

Janina Kotus

VECTOR FIELDS ON  $R^2$  WITHOUT OSCILLATIONS ARE GENERIC

This paper deals with a problem which has arisen from one of the central research themes in dynamical systems in the last twenty years, i.e. from  $\Omega$ -stability and structural stability. This problem can be formulated as follows: does every nonwandering point of an  $\Omega$ -stable or structural stable dynamical system belong to the closure of the union of all its periodic orbits. So far an answer has been given by C.Pugh (see [5]) for dynamical systems of compact manifolds. We give a partial answer to the noncompact case i.e. we prove that there exists a residual set of vector fields on  $R^2$  which satisfy  $\Omega = \text{Per}$ . Thus this property is a necessary condition for  $\Omega$ -stable or for structural stable vector fields on  $R^2$ . For the other consequences of this theorem see [2].

We introduce the following notation:

$H^r(R^2)$  - the space of  $C^r$  ( $r \geq 1$ ) vector fields on  $R^2$  which generate flows endowed with the strong (Whitney)  $C^r$ -topology,  $Y$  - an element of  $H^r(R^2)$ ,

$T^Y : R^2 \times R \rightarrow R^2$  - the flow of the complete vector field  $Y$ ,

$T^Y(x) = \{ T^Y(x, t) : t \in R \}$  - the  $Y$ -orbit of  $x$ ,

$T^Y_+ (x) = \{ T^Y(x, t) : t \geq 0 \}$ ,

$T^Y_- (x) = \{ T^Y(x, t) : t \leq 0 \}$ ,

$T^Y(A) = \bigcup \{ T^Y(x, t) : x \in A, t \in R \}$  for  $A \subset R^2$ ,

$\omega(T^Y(x)) = \{ y \in R^2 : \exists t_n \rightarrow +\infty \text{ . } \exists T^Y(x, t_n) \rightarrow y \}$ ,

$\omega(T^Y(x)) = \{ y \in R^2 : \exists t_n \rightarrow -\infty \text{ . } \exists T^Y(x, t_n) \rightarrow y \}$ ,

$W_Y^{u(s)}(x)$  - the global unstable (stable) manifold of a fixed point  $x$ ,

$\Omega(Y)$  - the set of all nonwandering points of  $Y$ ,

$\text{Per } Y$  - the union of all closed orbit and all critical points of  $Y$ ,

$[a, b]$  - segment of the transverse section with ends  $a, b$ ,

$(a, b)$  - segment of the transverse section without ends  $a, b$ ,

For definition of  $W_Y^{u(s)}(x)$ ,  $\Omega(Y)$  see [3].

Definition 1. a)  $T_{\pm}^Y(x)$  is bounded if it is contained in some compact set  $C \subset R^2$ .

b)  $T_{\pm}^Y(x)$  escapes to infinity if for each compact set  $C \subset R^2$  there exists a point  $y \in T_{\pm}^Y(x)$  for which  $T_{\pm}^Y(y) \cap C = \emptyset$ .

c)  $T_{\pm}^Y(x)$  oscillates if it is neither bounded nor escapes to infinity.

Definition 2. The oscillation region of  $Y$  will be a region  $E \subset R^2$  with the following properties:

(i)  $E$  is simply connected and unbounded

(ii)  $\text{Fr}E$  (the boundary of  $E$ ) has at most countable number of components, each of them is unbounded and separates  $R^2$ .

(iii) a component of  $\text{Fr}E$  is either an orbit which escapes to infinity for  $t \rightarrow -\infty$  and for  $t \rightarrow +\infty$  or a set consisting of a saddle  $p$ , a branch of  $W_Y^u(p)$  which escapes to infinity for  $t \rightarrow +\infty$  and a branch of  $W_Y^s(p)$  which escapes to infinity for  $t \rightarrow -\infty$ .

