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VECTOR FIELDS ON R2 WITHOUT OSCILLATIONS ARE GENERIC 

This paper deals with a problem which has arisen from 
one of the central research themes in <dynamioal systems in 
the l a s t twenty years, i»e . from £ - s t a b i l i t y and structural 
s t a b i l i t y . This problem can be formulated as follows: does 
every nonwandering point of an £ - s t a b l e or structural stable 
dynamical system belong to the olosure of the union of a l l 
i t s periodio orbits . So far an answer has been given by C . P u g h 

(see [ 5 ] ) for dynamical systems of compact manifolds. We give 
a part ia l answer to the nonoompact case i . e . we prove that p there ex is ts a residual set of vector f ie lds on R whioh 
sa t i s fy Q= Per. Thua this property i s a necessary condition 

' 2 for Q. -stable or for structural stable vector f i e l ds on R . 
For the other consequences of this theorem see [ 2 ] . 

We introduce the following notation: 
H r(R2) - the space of G1* ( r ^ 1} vector f i e lds on R2 which 
generate flows endowed with the strong (Whitney) (^-topology, 
Y - an element of H r (R 2 ) , 
TY : R2 * R — R 2 - the flow of the complete vector f i e l d Y, 

TY(A) = u {T Y <x,t) : x t A .tfeR} for A c R 2 , 

co(TY(x)) = { y 6 R2 : 3 t f l — + oo . T Y (x , t Q ) y } , 

o£(TY(x) ) = { y € R2 : 3 — - oo . a , T Y ( x , t n ) — y } , 
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2 J.Kotas 

W y ^ ( x ) - the global unstable (stable) manifold of a fixed 
point x, 
ii(Y) - the set of all nonwandering points of Y, 
Per Y - the union of all closed orbit and all critioal points 
of Y, 
[a,b] - segment of the transverse section with ends a,b, 
(a,b) - segment of the transverse section without ends a,b, 
For definition of w£(s}(x), SL(Y) see [ 3 ] . 

D e f i n i t i o n 1. a) T^(x) is bounded if'it 
is contained in some oompaot set C c R2. 

b) T*(x) esoapes to infinity if for each oompaot set 
O C R 2 there exists a point 7 e T^(x) for which C=\0„ 

y — 
c) T^(x) oscillates if it is neither bounded nor esoapes 

to infinity. D e f i n i t i o n 2. The oscillation region of Y 2 
will be a region E c R with the following properties» 

(i) E is simply oonnected and unbounded 
(ii) PrB (the boundary of B) has at most oountable number 2 

of components, each of them is unbounded and separates R . 
(iii) a component of ErB is either an orbit whioh esoapes 

to infinity for t - 0 0 and for t - » + 00 or a set con-
sisting of a saddle p, a branch of Wy(p) which escapes 
to infinity for t —»- + ©0 and a branch of W®(p) whioh esca-
pes to infinity for t — - ° o . 

(iv) if x e PrB and Y(x) / 0 then for any small enough 
transverse section P^xP2 to Y at x there exists a se-
quenoe x Q e P1xP2, n = 1,2,..., such that xR—»-x. For 
any n, xn+^ lies between xfl and x, TY(xn,tn) is the 
first common point of ) and P^Pj n B, ^ ^ n » " 6 ^ — 
and t n — + 0 0 , Moreover the regions An are bounded by a 
sum of aros a n ={TY(xn,t) : 0 < t < tfl} and [xn,TY(xn,tn)] f 

00 
form an increasing sequence and I J A_ = B. 

n=1 n 
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The properties of osoi l lat ion regions are described i n [ l ] . 
G^fR2) = { l e H r (R2 ) : a l l o r i t i ca l points of Y are hyper-

bo l io } . -p p 
We denote the Kupka-Smale vector f i e lds in H (R ) BY • 

G | ( R 2 ) i . e . f o r Y € G G I H 2 ) » 

( i ) a l l o r i t i ca l points and closed orbits are hyperbolic. 
( i i ) the unstable and stable manifolds of saddles are in 

general position i . e . have no oommon points. 
I t is clear that G | ( R 2 ) C G * ( R 2 ) . G ^ ( R 2 } and G ^ ( R 2 ) 

are residual subset of H r (R 2 ) . Moreover G^"(R2) is open 
in H r (R2 ) (see [4J). 

T h e o r e m 1. I f Y e G^R2 ) then a (Y ) = Per Y 
i f f Y has no osoi l lat ion regions. 

