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VECTOR FIELDS ON R2 WITHOUT OSCILLATIONS ARE GENERIC

This paper deals with a problem which has arisen from
one of the central research themes in dynamiocal systems in
the last twenty years, i.e. from R -stability and structural
stability. This problem can be formulated as follows: does
ever'{y nonwandering point of an Q -stable or structural stable
dynamical system belong to the olosure of the union of all
its periodioc orbits. So far an answer has been given by C.Pugh
(see [5]) for dynamical systems of compact manifolds. We give
a partial answer to the noncompact case i.e. we provs that
there exists a residual set of vector fields on R2 which
satisfy Q= Per. Thuw this property is a necessary coandition
for 9Q~gtable or for siructural stable vector fields on R2.
For the ofther consegq.ences of this theorem ses [2].

We introduce the following notation:
Hr(R2) -~ the space of ¢® (r > 1) vector fields on R? which
generate flows endowed with the strong (Whitney) Cr-topology,
Y - an element of HY(R?),
TY : R2x R—R% - the flow of the complete vector field Y,
TY(x) ={Ty(x,t) t € Rp - the Y-orbit of x,
Tz(x) ={’1‘Y(x,t) : b2 0{,

¥(x) = {2¥(x,t) : t <O},

1¥(a) = ufr¥{x,t) : x e A,teR} for a <R,
w(T¥(x)) ={y € R? Btn—-~+oo. 3. TY(x,tn)———y},
L(1¥(x)) ={y e R? ; th—-—-oo. 3. TY(x,tn)—vy},

s
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2 JeKotus

W‘f(sJ[x} - the global unstable (stable) manifold of a fixed
point x,

(Y) - the set of all nonwandering points of Y,

Per Y -~ the unlon of all closed orbit and .1 critical points
of I,

[a,b] - segment of the transverse section with ends a,b,
(a,b) - segment of the transverse section without ends a,b,

For definition of W%‘a)(x], 2(Y) ses [3]s
Definition 1. a) f_nf{x) is bounded if it

is contained in some compact set € TRr2,
b) TY(x) esoapes to infinity if for each compaoct set

C €R? there exists a point y € TY(xJ for which TY(y]r\C= o

o) TI(xJ oscillates if it is neither bounded nor escapes
to infim.t;y.

Definition 2. The oscillation region of Y
will be a region E C R® with the following properties:

(i) E 4is simply connected and unbounded

(i1) FrE (the boundary of E) has at most countable number
of components, each of them is unbounded and separates R4,

(iii} a component of FrE is either an orbit which escapes
to infinity for t-— ~occ and for ft -—=+occ or a set ocon-
gisting of a saddle p, a branch of wu(pl which escapes
to infinity for t —e+©2 and a branoh of wY(p} which esca-
pes to infinity for t —» -oo,

(iv) if x ¢ F*E and Y(x) # 0 then for any smsll enough
t{ransverse section P1xP2 to Y at x thers exists a se~
quence Xx, € P1xP2, n=1,2,4ses 8such that X, =X, For

any n, x, 4 lies between x, and x, TY(xn,tn] is the

first common point of Tf{x,_) and 1>.|xP N E, Tr{x t }——b-;y
and tn—- +o0, Moreover tne regions are bounded by a

sum of ares a, ={’J‘.‘I(xn,til SR iand [xn,T (xn,t )T,

Cs

form an increasing sequence and

g n

=]
n
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The properties of osgillation regions are described in[ﬁ].

o¢X(8?) = {¥ e H"(R?) : all oritical points of Y ave hyper-
: ‘ bolio}.

We denote the Kupka-Smale vector fields in HT(R?) by
G3(R?) t.e. for Y € G5(R%):

(i) all oritical points and closed orbits are hypsrbolic.

{(ii) the unsteble and stable manifolds of saddles are in
general position i.e. have no common points,

It is olear that G5(R?) < GT(R?). GI(R®) and GH(R®)
ars residual subset of HT(R?). Moreover Gf(RQ) is open
in HY(R®?) (ses [41).