(iv) if  $x \in \text{Fr}E$  and  $Y(x) \neq 0$  then for any small enough transverse section  $P_1 \times P_2$  to  $Y$  at  $x$  there exists a sequence  $x_n \in P_1 \times P_2$ ,  $n = 1, 2, \dots$ , such that  $x_n \rightarrow x$ . For any  $n$ ,  $x_{n+1}$  lies between  $x_n$  and  $x$ ,  $T^Y(x_n, t_n)$  is the first common point of  $T_{+}^Y(x_n)$  and  $P_1 \times P_2 \cap E$ ,  $T^Y(x_n, t_n) \rightarrow y$  and  $t_n \rightarrow +\infty$ . Moreover the regions  $A_n$  are bounded by a sum of arcs  $a_n = \{T^Y(x_n, t) : 0 \leq t \leq t_n\}$  and  $[x_n, T^Y(x_n, t_n)]$ , form an increasing sequence and  $\bigcup_{n=1}^{\infty} A_n = E$ .

The properties of oscillation regions are described in [1].  
 $G_1^r(R^2) = \{Y \in H^r(R^2) : \text{all critical points of } Y \text{ are hyperbolic}\}.$

We denote the Kupka-Smale vector fields in  $H^r(R^2)$  by  $G_2^r(R^2)$  i.e. for  $Y \in G_2^r(R^2)$ :

- (i) all critical points and closed orbits are hyperbolic.
- (ii) the unstable and stable manifolds of saddles are in general position i.e. have no common points.

It is clear that  $G_2^r(R^2) \subset G_1^r(R^2)$ .  $G_1^r(R^2)$  and  $G_2^r(R^2)$  are residual subset of  $H^r(R^2)$ . Moreover  $G_1^r(R^2)$  is open in  $H^r(R^2)$  (see [4]).

Theorem 1. If  $Y \in G_2^r(R^2)$  then  $\Omega(Y) = \text{Per } Y$  iff  $Y$  has no oscillation regions.

Proof. Suppose that  $Y \in G_2^r(R^2)$  has an oscillation region  $E$ . By Th.2 [1] the boundary of  $E$  is contained in  $\Omega(Y)$ . Thus there exists an orbit which escapes to infinity for  $t \rightarrow +\infty$  or for  $t \rightarrow -\infty$ . This implies that there exists an orbit of nonwandering points which does not belong to  $\text{Per } Y$ . We get a contradiction which finishes the proof of necessity. Assume that  $Y \in G_2^r(R^2)$  has no oscillation regions. Suppose that  $\Omega(Y) \not\subset \text{Per } Y$  (converse inclusion is always true). Let  $x \in \Omega(Y) - \text{Per } Y$ . Therefore there exist a transverse section  $P_1 x P_2$  to  $Y$  at  $x$ , a sequence of points  $x_n \in P_1 x P_2$ , a sequence  $t_n \rightarrow +\infty$  such that  $x_n \rightarrow x$ ,  $T^Y(x_n, t_n)$  is the first common point of  $T_+^Y(x_n)$  and  $P_1 x P_2$  and  $T^Y(x_n, t_n) \rightarrow y$ . Moreover for any  $n$ ,  $x_{n+1}$  lies between  $x_n$  and  $x$ . Let  $A_n$  be a region bounded by a sum of arcs  $a_n = \{T^Y(x_n, t) : 0 \leq t \leq t_n\}$  and  $[x_n, T^Y(x_n, t_n)]$ . Then the regions  $A_n$  form an increasing sequence. Let us denote  $\bigcup_{n=1}^{\infty} A_n$  by  $E$ . Now we describe the orbit  $T^Y(x)$ . By Th.3 and Remark 1 [1]  $T^Y(x)$  cannot oscillate. Thus  $T_+^Y(x)$  either is bounded or escapes to infinity. If  $T_+^Y(x)$  is bounded then using the assumption that  $Y$  is Kupka-Smale vector field and Lemma 1 [1], we get that  $\omega(T^Y(x))$  is either a closed hy-

perbolic stable orbit or a critical hyperbolic point: sink or saddle. Because  $x \in \Omega(Y)$ , so  $\omega(T^Y(x))$  can be neither a stable closed orbit nor a sink. Therefore if  $T^Y(x)$  is bounded, then there exists a saddle  $p$  such that  $\omega(T^Y(x)) = \{p\}$  and  $x \in W^S_Y(p)$ . It is not difficult to see that  $T^Y(z) -$  a branch of  $W^U_T(p)$  is also a set of accumulation points of  $a_n$ ,  $n = 1, 2, \dots$ . Hence  $T^Y(z) \subset \text{FrE}$ . Using again the argument that  $Y \in G_2^r(\mathbb{R}^2)$  we get that  $T^Y(z)$  escapes to infinity for  $t \rightarrow +\infty$ . Analogously one can prove that  $T^Y(x)$  either escapes to infinity for  $t \rightarrow -\infty$  or  $\omega(T^Y(x))$  is a saddle  $q$  and  $T^Y(\bar{z}) -$  a branch of  $W^S_Y(q)$  is contained in the same component of  $\text{FrE}$  as  $T^Y(x)$ . Therefore  $E$  is simply connected and unbounded region. Moreover any component of  $\text{FrE}$  is like in Def.2. Thus  $E$  is an oscillation region of  $Y$  and we get a contradiction which finishes the proof.

