the expressions

|E1,4rk|’ IE1,4rk+1|' |E2,4rk|' ‘E2,4rk+1ll'

By (12) it is clearly enough to find an upper estimate for
E1’4rk+1’ from which the sstimates for E2’4rk and E2'4rk+1

will follow by replacing x by y and 8y by bk' Let
p = 14B,/C, Qq = 2B2/C,, c = 4v,, d = BZ; then the posi-

tive function g(t) = (p+qt)°-exp(-dt2), t >0, takes an
absolute maximum at tne point

232, 5,2,411/2
ut = 2202203242429 %0) 2 (o204 (1/2) (52142 4 20/)) V2
1/2

2
2 2 = -
4Bk 4Bk Bk k
2
1 1/2
= —-—151-5 (2020%) " < 112{.

Since g{(t) decreases for t > t,» we have g(t) € g(li)
for t 2 lﬁ. Hence, taking into acoount the inequalities
(11), we can write
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8 L.Meres

4r
(1+(Bk/0k)+(QBE/Ck)[x—akiLkl) k exp(—Bi(x-akiLk)z)g
4
< (1+(By /0, )+(2B212/C, ) Feoxp(-BELY) =
X . k _q42k
= (1017010547 ) (27100 )4 20 s oxp(-10P0E) < (1,3) 4020707107,

From this estimate and from inequality (9) it follows that

— ZBk (4rk+1)l
B < . -
1o +1 S N (2r, )1

k ~2k
’3)4.20 09-10 =2
X 4020% 102K k+1 X
= 2ck(4-20 +1)1(1,3) .g /\Emk-w (2620)7)1<

k 2k
<20, (4+20541)1(1,3)4 20 06™10" /100vR( 20 20%) 1 =

. . ok 2k
= (2020541 (2020542) o o o (4020%+1) (1,3)4°20 4107 <
100vor
2C k k 2k
100 \Er‘
%%t 2.2054+1)1n(4+20%+1 ) +4.20%. 1n1,3-10% <
100{‘
2C X
1oowl"

Finally, we have |E |<ck-b and, by (12), [E1 4o, [<b.

Since |ab+a| > |ab| - [c] from the last inequalities, from
the analogous inequalitias 7or E2 4r and E2'4rk+1 and

from (10) we get
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Singulasr points 9

2 ~ L
> ML ( |cosCy(x~a, )| U(x~ay,B),LIy ) - 'E1'4rk“
« (leonCy(3-by)| U(y-by,By,Ly)- %2, 42, 11>

>M12:( Icosck(x-ak)l a~b)( |cosCy (y-b, H a~b),

and the inequality (5) 1s thus established. In a similar man-
ner we get

8rk+1 .
a fk(x,y)
4, +1  4v
Ix & oy Ak

> Mﬁ(ck |-81nC,.(x-a; )| a~bCy ) ( |cosC) (y~by ) |a-b),

whence the inequality (6) follows. The same argument leads to
inequalities (7) and (8).

2. Lemmnma 2. For any segquenae {An} of real num-
bers An> 1 there exists a sequence {Mn} of real numbers
M, > 1 such that at any point (x,y) € K, the function
F(x,y) defined by formulas (2)-(4) satisfies for n 2 at
least one of the inequalities

Brn 8rn+1
(13a) | E{x3) >4, (130) |2 T 41F_<x;g,’ >4,
n n n n
d9x 0y dx 3y
aernﬂ B | a8rn+2 B( )
Xy x,y 0
(130) a 4rn a 4rnﬂ >An, (13d) a 4rn+1 a 4rn+1 >1\no
X Yy X J

Proof. Let M1 = 1. Assume that we have already
defined the numbers M1, Mz"”’Mk-1’ all of them > 1. Then,
according to the notations (2), the numbers
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10 L.Meres

01’ 02,...,Ck_1 and B1,"B2’.."Bk—1

are also known, and So are the entire functions f1(x,y),
fz(x,y),...,fk_1(x,y), which are the terms of the series (4),

(1 =1, + 1?, vy = 20%). We shall show that it is possible
to define the next term Mk'
Since the square Kk is c¢losed, the numbers

8r
5 k=1 7k fj(x,y)
k,1 7 A [ENE N
’ (x,y)eKk 1=1 ax k ay k
8r. +1
5 ) gk £, (x,3)
k,2 =, A 4r, ¢1 4, |’
4 (x,y)GKk 1=1 ax k ay k
8r. +1
; e E n(xy)
k,3 7 03 AT, 4n 41 | !
’ (x,y)GKk i=1 9x ka:y k
, 8x, +2
; k1 £, (x,7)
k,4 =, DeX 4r. +1 4r +1
T (xyleKy |47 ax K gy K

exist and are finite. If

Jk = max(Jk’1,ka,2, Jk'3’ Jk'4),

-2
H :=(—§'—- b_\) > 1,

\A

where a, b pare the numbers defined by formula (4), then the
number
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Singular points 11