Theorem 1. If YeGhR?) then o(Y) = Per Y
iff Y has no osoillation regions,

Proof. Suppose that Y e G5(R®) has an oscilla-
tion region E. By Th.2 [1] the boundary of E is contained
in 2(Y). Thus there exists an orbit which escapes to infi-
nity for t-— +oo or for ¢t -—»~co, This implies that the-
re exists an orbit of nonwandering points which does not be-
long to Per ¥. We get a oontradiction which finishes the
proof of necessity. Assume that Y € Gg(Rz) has rio oscilla-
tion regions, Supposs that 2(Y) & Per ¥ (converse inclu-
g8ion is always true.. Let x ¢ R(Y) - Per Y. Therefore there
exist a ftransgverse saction P1xP to Y at x, a sequence
of points x, € P1xP a sequence tn';’ +oo such that

X, —+»x%, T (xn, n is the first common point of Tf(xn)

and P,xP, and TY(xn,tn)———'y. Moreover for any n, X, ,
lies betwesn X, and x. Let An be a region bounded by

. Y
a sum of arcs ay =-{T (xn,t) : 06« } and [x T xn,t P

Then the regions An form an increasing sequence. lLet us de-

note  LJ A, by E. Now we describe the orbit T (x). By

Th.3 and1Remark 1 [1] 2¥(x) cannot oscillate. Thus TY(x)

leither is bounded or escapes to infinity, If TY(x) is bounded
then using the assumption that Y is Kupka-Smale vector field
and Lemma 1 [1], we get that w(1¥(x)) is either a closed hy-
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perbolic stable orbit or a critical hyperbolic point: sink
or saddle. Bscause x € 2(Y), 8o Q(TY(X)) can be neither
a stabls closed orbit nor a sink, Therefors if TY(x) is
bounded, then there exists a saddle p such that @(T¥(x)) =
={fp} and x ew?(p). It is not difficult to see that TY(z) -
a branch ofvwg(p) 18 also a set of accumulation points of a
n=1,2,... . Henoce T¥(z) c FrE, Using again the ar-
gument that Y e G?(Rz) we get that TY(z) escapes 1o
infinity for t —e +0o, Analogously one can prove that TZ(x)

n’

either escapes to ‘infinity for 4 -—» -oce or ef(TY(x)) is a
saddle q and TY(E) -~ a branch of W?(q) is contained in

the sams ocomponent of FrE as TY(x). Therefore E is sim=~
ply connected and unbounded region. Moreover any component
of FrE is like in Def.2, Thus E is an oscillation region
of Y and we get a contradiction which finishes the proof. '
Now we formulate and prove some technical lemmas which
we need %o proof of next theorem. '
Definition 3. A flowbox for Y € H' (M) we
call a closed quadrilateral F CZR2 containing no restpoints

of Y, with two (opposite) edges S, transverse to Y and

the other two edges Y-orbit segments, each joining an end~
point of S+ to an endpoint of S_.
We call S, the entrance set and S, the exit set of Y.

In what follows, TY[x,y] denotes the closed Y-orbit segment
from x to y.
Lemnma Te Suppose S are transverse sections to

+

Y e 5T(R?) such that: b

(1) S, is compaat

(i1) the forward semi-orbits of each point x of S,
intersects S_, and the first intersection PY(x) is in-
terior to S_.

Then the Poincaré map 2y : S ,— int S_ 1s as smooth
as Y, and there exists a compact-open C(F-neighbourhood U
of Y, concentrated on a neighbourhood of the union of orbit
segments TY [x,PY(x)], X € S+, such that Pz : S+—-> int o5_

is well-defined and varies CF-continuously with 2z € U,
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For proof of this lemma see [3].

To isolate a given positive or negative semi-orbit from
others, and control its behavior under perturbation, we con~
struct a positive (resp. negative) tower, defined as a finite
or infinite sequence of flowboxes T = {F1,F2,...} {resp.