Now we formulate and prove some technical lemmas which we need to proof of next theorem.

**Definition 3.** A flowbox for  $Y \in H^r(M)$  we call a closed quadrilateral  $F \subset \mathbb{R}^2$  containing no restpoints of  $Y$ , with two (opposite) edges  $S_+$  transverse to  $Y$  and the other two edges  $Y$ -orbit segments, each joining an endpoint of  $S_+$  to an endpoint of  $S_-$ .

We call  $S_+$  the entrance set and  $S_-$  the exit set of  $Y$ . In what follows,  $T^Y[x, y]$  denotes the closed  $Y$ -orbit segment from  $x$  to  $y$ .

**Lemma 1.** Suppose  $S_\pm$  are transverse sections to  $Y \in H^r(\mathbb{R}^2)$  such that:

- (i)  $S_+$  is compact
- (ii) the forward semi-orbits of each point  $x$  of  $S_+$  intersects  $S_-$ , and the first intersection  $P_Y(x)$  is interior to  $S_-$ .

Then the Poincaré map  $P_Y : S_+ \rightarrow \text{int } S_-$  is as smooth as  $Y$ , and there exists a compact-open  $C^r$ -neighbourhood  $U$  of  $Y$ , concentrated on a neighbourhood of the union of orbit segments  $T^Y[x, P_Y(x)]$ ,  $x \in S_+$ , such that  $P_Z : S_+ \rightarrow \text{int } S_-$  is well-defined and varies  $C^r$ -continuously with  $Z \in U$ .

For proof of this lemma see [3].

To isolate a given positive or negative semi-orbit from others, and control its behavior under perturbation, we construct a positive (resp. negative) tower, defined as a finite or infinite sequence of flowboxes  $T = \{F_1, F_2, \dots\}$  (resp.

$T = \{F_{-1}, F_{-2}, \dots\}$ ) satisfying, for each  $i = \pm 1, \dots$

(i)  $F_i \cap F_j = \emptyset$  unless  $|i-j| \leq 1$

(ii)  $F_i \cap F_{i+1} = S_+(i+1)$  (resp.  $= S_-(i)$ )

(iii)  $S_+(i+1) \subset \text{int } S_-(i)$  (resp.  $S_-(i-1) \subset \text{int } S_+(i)$ )

(iv)  $T$  forms a locally finite family in  $\mathbb{R}^2$ .

The floors of the tower are the transverse edges  $S_+(i)$  and its height is the number  $h$  of flowboxes (finite or infinite). A positive semi-orbit can enter a positive tower  $T$  only via the bottom floor  $S_+(1)$ . An orbit can leave  $T$  via some set  $S_-(i) - S_+(i+1)$ ,  $i < h$ , or else it crosses all floors of  $T$  before leaving  $T$ . Given a floor  $S$  of the positive tower  $T$ , we denote by  $W(S, T, Y)$  the set of all points  $x \in S$  which cross all subsequent floors of  $T$  before leaving  $T$ . Note that for any tower  $T$  and any floor  $S$ , the set  $W(S, T, Y)$  is a nonempty closed interval (possibly a point) and when  $T$  has infinite height, every semi-orbit starting from  $W(S, T, Y)$  escapes to infinity inside  $T$ . Note that if  $T$  is a tower for  $Y$ , it need not be a tower for vector fields  $Z$  near  $Y$ , since the edges of the flowboxes need not be  $Z$ -orbits. Nevertheless, if  $Z$  is near  $Y$  at points in  $T$ , we can still define the set  $W(S, T, Z)$  as the set of points in  $S$  whose  $Z$ -semi-orbit crosses all subsequent floors of  $T$  in succession before leaving  $T$ . The following lemma is a persistence theorem for  $W(S, T, Y)$ . In (ii),  $|J|$  denotes the length of the interval  $J$ . The result is formulated for positive towers, but analogous lemma is true for negative towers.