M, = ((a + 3, + NH)/2> 1

satisfies the imposed condition. Indeed, by virtue of theo-
rem 1 of paper [5] we have

(14) 2 PH F(x ll) _ 1(2-1 ap+q fi(xay) R ap+q fk(xvy)
axP 3yt oy axP ayd axP ayd
. oo ap""q fi(x'y)

- P d
1=k41 90X 37

1t maekes no harm that, here, only f1(x,y),...,fk(x,y) are
exactly defined (fixed), whereas fs(x,y) for 8 >k depend
on the free parameter M, since Theorem 1 of [5] provides
such a distribution independently of M, uander the condition
that M, > 1; this condition 1s indeed satisfied while the
dequence {Mk} is being defined by induction. For the same
reason, according to Theorem 2 of [5], the last term in (14)
satisfies at any point (x,y) € R2 the inequality

oo aP"’q £ (x,
(15) _..._L_x_l)_

P g9
isks1 0% 03

for each of the pairs: p = 4ry, 9 = 4ry s p = 4,41, g = 4rk;
P = 4Ty, 9=4ry+1; p=4ry+1, q=4ry+1. From the inequelity
la+b+oT>lb| - la] - |¢] and from (14) and (15) it follows
that for any of these pairs we have

3p+q fk(x,y)
2xP 2yt

2PH p(x,y3)

(16)
2xP 239

-Jk"1
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12 LoMeresn

2

at any point (x,y) € R2, Prom the identity sino + cose =1

it followa that for any real number o« we have

Jein | 2142 or |cos a| 21/V2.

This means that at any point (x,y) € R® at least one of the
following conditions must be satisfied:

(a) |oosCy(x-a,)| 21/42" and |oosck(y-bkﬂ > 1/42,
(b)  [-sinC(x-ay)| >1/V2 and  [eosCy(y-by)| 212,
(0) |oosCy(x-a,)| >1/VF and |-sinCy(3-b )|/,
(d)  |-sinCy(x-ay)| >1/V2 and |-sinCy(3-by)|»1/ ¥

let (x,3) € Kjo If (&) holds; then from inequality (5) we
obtain

Brk
2 fk(xoy)
4ry

2
2(1_ 2,1 _

4r
ox k Ay

which, together with (16), implies (13a). If (b) holds, then
(6), together with inequality C, > 1 and (16), implies (13b).
In the same manner we obtain (13a¢)} if (e) holds and, if (d)
holds, we get (13d) and the proof of the lemma is completed.

3. Theorem. To any closed set P C R2 there
exists a function F(x,y) such that

(1) F(x,y) is of class C™ in R?,

{ii) Any point (x,y) € R®\P is a regular point of the
function P(x,y),

(iii) Any point (x,y) € P 1is a P-singular point of the
function F(x,y).
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Singular points 3

Proof. If the set P 1is void, then the function
F(x,y) = 0 satisfies the resquired conditions. Assume now
that P 1is a non-void set. Consider the sequence of squares
(15), [5], corresponding to the set P, Let

oo

F(x,y) = 2 fn(xvy)
n=1

be the function defined by formulas (2)-(4) and {M }, My > 1,
the sequence selected according to lemma 2, with An = nfenl.
Then the assumptions of Theorems 1 and 3 of [5], which imply
{i) and (ii), are satisfied. If (x,y) € P, then (x,y) be~
longs to an infinity of squares K, of the sequence (1}; hen-
ce, by virtue of the lemma, at least one of the inequalities
(13a)=(13d) holds for an infinity of n. This means that the-
re exlsts a subssguenae

amk P(x,y)

max
m.
axd 3y &

0<J<mk

k .
m = 8r, or 8r. .+l or 8r. +2, 1 =20 lim my = +oe
(my = 81y, K1 or Bry+2, =y = 200, lm m = +eo)

2" F(x,3) :
of the sequence X ——'Jj such that
{Oﬁ'jsm axd ay™" }
m
k m
max |2 E(ZIL| 0 o (m) Ee(my)t.
o<j<my | 4,3 2y kK k

Hence it follows that
o o 1/m
A(x,y) = lim sup(%ﬁ 2 ('31) la F(xm,z_) I) S
I =oo :]:o ax ay ]

1/m
{1 2" P{x,3)
2 1lim sup (— max 7—115- >
“m>o0 B! ogigm ' axd 2y l) g
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14 L,Meres

1
F(x,y , /oy
3x 2yPk™d g

lim sup(T——T—

m 1/m
21im sup(—(%;T (mk) k-(mk)!> K - 1im m, = +0o,

k woo k =00

which means that (x,y) 1is a P-singular point of the function
P(x,y) and the proof of the theorem is thus completed,
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