{I o F 2,...}) satisfying, for each 1 = +1,..s

(i) P, AP, =¢ unless [i-j|<1

(ii) Fin"F 41 = 5,(3+1) (resp. = 8_(1))

(1i1) S, (i+1) < int 5_(1) (resp. S (1 1) € int S {(i))

(iv) T forms a locally finite famlly in R2,

The floors of the tower are the transverse edges S+(i) and
its height is the number h of flowboxes (finite or infinite).
4 positive semi-orbit can enter a positive tower T only via
the bottom floor S+(1). ‘An orbit can leave T via some set
5_(1) =~ S+(i+1), i <h, or else it crosses all floors of T
before leaving T. Given a floor S of the posifive tower T,
we denote by W(S,T,Y) the set of all points x e S which
cross all subsequent floors of T before leaving T. Note
that for any tower T and any floor S, the set W(S,T,Y)

is a ponémpty c¢losed interval (possibly a point) and when T
has infinite height; every seml-orblt starting from w(s,T,Y)
escapes to infinity inside T. - Note that if T is a tower
for Y, it need not be a tower for vector fields 2 ' near Y,
since the edges of the flowboxes need not be Z-orbits. Never-
theless, if 2 is near Y at points in T, we can still
define the set. W(S,T,Z) as the set of points in S whose
Z-semi-orbit crosses all subsequent floors of T 1in succession
before leaving T. The following lemma is a persistence theo-~
rem for W(S,T,Y). In (ii), |J] denotes the length of the
interval J. The result is formulated for positive towers,

but aenalogous lemma is true for negative towers.

Lemma 2. Suppose T = {F1,F2,...} is a p051tive
tower for Y, and S 1is a floor of T.

(1) There exists a strong C°-neighbourhood U of Y
(actually an intersection of compact-bOpen neighbourhoods con-
centrated on any neighbourhood of ‘the flowboxes of T) such
that W(S,T,Z) # ¢ for 2 €U,
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(1i1) Given § >0 there exists a strong 01—neighbourhopd
U of Y {an intersection of compact-open C1-neighbourhoods
concentrated on any neighbourhood of the flowboxes of T) such
that for every Ze U (1-8)|W(s,T,Y)| < |W(s,T,2)]|<
< (1+6) |w(s,T,Y)]|. ,

Proof. ©Note that W(S,7,Y) ies a nested intersec~
‘tion of intervals w,(s,T,Y) © 5, defined as the set of polnts
whose semi-orbit crosses at least i succesive floors in T,
The set i which these semi-orbits cross the 10 rloor s,
is an interval J; © 8;, and the subset of J; correspond-
ing to W, ,(5,T,Y) is the preimage by the Poincard map of
Si+1‘ Note that this set is interior to Ji’ by condition
(iii) of the definition of tower,

For definiteness, denote by P%J (1 > j) the inverse
Poincars map of Y, from S; to Sy. Thus

i3 _ ol i-1 4 oi-1 1-2 3+13
PY - PY ° PY o [ N } o PY 1

Now, by Lemma 1 there are ¢% estimates concentrated on any
neighbourhood of F1 vV oees ule which guarantee that Z near
Y defines a corresponding Poincare map P%J : Si-—> Sj which

is €% near P%j, and C° nesr if 2 is C'~near Y on
these sets., Ih particular, it is eesy to see that by estimates
on the first i flowboxes we oan insure that each Poincare map
P31 maps Sy,q imto the interior of S, for all j < i,
This guarantees in particular that

. p10 o p21 1 1-1
3;(2) = 2,0 opg! o ,,, op; (s)

is nonempty compact interval interior to Ji_1(Z), and hence
the finite intersection property gives us conelusion (i).

To prove conclusion {ii), we note that for any monotone
01 map f Dbetween intervals the length of the image of a
subinterval I 1is
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[£(1)] = flf’(x)ldx.
I

Thus, if two maps f,g : J —+J’ satisfy an estimate of the
form .

(a) [(1=ad2/(p)] < [&’(p)|< (1+0]£’(p)] ¥ p € J then any
interval I € J satisfies

(b) (=D 2(T) < [8(1)] € (1+D|£(T)].