**Lemma 2.** Suppose  $T = \{F_1, F_2, \dots\}$  is a positive tower for  $Y$ , and  $S$  is a floor of  $T$ .

(i) There exists a strong  $C^0$ -neighbourhood  $U$  of  $Y$  (actually an intersection of compact-open neighbourhoods concentrated on any neighbourhood of the flowboxes of  $T$ ) such that  $W(S, T, Z) \neq \emptyset$  for  $Z \in U$ .

(ii) Given  $\delta > 0$  there exists a strong  $C^1$ -neighbourhood  $U$  of  $Y$  (an intersection of compact-open  $C^1$ -neighbourhoods concentrated on any neighbourhood of the flowboxes of  $T$ ) such that for every  $Z \in U$   $(1-\delta)|W(S, T, Y)| \leq |W(S, T, Z)| \leq (1+\delta)|W(S, T, Y)|$ .

**P r o o f .** Note that  $W(S, T, Y)$  is a nested intersection of intervals  $W_i(S, T, Y) \subset S$ , defined as the set of points whose semi-orbit crosses at least  $i$  successive floors in  $T$ . The set in which these semi-orbits cross the  $i^{\text{th}}$  floor  $S_i$  is an interval  $J_i \subset S_i$ , and the subset of  $J_i$  corresponding to  $W_{i+1}(S, T, Y)$  is the preimage by the Poincaré map of  $S_{i+1}$ . Note that this set is interior to  $J_i$ , by condition (iii) of the definition of tower.

For definiteness, denote by  $p_Y^{ij}$  ( $i > j$ ) the inverse Poincaré map of  $Y$ , from  $S_i$  to  $S_j$ . Thus

$$p_Y^{ij} = p_Y^{i-1 i-1} \circ p_Y^{i-2 i-2} \circ \dots \circ p_Y^{j+1 j}.$$

Now, by Lemma 1 there are  $C^0$  estimates concentrated on any neighbourhood of  $F_1 \cup \dots \cup F_j$  which guarantee that  $Z$  near  $Y$  defines a corresponding Poincaré map  $p_Z^{ij} : S_i \rightarrow S_j$  which is  $C^0$  near  $p_Y^{ij}$ , and  $C^r$  near if  $Z$  is  $C^r$ -near  $Y$  on these sets. In particular, it is easy to see that by estimates on the first  $i$  flowboxes we can insure that each Poincaré map  $p_Z^{j+1 j}$  maps  $S_{j+1}$  into the interior of  $S_j$ , for all  $j \leq i$ . This guarantees in particular that

$$J_i(Z) = p_Z^{10} \circ p_Z^{21} \circ \dots \circ p_Z^{i-1 i-1}(S_i)$$

is nonempty compact interval interior to  $J_{i-1}(Z)$ , and hence the finite intersection property gives us conclusion (i).

To prove conclusion (ii), we note that for any monotone  $C^1$  map  $f$  between intervals the length of the image of a subinterval  $I$  is

$$|f(I)| = \int_I |f'(x)| dx.$$

Thus, if two maps  $f, g : J \rightarrow J'$  satisfy an estimate of the form

(a)  $|(1-\alpha)|f'(p)| \leq |g'(p)| \leq (1+\alpha)|f'(p)| \quad \forall p \in J$  then any interval  $I \subset J$  satisfies

$$(b) (1-\alpha)|f(I)| \leq |g(I)| \leq (1+\alpha)|f(I)|.$$

Lemma 1 tells us that for any  $\mathcal{L} < 1$  we can obtain (a) for  $f = P_Y^{ii-1}$ ,  $g = P_Z^{ii-1}$  by controlling the  $C^1$  distance between  $Y$  and  $Z$  near  $F_i$ . Thus, given  $\delta > 0$ , pick  $\mathcal{L}_1 > 0$

such that  $(1-\delta) < \prod_{i=1}^h (1-\mathcal{L}_1)$ ,  $(1+\delta) > \prod_{i=1}^h (1+\mathcal{L}_1)$  and then

make  $C^1$  estimates on  $Y|F_i$  which insure that (a) (hence (b)) holds for each  $i$  with  $\mathcal{L} = \mathcal{L}_1$ ,  $f = P_Y^{ii-1}$ ,  $g = P_Z^{ii-1}$ . By induction, we obtain the analogue of conclusion (ii) for each set  $W_i(S, T, Y)$  and  $W_i(S, T, Z)$ ,  $i \leq h$ , and hence (ii).