P r o o f . Suppose that Y e has an osc i l la-
tion region E. By Th.2 [ l ] the boundary of E is contained 
in £ ( Y ) . Thus there exists an orbit which escapes to i n f i -
nity f o r t —i+«x> or for t — - ° o . This implies that the-
re exists an orbit of nonwandering points which does not be-
long to Per Y. We get a contradiction which finishes the 
proof of necessity. Assume that Y e G^R2) has ho osc i l la -
tion regions. Suppose that fi(Y) £ Per Y (converse inclu-
sion is always true ' . Let x eJ2(Y) - Per Y. Therefore there 
exist a transverse sectioA P^xP2 to Y at x, a sequence 
of points xQ € P^xPp, a sequence i < n — - s u c h that 

y y 
xn-*-xt T (x n > t f l ) i s the f i r s t common point of 

y 
and P-jXPg and T ( x n , t n ) — y . Moreover for any n, 
l i e s between xn and x. Let AQ be a region bounded by 
a sum of arcs an = { T T ( x n , t ) ! 0 4 t < t j and [xn ,TY (xn , t n ) ] . 
Then the regions form an increasing sequenoe. Let us de-

00 y 
note [J An by E. Now we describe the orbit T A ( x ) . By 

n=1 y v 
Th.3 and Remark 1 [ 1 ] T*(x) cannot osci l late. Thus T*(x) Y 
leither is bounded or escapes to in f in i t y . I f T* (x ) is bounded 
then using the assumption that Y i s Kupka-Smale vector f i e l d 
and Lemma 1 [ l ] f we get that co(TY (x)) i s either a closed hy-
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perbolio stable orbit or a c r i t i c a l hyperbolio points sink 
or saddle. Because x e f l ( Y ) , so « (T (x ) ) oan be neither Y 
a s table closed orbit nor a s ink. Therefore i f T (x) i s 
bounded, then there e x i s t s a saddle p sunh that co(T (x) ) = 
= { p } a n d xeWy(p). I t ia not d i f f i c u l t to see that TY(z) -
a branch of w£(p) i s also a set of accumulation points of a , 

Y n' 
n = 1 , 2 , . . . . Henoe T (z) a FrE. Using again the a r -
gument that Y e G|(R2) we get that T Y (z) escapes to Y i n f i n i t y for t — A n a l o g o u s l y one can prove that 

y 

e i t h e r escapes t o ' i n f i n i t y for t - * - - © « or <sC(T (x) ) i s a 
saddle q and T Y (z) - a branch of Wy(q) i s contained in 
the same component of FrE as T ( x ) . Therefore E i s sim-
ply connected and unbounded region. Moreover any component 
of FrE i s l ike in Def.2 . Thus E i s an o s c i l l a t i o n region 
of Y and we get a contradiction which f in i shes the proof. 

Now we formulate and prove some technical lemmas which 
we need to proof of next theorem. 

D e f i n i t i o n 3 . A flowbox for Y e Hr(M) we 2 
c a l l a closed quadri lateral F c R containing no res tpoints 
of Y, with two (opposite) edges S + transverse to Y and 
the other two edges Y-orbit segments, each joining an end-
point of S + to an endpoint of S_. 

We c a l l S + the entrance set and the e x i t set of Y. 
In what follows, T [x,y] denotes the closed Y-orbit segment 
from x to y, 

L e m m a 1. Suppose S + are transverse sect ions to 

Y e H r(R 2) such tha t : 
( i ) S + i s compaot 
( i i ) the forward semi-orbits of each point x of S + 

i n t e r s e c t s S_, and the f i r s t in tersec t ion Py(x) i s i n -
t e r i o r to S_. 

Then the Poincaré map ±>y : S+—»- int S_ i s as smooth 
as Y, and there e x i s t s a compact-open Cr-neighbourhood U 
of Y, concentrated on a neighbourhood of the union of orbit 
segments T Y ( x , P y ( x ) ] , x e S + , such that Pz : S + — i n t 

i s well-defined and varies C r-continuously with Z € U. 
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For proof of this lemma see [,3j. 
To isolate a given positive or negative semi-orbit from 

others, and control its behavior under perturbation, we con-
struct a positive (resp. negative) tower, defined as a finite 
or infinite sequence of flowboxes T = -{p̂  .P̂ » • • (resp. 
* = satisfying, for each i = +1,... 

(il rx Pj = 0j unless |i-j|<1 
(ii) P± o > i + 1 = s+(i+l J (resp. = S_(i)) 
(iii) S (i+1) c int S (i) (resp. S (i-1) c int S (i)) + * o 
(iv) T forms a locally finite family in R . 