Lemma 1 tells us that for any [/ <1 we can obtain (a) for
f = _szii"‘l, 8= P%‘iﬂ by controlling the ¢ distance be-

tween Y and 2 near F;. Thus, given 6§ >0, pick o£i >0
such that (1-8) < ;LI'T (1-;['1), (1+6) > p (1+f;) and then
=1 : =1

make C' estimetes on Y|P, which insure $hat (a) (hence
(b)) holds for each 1 with <« =of,, £ = Py*™", g = B2¥"1.
By induction, we obtain the analogue -of conolusion (11) for
sach set Wi(S,T,Y) and Wi(S 7,2), i< h and hence (ii),

Corollary. If semi-orbit T (x, escapes to
infinity, there exists an 1nf1nite positive tower T with
x € S, such that W(S,,T,Y) = {x}) end hence for any 2
whose restriction to T is sufficiently C'-near Y|T, there
exists a unique Z~-somi-orbit which escapes to infinity in-
side T, )

Theorem 2, Let S be a transverse section to
Y € 67(R?), For any neighbourhood U € GF(R®) of Y there
exists an open set V €U such that if Z € V, then 2 has
no oscillation regions whose boundary intersect int S.

Proof. Let U be a given neighbourhood of Y, P, Q
denote ends of S. Suppose that E 1is an oscillation region
of Y and FrE m~int S #¢. Let a € PPE o int S. It fol=-
lows from the definition of oscillation regions that
FrE n int S = { }' and Ty(a) escapes to infinity either for
t —= +oo or for +-—e=-oco., Assume that TL (a) escapes to
infinity for t—e <00, Iet Q€ B, p # g, p,Q € Tz(a),
S1,82 be small enough transverse sections at p, g such that
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S, © T, (S }, C = TY(U1) A T ( 2) Because p,q € FrE then
there ex1sto a sequence of points 9, € ﬁznﬂ By N = 1,2,000,
such that q,—=g, g, ., lies between g, and g, ‘DY(qn,t

is the first point in which Tl(q,) meets 5,0 2,

TY(qn,tn)-—> p and tn-—>-+oo. Moreover there exists a sa-

Y
quence s, such that 0<s <%, s —=+oco and T (qn,sn)

is the first common point of TY(q ) and int S. It is
clear that TY(qn,s ) —= a, Let Y’ be a vector field with
a support C. Y’ is transverse to Y and Y/ leads in the
direction of E, There exist 1 > 0 and 9, € 8244 E such
that X =Y + tY'e U and 9, € T, (a). Because X =Y out-

side C then T¥(g,t) =TY(qn,t) for 0 <t <t,. Thus

Tf(a) intersects int S at & and at b = Tx(qn,sn). The=-
re exists a neighbourhood V C U of X with the propsrty
that if Z € V then there exist az,bZ € int S such that
the arc Tz[az,bz] lies in the & -neighbourhood of Tx[a,b].
By Lemma 2 and Corollery we can choose V in such way that
Tf(az) escapes to infinity for t —» =o0. It follows from
the properties of T%(a”?) that (a?,Q) is contained in

a closed region G, bounded by Tz[az,b%] and [az,b%] cS.
Hence if x e[gz,Q] then Ti(x) c 51, S0 Ti(x) is bounded
for 72 € V., This implies that the boundary of oscillation
regions of Z € V cannot intersect [a%,Q] (recall that each
component of the boundary of oscillation regions is an un-
bounded, invariant set which separates R?), Suppose that V
does not satisfy thesis of Th.2. Therefore there exists Y e¢ V
which has an oscillation region E such that IFrE ~ int S# ¢
(iee. Prk ~(P,a¥) ##). Let c = PrE n (P,a’). By Def.2
TY(c) escapes to infinity for t —» +o00 or for t —» -oco,
Assume’ that TY(c) escapes to infinity for +t—e 400, We
repeat the construction mede for previous Y. Let p;q €