**Corollary.** If semi-orbit  $T_+^Y(x)$  escapes to infinity, there exists an infinite positive tower  $T$  with  $x \in S$ , such that  $W(S_1, T, Y) = \{x\}$ , and hence for any  $Z$  whose restriction to  $T$  is sufficiently  $C^2$ -near  $Y|T$ , there exists a unique  $Z$ -semi-orbit which escapes to infinity inside  $T$ .

**Theorem 2.** Let  $S$  be a transverse section to  $Y \in G_1^R(R^2)$ . For any neighbourhood  $U \subset G_1^R(R^2)$  of  $Y$  there exists an open set  $V \subset U$  such that if  $Z \in V$ , then  $Z$  has no oscillation regions whose boundary intersect int  $S$ .

**Proof.** Let  $U$  be a given neighbourhood of  $Y$ ,  $P, Q$  denote ends of  $S$ . Suppose that  $E$  is an oscillation region of  $Y$  and  $FrE \cap \text{int } S \neq \emptyset$ . Let  $a \in FrE \cap \text{int } S$ . It follows from the definition of oscillation regions that  $FrE \cap \text{int } S = \{a\}$  and  $T^Y(a)$  escapes to infinity either for  $t \rightarrow +\infty$  or for  $t \rightarrow -\infty$ . Assume that  $T^Y(a)$  escapes to infinity for  $t \rightarrow -\infty$ . Let  $Q \in E$ ,  $p \neq q$ ,  $p, q \in T_+^Y(a)$ ,  $S_1, S_2$  be small enough transverse sections at  $p, q$  such that

$S_2 \subset T_+(S_1)$ ,  $C = \overline{T_+(S_1) \cap T_-(S_2)}$ . Because  $p, q \in \text{FrE}$  then there exists a sequence of points  $q_n \in S_2 \cap E$ ,  $n = 1, 2, \dots$ , such that  $q_n \rightarrow q$ ,  $q_{n+1}$  lies between  $q_n$  and  $q$ ,  $T^Y(q_n, t_n)$  is the first point in which  $T_+(q_n)$  meets  $S_1 \cap E$ ,

$T^Y(q_n, t_n) \rightarrow p$  and  $t_n \rightarrow +\infty$ . Moreover there exists a sequence  $s_n$  such that  $0 < s_n < t_n$ ,  $s_n \rightarrow +\infty$  and  $T^Y(q_n, s_n)$  is the first common point of  $T_+(q_n)$  and  $\text{int } S$ . It is clear that  $T^Y(q_n, s_n) \rightarrow a$ . Let  $Y'$  be a vector field with a support  $C$ .  $Y'$  is transverse to  $Y$  and  $Y'$  leads in the direction of  $E$ . There exist  $t > 0$  and  $q_n \in S_2 \cap E$  such that  $X = Y + tY' \in U$  and  $q_n \in T_+^X(a)$ . Because  $X = Y$  outside  $C$  then  $T^X(q_n, t) = T^Y(q_n, t)$  for  $0 \leq t \leq t_n$ . Thus  $T_+^X(a)$  intersects  $\text{int } S$  at  $a$  and at  $b = T^X(q_n, s_n)$ . There exists a neighbourhood  $V \subset U$  of  $X$  with the property that if  $Z \in V$  then there exist  $a^Z, b^Z \in \text{int } S$  such that the arc  $T^Z[a^Z, b^Z]$  lies in the  $\varepsilon$ -neighbourhood of  $T^X[a, b]$ . By Lemma 2 and Corollary we can choose  $V$  in such way that  $T_+^Z(a^Z)$  escapes to infinity for  $t \rightarrow -\infty$ . It follows from the properties of  $T^Z(a^Z)$  that  $(a^Z, Q)$  is contained in a closed region  $G_1$  bounded by  $T^Z[a^Z, b^Z]$  and  $[a^Z, b^Z] \subset S$ . Hence if  $x \in [a^Z, Q]$  then  $T_+^Z(x) \subset \bar{G}_1$ , so  $T_+^Z(x)$  is bounded for  $Z \in V$ . This implies that the boundary of oscillation regions of  $Z \in V$  cannot intersect  $[a^Z, Q]$  (recall that each component of the boundary of oscillation regions is an unbounded, invariant set which separates  $\mathbb{R}^2$ ). Suppose that  $V$  does not satisfy thesis of Th.2. Therefore there exists  $Y \in V$  which has an oscillation region  $E$  such that  $\text{FrE} \cap \text{int } S \neq \emptyset$  (i.e.  $\text{FrE} \cap (P, a^Y) \neq \emptyset$ ). Let  $c = \text{FrE} \cap (P, a^Y)$ . By Def.2  $T^Y(c)$  escapes to infinity for  $t \rightarrow +\infty$  or for  $t \rightarrow -\infty$ . Assume that  $T^Y(c)$  escapes to infinity for  $t \rightarrow +\infty$ . We repeat the construction made for previous  $Y$ . Let  $p, q \in \text{FrE} \cap (P, a^Y)$ ,  $p \neq q$ .  $S_1, S_2, C, Y'$  are defined analogously. We change only the direction of  $Y'$ . Now  $Y'$  leads in the opposite direction to  $E$ . This construction together with Lemma 2 and