The floors of the tower are the transverse edges S+(i) and 
its height is the number h of flowboxes (finite or infinite). 
A positive semi-orbit can enter a positive tower T only via 
the bottom floor S+(1). An orbit can leave T via some set 
S_(i) - S (i+1), i < h, or else it crosses all floors of T 
before leaving T. Given a floor S of the positive tower T, 
we denote by W(S,T,Y) the set of all points x e S which 
cross all subsequent floors of T before leaving T. Note 
that for any tower T and any floor S, the set W(S,T,Y) 
is a nonempty closed interval (possibly a point) and when T 
has infinite height, every semi-orbit starting £rom W(S,T,Y) 
escapes to infinity inside T. Note that if I is a tower 
for Y, it need not be a tower for vector fields Z near Y, 
since the edges of the flowboxes need not be Z-orbits. Never-
theless, if Z is near Y at points in T, we can still' 
define the set. W(S,T,Z) as the set of points in S whose 
Z-semi-orbit crosses all subsequent floors of T in succession 
before leaving T. The following lemma is a persistence theo-
rem for W(S,T,Y). In (ii), |j| denotes the length of the 
interval J. The result is formulated for positive towers, 
but analogous lemma is true for negative towers. 

L e m m a 2. Suppose T = {p^Pg,...} is a positive 
tower for Y, and S is a floor of T. 

(i) There exists a stiorig C°-neighbourhood U of Y 
(actually an intersection of compact-t>pen neighbourhoods con-
centrated on any neighbourhood of'the flowboxes of T) such 
that W(S,T,"Z) ̂  0 for Z t U. 
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6 J.Kotus 

( i i ) Given 5 > 0 there e x i s t s a strong C^-neighbourhood 
U of Y (an i n t e r s e c t i o n of compact-open C^-neighbourhoods 
concentrated on any neighbourhood of the flowbojces of T) such 
tha t f o r every Z e U ( 1-6) |w(S,T,Y)| < |W(S,T,Z)]« 
<(1+6) |W(S,T,Y) | . 

P r o o f . Note that W(S,T,Y) i s a nested i n t e r s e c -
t ion of i n t e r v a l s W^SjTjY) c s , defined as the se t of points 
whose semi-orbit crosses at l e a s t i succesive f l o o r s i n T. 

X I . 

The se t in which these semi-orbi ts cross the i f l o o r S^ 
i s an i n t e r v a l c S i t and the subset of correspond-
ing to W i+1(S,T,Y) i s the preimage by the Poinoaré map of 
Si+1* N o t e t f l i s s e t i s * n t e r : 1 - o r 1,10 J i » oondition 
( i i i ) of the d e f i n i t i o n of tower. 

Por d e f i n i t e n e s s , denote by Py3 ( i > j ) the inverse 
Poincaré map of Y, from S.̂  to S^. Thus 

P|3 - J* i " 1 o pi -1 1.-2 o . . . o pj+13. 

Now, by Lemma 1 there are C° es t imates concentrated on any 
neighbourhood of P., . . . w F. which guarantee tha t Z near 
Y def ines a corresponding Poinoare map : S i ~ w h i o h 

i s C° near Py^, and near i f Z i s Cp-near Y on 
these s e t s . Ih p a r t i c u l a r , i t i s easy to see tha t by est imates 
on the f i r s t i flowboxes we can insure tha t eaoh Poincaré map 

maps S.j+1 i n to the i n t e r i o r of S^, f o r a l l j « i . 
This guarantees i n pa r t i cu l a r t ha t 

J±(Z) = P1° ° P | 1 ° . . . o p j ( S ± ) 

i s nonempty compact ¿Interval i n t e r i o r to J ^ f Z ) , and hence 
the f i n i t e i n t e r s e c t i o n property gives us conclusion ( i ) . 

To prove conclusion ( i i ) , we note that f o r any monotone 
Ĉ  map f between i n t e r v a l s the length of the image of a 
subinterval I i s 
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|f(I)| = /|f'(x)| dx. 
I 

Thus, if two maps f,g : J — s a t i s f y an estimate of the 
form 

(a) |(l«-oi):]f'(p)| < [g'(p)|< (l+oO!f'(p)| V p e J then any 
interval I c J satisfies 

(b) (1-ip£) Jf(I)| < | g(I)| < (1+J)|f(l)|. 
Lemma 1 tells us that for any J! < 1 we can obtain (a) for 
f = Py1"1, g-= Pg1""1 by controlling the C1 distance be-
tween Y and Z near P^. Thus, given 6 >0, pick oẐ  > 0 
s u c h t h a t ( 1 - 5 ) < T T (1 - J \ ) f ( 1 + 6 ) > T T (1-fcC,) a n d t h e n 

i-1 1 i=1 ^ 
make C^ estimates on which insure that (a) (hence 
(b)) holds for eaoh i with =oCit f = Pyi_1, g = P^1"1. 
By induction, we obtain the analogue of conolusion (ii) for 
each set W^SjT,!) and ^(SjT.Z), i < h, and hence (ii). 