€ TY(c), p #4q. S1 S555Cs Y’ are defined analogously. We chan-
ge only the direction of Y’. Now Y’ leads in the opposite
direction to E. This construnotion together with Lemma 2 and
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Corollary imply that there exists an open set V1 CV with
property if Z € V., then there exist c?,d% ¢ (p,a%), o%# 4%,
such thaf Ti(cz) escapss to infinity for t —e +o00 and
Ti(cz) intersects int S at d° € (P,c®). Thus s segment
(P,c?) 4is contained in a closed region G, bounded by

7% [a%,¢%] and [d%,c?]. So, if x € [P,cZ] then T%(x) G,
for Z € V1. Hence the boundary of oscillation region of

Z € V, cannot intersect [P,cz] v [az,Q]. It remains to pro=-
ve that (c¢%,a%) ~ FrE = § for any oscillation region E of
Z € V1. Suppose that for some Y € V1 FrE ~ (cﬁ,ar) $¢d.
Hence Pe £ or Q € E. 'If P e.BE then there exists a se-~
quence of arcs.a, = {’I‘Y(xn,t) : 0t & tn,} C E such that

x, € int 8§, TY(xn,tn) € int S and X, —= Xy TY(xn,tn) — x
(by x we denote the unique common point of Fr¥ and
(cY,aY)). Therefore al € (xk,P) = Ay C©E for some k.

Because ’I-E(ay) escapes to infinity for t— -oo, 80O T_Y_](am)

intersects the ere ay, = {TY(x,,t) : 0 t < t } C Pra, which
is impossible., By the same arguments Q cannot belong to BE.
This implies that V.I satisfies all necessary conditions,
Lemmae 3. For any tompact set K € R2 and open
eet U C Gf(Rz) there exist open set V €U, sets S,,.0.,5,
ax?d the points p¥,...,p§e int X such that:
(1) Syseee4S) are transverse sections to any Y e V,

(11) pf,...,p} are critical hyperbolic fixed points
of YeV
(1ii) if x € K - {p¥,...,p§}, Y € V then there exists

Si such that ’I‘Y(x) ~ int 8, £0,

Proof of this lemma is very easy, so we leave it to the
reader.

Theorem 3. For any compact set K C R? thers
exists a dense and open set V C Gf(-Rz) such that if Y e ¥
then Y has no oscillation regions with boundary intersec-
ting K.

Proof. Let us be given K c r? and open set
U C Gf(RZ). We start with showing that we may choose
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x e FrE nK to be regular, If x€ PrE~K and Y(x) =0
then x 1s a saddle, Because x € int K then there exists
y € WXx) such that y € FrE ~ K, Thus we cah assume that
Y(x) # 0. It follows from Lemma 3 (iii) that T (x) A int Siﬁ
#¢ for some €1k

Suppose that i = 1. Using Th.2 we get an open set V1CV
w:?.t.h the property that if Y € V1 then Y has no oscillg-
tion regions whose boundary interseots int 81. Now if we apply
again Th.2 we get open sets Vi C Vi_1 c V1 C U which sa-
tisfly the thesis for int S v oess~ int 85, 1 <1 ke Thus
by Lemma 3 (1ii) the set Vk satisfiss Theorem 3,

Theorem 4 The set {Y € H'(R?) : R(Y) = Per Y}
is residual (r 2 1).

‘Proof., Let Km be a.sequenos of compact subsets
of R? such that U1 K, = R2. Denote by C(K,) the subset

m=

of G:fl"(Rz)_ with the property that if Y e C(K ) then Y has
ne oscillation regions whose boundary intersect Km’ By Th.3
C(Km) contains an open and dense subset for any m € N, Thus

ﬂ C(K } contains a residual subset., It is not diffioult to
m=1

see that if Y € ﬂ C(K ) then Y has no oscillation re-
gions, This sentogzl and Th.1 4mply that R(Y) = Per Y forl
any Y e FF(R?) = n C(Ky) A G2(R2). Becauae li'r(R2 is a
residual subset of Gﬁ'(Rz), ¢T(R?) is an open and dense in

Hr(Rz), so F°(R%) is a residual subset of HE(R?),
Corollary. If Ye H'(R?) is Q -stable or
structurally stable then 2(Y) = Per Y,
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