Corollary imply that there exists an open set  $V_1 \subset V$  with property if  $Z \in V_1$ , then there exist  $c^z, d^z \in (P, a^z)$ ,  $c^z \neq d^z$ , such that  $T^z_+(c^z)$  escapes to infinity for  $t \rightarrow +\infty$  and  $T^z_-(c^z)$  intersects  $\text{int } S$  at  $d^z \in (P, c^z)$ . Thus a segment  $(P, c^z)$  is contained in a closed region  $G_2$  bounded by  $T^z[d^z, c^z]$  and  $[d^z, c^z]$ . So, if  $x \in [P, c^z]$  then  $T^z(x) \subset \bar{G}_2$  for  $Z \in V_1$ . Hence the boundary of oscillation region of  $Z \in V_1$  cannot intersect  $[P, c^z] \cup [a^z, Q]$ . It remains to prove that  $(c^z, a^z) \cap \text{FRE} = \emptyset$  for any oscillation region  $E$  of  $Z \in V_1$ . Suppose that for some  $Y \in V_1$ ,  $\text{FRE} \cap (c^Y, a^Y) \neq \emptyset$ . Hence  $P \in E$  or  $Q \in E$ . If  $P \in E$  then there exists a sequence of arcs  $a_n = \{T^Y(x_n, t) : 0 \leq t \leq t_n\} \subset E$  such that  $x_n \in \text{int } S$ ,  $T^Y(x_n, t_n) \in \text{int } S$  and  $x_n \rightarrow x$ ,  $T^Y(x_n, t_n) \rightarrow x$  (by  $x$  we denote the unique common point of  $\text{FRE}$  and  $(c^Y, a^Y)$ ). Therefore  $a^Y \in (x_k, P) \subset A_k \subset E$  for some  $k$ . Because  $T^Y(a^Y)$  escapes to infinity for  $t \rightarrow -\infty$ , so  $T^Y(a^Y)$  intersects the arc  $a_k = \{T^Y(x_k, t) : 0 \leq t \leq t_k\} \subset \text{FRA}_k$  which is impossible. By the same arguments  $Q$  cannot belong to  $E$ . This implies that  $V_1$  satisfies all necessary conditions.

**Lemma 3.** For any compact set  $K \subset \mathbb{R}^2$  and open set  $U \subset G_1^r(\mathbb{R}^2)$  there exist open set  $V \subset U$ , sets  $S_1, \dots, S_k$  and the points  $p_1^Y, \dots, p_n^Y \in \text{int } K$  such that:

- (i)  $S_1, \dots, S_k$  are transverse sections to any  $Y \in V$ ,
- (ii)  $p_1^Y, \dots, p_n^Y$  are critical hyperbolic fixed points of  $Y \in V$
- (iii) if  $x \in K - \{p_1^Y, \dots, p_n^Y\}$ ,  $Y \in V$  then there exists  $S_i$  such that  $T^Y(x) \cap \text{int } S_i \neq \emptyset$ .