C o r o l l a r y . If semi-orbit T^(x) esoapes to 
infinity, there exists an infinite positive tower T with 
x e S, such that W(S1fT,Y) = {x}, and hence for any Z 
whose restriction to T is sufficiently Cr-near Y|t, there 
exists a unique Z-soai-orbit which escapes to infinity in-
side T. 

T h e o r e m 2. Let S be a transverse section to 
Y € G^(R2). For any neighbourhood U c G^R2,) of Y there 
exists an open set V c u such that if Z e V, then Z has 
no oscillation regions whose boundary intersect int S. 

P r o o f . Let U be a given neighbourhood of Y, P, Q 
denote ends of S. Suppose that E is an oscillation region 
of Y and FrE n int S / 0. Let a 6 PrE n int S. It fol-
lows from the. definition of oscillation regions that 
FrB n int S = {a} and TY(a) escapes to infinity either for 
t — + o o or for t—»--oo. Assume that T̂ (,a) esoapes to 
infinity for t — - o o . Let Q e E* p 4 q, p,q € T^(a) , 
£1,S? be small enough transverse seotions at p, q such that 
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S 2 c T+(S1), C = ) o Tf(L2). Because p,q e FrE then 
there exists a sequence of points q_ € 3, n = 1,2,..., n d. y 
such that <3n—^<3» <3n+1 lies between q^ and q, 2 (<3n»'tn) 

Y is the first point in which meets S^ r* 3, 
Y 
T (qn,tn) —^ p and tQ—»-+oo. Moreover there exists a se-
quence s n such that 0 < s n < t , s n—»• + ©© and TY(qn,sn) y 
is the first common point of Tnq_) and int S. It is •y X Xl 
clear that T ( q n » s

n ) — a » Le1; t>e a vector field with 
a support C. Y' is transverse to Y and Y' leads in the 
direction of E. There exist t > 0 and q Q € Sg r> B such 
that X = Y + tY'eU and qfl € T*(a). Because X = Y out-
side C then TX(qn,t) = TY(qn,t) for 0 4 U tfl. Thus 

aj intersects int S at a and at b = TX(<3n»sn)> The-
re exists a neighbourhood V c u of X with the property 
that if Z e V then there exist az,bz 6 int S such that 
the arc Tz[az,bz] lies in the £-neighbourhood of T X[a , b J . 

By Lemma 2 and Corollary we can choose V in such way that 
Tz(az) escapes to infinity for t -*• -oo. It follows from 
the properties of Tz(az) that (az,Q) is contained in 
a closed region G1 bounded by Tz[az,bz] and [az,bz] c S. 
Hence if xe[az,Qj then Tz(x) c G t so Tz(x) is bounded 
for Z € V. This implies that the boundary of oscillation 
regions of Z E V cannot intersect [az,Q] (recall that each 
component of the boundary of oscillation regions is an un-p 
bounded, invariant set which separates R ). Suppose that V 
does not satisfy thesis of Th.2. Therefore there exists Y 6 V 
which has an oscillation region S such that i'rE r\ int S 4 0 
(i.e. ffrii M P , a Y ) 4 0). Let c = PTE r»(P,aY). By Def.2 
T (c) escapes to infinity for t — + o o or for t —^-oo. 
Assume that T (c) esoapes to infinity for t5—»-+oo. We 
repeat the construction made for previous Y. Let p,q e 
€ T_(c), p 4 q. S^SgjCjY' are defined analogously. We ohan-
ge only the direction of Y'. NOW Y' leads in the opposite 
direction to E. This construction together with Lemma 2 and 
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Corol lary imply that t h e r e e x i s t s an open s e t T 1 c y with 
property i f Z e V1 then there e x i s t c z , d z e ( P , a z ) , o z ^ d z , 
such tha t T z ( c z ) escapes to i n f i n i t y f o r t —»-+o© and 
T z ( c z ) i n t e r s e c t s i n t S at d z 6 ( P , c z ) . Thus a segment 
( P , c z ) i s contained i n a c losed r e g i o n G2 bounded by 
T z [ d z , c z ] and [ d z , c z j . So , i f x e [ P , c z J then T z ( x ) c Gg 

f o r Z € V.j. Hence the boundary of o s c i l l a t i o n r e g i o n o f 
Z e V.j cannot i n t e r s e c t [ p , c z J av [ a z , Q j . I t remains to pro-
ve tha t ( c z , a z ) r\ Frfi = $ f o r any o s c i l l a t i o n r e g i o n B of 
Z e V.J. Suppose t h a t f o r some I e ^ FrB - M c ^ . a ^ ) 
Hence P e B or Q 6 B. ' I f P e E then there e x i s t s a s e -
quence of a r c s . a n = { T Y ( x n , t ) : 0 < t c E such t h a t 

x n e i n t S , T Y ( x n , t n ) € i n t S and x n — T y ( x n , t n ) — x 
(by x we denote the unique common point of FrB and 
( c Y , a Y ) ) . Therefore a* e ( x k , P ) c Ak c B f o r some k . 

Because T Y ( a Y ) escapes to i n f i n i t y f o r t —» - e o , so T^a^ 1 ) 
i n t e r s e c t s the aro a k = { T Y ( x k , t ) : 0 < t < t ^ } c prAk which 
i s i m p o s s i b l e . By the same arguments Q cannot belong to E. 
This impl ies that V1 s a t i s f i e s a l l necessary c o n d i t i o n s . 

? 
L e m m a 3 . For any compact s e t K C E and open 

Get U c g^(R 2 ) there e x i s t 'open s e t V c u , s e t s 
and the points p Y , . . . , p Y e i n t K such t h a t : 

( i ) S ^ , , . . , S j j . . are t r a n s v e r s e s e c t i o n s to any Y e V, 
Y Y 

( i i ) p 1 f . . . , p n are c r i t i c a l hyperbol i c f i x e d points 
of Y e V 

( i i i ) i f x e K - { p Y , . . . , p Y } , Y € V then t h e r e e x i s t s 

5 i such t h a t T Y ( x ) i n t S ± Proof of t h i s lemma i s very easy , so we leave i t to the 
r e a d e r . 

o 
T h e o r e m 3. For any compact s e t K C a there 

e x i s t s a dense and open s e t V c G^(R 2) suoh t h a t i f Y e V 
then Y has no o s c i l l a t i o n r e g i o n s with boundary i n t e r s e c -
t i n g K. o 

P r o o f . Let us be given K c r ' and open s e t 
2 U c s (h ) . ^ s t a r t with showing t h a t we may choose 
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x e FrE r» K to be r e g u l a r . I f x e FrE rv K and Y(x) = 0 
then x i s a saddle. Beoause x e i n t K then there e x i s t s 
y 6 Wy(x) such that y 6 PrB r\ K. Thus we oaii assume that 
Y(x) i 0. I t follows from Lemma 3 ( H i ) tha t TY(x) r\ i n t S± / 
i 0 f o r some 1 < i < k. 

Suppose that i = 1. Using Th.2 we get em open se t V^ c V 
with the property tha t i f I e 7 1 then Y has no o s c i l l a -
t i on regions whose boundary i n t e r s e o t s i n t S^. Now i f we apply 
again Th.2 we get open se t s V^ c c V1 c u which sa -
t i s f y the t he s i s f o r i n t S1 v̂  . . . ^ i n t S i t 1 < i < lo. Thus 
by Lemma 3 ( i l l ) the se t Vk s a t i s f i e s Theorem 3. 

T h e o r e m 4. The se t { y € iPfR 2 ) s SL(Y) = Per y } 
i s r e s idua l ( r ^ 1) . 

F r o o f » Let K^ be a sequence of compact subsets 
_ DO _ 

of R2 such tha t U K = R2 . Denote by C(K ) the subset 
m=1 

of G^fR2) with the property tha t i f Y e C(Kffl) then Y has 
no o s o i l l a t i o n regions whose boundary i n t e r s e c t Km. By Th.3 
C(Km) contains an open and dense subset f o r any m € N. Thus 
oo 
n C(KL) contains a r e s idua l subse t . I t i s not d i f f i o u l t to 

m=l o . 

see tha t i f I 6 f l C(K ) then Y has no o s o i l l a t i o n r e -_ * m m=1 
gions . This sentonoe and Th.1 imply that fl(Y) = Per Y f o r 

OO • 
any Y € F ^ R 2 ) = f ) C(K) G*(R2). Because F ^ R 2 ) i s a 

m=1 
r e s i d u a l subset of G^(R2), G^(R2) i s an open and dense i n 

H r (R 2 ) , so I^fR 2 ) i s a r e s idua l subset of H^fR2). 
C o r o l l a r y . I f Ye ff^R2) i s fl-stable or 

s t r u c t u r a l l y s tab le then ft(Y) = Per Y. 
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