Proof of this lemma is very easy, so we leave it to the reader.

**Theorem 3.** For any compact set  $K \subset \mathbb{R}^2$  there exists a dense and open set  $V \subset G_1^r(\mathbb{R}^2)$  such that if  $Y \in V$  then  $Y$  has no oscillation regions with boundary intersecting  $K$ .

**Proof.** Let us be given  $K \subset \mathbb{R}^2$  and open set  $U \subset G_1^r(\mathbb{R}^2)$ . We start with showing that we may choose

$x \in \text{FrE} \cap K$  to be regular. If  $x \in \text{FrE} \cap K$  and  $Y(x) = 0$  then  $x$  is a saddle. Because  $x \in \text{int } K$  then there exists  $y \in W^u_x$  such that  $y \in \text{FrE} \cap K$ . Thus we can assume that  $Y(x) \neq 0$ . It follows from Lemma 3 (iii) that  $T^Y(x) \cap \text{int } S_i \neq \emptyset$  for some  $1 \leq i \leq k$ .

Suppose that  $i = 1$ . Using Th.2 we get an open set  $V_1 \subset V$  with the property that if  $Y \in V_1$ , then  $Y$  has no oscillation regions whose boundary intersects  $\text{int } S_1$ . Now if we apply again Th.2 we get open sets  $V_1 \subset V_{i-1} \subset V_i \subset U$  which satisfy the thesis for  $\text{int } S_1 \cup \dots \cup \text{int } S_i$ ,  $1 \leq i \leq k$ . Thus by Lemma 3 (iii) the set  $V_k$  satisfies Theorem 3.

**Theorem 4.** The set  $\{Y \in H^r(\mathbb{R}^2) : \Omega(Y) = \text{Per } Y\}$  is residual ( $r \geq 1$ ).

**Proof.** Let  $K_m$  be a sequence of compact subsets of  $\mathbb{R}^2$  such that  $\bigcup_{m=1}^{\infty} K_m = \mathbb{R}^2$ . Denote by  $C(K_m)$  the subset of  $G_1^r(\mathbb{R}^2)$  with the property that if  $Y \in C(K_m)$  then  $Y$  has no oscillation regions whose boundary intersect  $K_m$ . By Th.3  $C(K_m)$  contains an open and dense subset for any  $m \in \mathbb{N}$ . Thus

$\bigcap_{m=1}^{\infty} C(K_m)$  contains a residual subset. It is not difficult to

see that if  $Y \in \bigcap_{m=1}^{\infty} C(K_m)$  then  $Y$  has no oscillation regions. This sentence and Th.1 imply that  $\Omega(Y) = \text{Per } Y$  for any  $Y \in F^r(\mathbb{R}^2) = \bigcap_{m=1}^{\infty} C(K_m) \cap G_2^r(\mathbb{R}^2)$ . Because  $F^r(\mathbb{R}^2)$  is a residual subset of  $G_1^r(\mathbb{R}^2)$ ,  $G_1^r(\mathbb{R}^2)$  is an open and dense in  $H^r(\mathbb{R}^2)$ , so  $F^r(\mathbb{R}^2)$  is a residual subset of  $H^r(\mathbb{R}^2)$ .

**Corollary.** If  $Y \in H^r(\mathbb{R}^2)$  is  $\Omega$ -stable or structurally stable then  $\Omega(Y) = \text{Per } Y$ .

#### REFERENCES

[1] J. Kotus : Properties of oscillation regions of vector fields on  $\mathbb{R}^2$ , Demonstratio Math. 14 (1981) 239-248.

- [2] J. K o t u s , M. K r y c h , Z. N i t e c k i : Global structural stability of flows on open surfaces, Mem. Amer. Math. Soc. 261 (1982).
- [3] J. P a l i s , W. d e M e l o : Introdução aos sistemas dinamicos. São Paulo 1978.
- [4] M.M. P e i x o t o : On an approximation theorem of Kupka and Smale, J. Diff. Equat. 3(1967) 214-227.
- [5] C.C. P u g h : An improved closing lemma and general density theorem, Amer. J. Math. 89(1967) 1010-1021.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW

Received November 21, 1979.

